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Abstract

In this paper we study the problem of on-line allocation of routes to virtual circuits (both
point-to-point and multicast) where the goal is to route all requests while minimizing the
required bandwidth. We concentrate on the case of permanent virtual circuits (i.e., once a
circuit is established, it exists forever), and describe an algorithm that achieves an O(logn)
competitive ratio with respect to maximum congestion, where n is the number of nodes in
the network. Informally, our results show that instead of knowing all of the future requests,
it is sufficient to increase the bandwidth of the communication links by an O(logn) factor.
We also show that this result is tight, i.e. for any on-line algorithm there exists a scenario
in which Q(logn) increase in bandwidth is necessary in directed networks.

We view virtual circuit routing as a generalization of an on-line load balancing problem,
defined as follows: jobs arrive on line and each job must be assigned to one of the machines
immediately upon arrival. Assigning a job to a machine increases this machine’s load by
an amount that depends both on the job and on the machine. The goal is to minimize the
maximum load.

For the related machines case, we describe the first algorithm that achieves constant
competitive ratio. For the unrelated case (with n machines), we describe a new method
that yields O(logn)-competitive algorithm. This stands in contrast to the natural greedy
approach, whose competitive ratio is exactly n.
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1 Introduction

Virtual Circuit Routing High-speed integrated communication networks are going to be-
come a reality in the near future. Implementation of these networks raises numerous new issues
that either did not exist or could be easily addressed in the context of the existing low-speed
networks. In particular, the increase in the network speed by several orders of magnitude leads
to a situation where a small delay of a high-rate bit stream quickly exceeds the available buffer
space. This makes it advantageous to use bandwidth-reservation techniques.

The main abstraction through which the customer can use the network is by a virtual circuit.
In order to use the network, the customer requests it to reserve the required bandwidth between
the two communicating points. The network guarantees that the reserved bandwidth will indeed
be available as long as needed, creating an illusion of a real circuit dedicated to the customer.
One of the basic services that appears in the proposals for future high-speed networks (e.g.
ATM [1]) is the permanent virtual circuit (PVC) service. As far as the user is concerned, such
virtual circuit is supposed to behave like a physical line connecting the corresponding points,
and hence it is desirable that once such a circuit is created, it will not be “rerouted” by the
network except as a result of failures. (Hence the name “permanent”.)

In this paper we develop a framework and techniques that allow us to address the problem
of online virtual circuit routing. We consider the following idealized setting: We are given a
network where each edge has an associated capacity (bandwidth). Requests for virtual circuits
arrive on line, where each request specifies the source and destination points, and the required
bandwidth. The routing algorithm has to choose a path from the source to the destination and
reserve the required bandwidth along this path. The goal is to minimize the maximum (over
all edges) of the relative load, defined as the reserved (used) edge bandwidth, measured as a
percentage of the total edge capacity. In this paper, we assume that no rerouting is allowed
and that the virtual circuits never disappear. Because all requests must be routed, it follows
that the relative load may exceed 1, which can be viewed as a slowdown.

For some applications it is more eflicient to use multicast circuits, where instead of a single
destination there are multiple destinations. Examples include teleconferencing, video on de-
mand, database updates, etc. In this case the routing algorithm has to choose a tree that spans
the nodes participating in the multicast.

Our framework and techniques can be applied to several alternative models; discussion of
these models is deferred to the end of the introduction. Several recent papers show how to
extend the techniques developed in this paper to more general cases, including the routing of
switched virtual circuits (SVC), i.e. circuits that have limited duration in time [11, 6], concurrent
routing [2], routing with limited rerouting [7], and min-cost circuit routing [4]. Multicast circuits
were analyzed in [3]. Analysis of routing in a Poisson arrivals model was done in [21]. Simulation
and implementation results described in [17, 18] indicate that online routing algorithms based on
our techniques outperform traditional algorithms for routing virtual circuits in ATM networks.

As customary, we evaluate the performance of the on-line algorithms in terms of competitive
ratio, introduced in [36] and further developed in [24, 14, 30]. In our case, it corresponds to



the supremum, over all possible input sequences, of the ratio of the maximum relative load
achieved by the on-line algorithm to the maximum relative load achieved by the optimal off-
line algorithm.

Using our framework, we derive online virtual circuit routing algorithms (point-to-point and
multicast) that are O(logn) competitive with respect to load, where n is the number of nodes
in the network. We also show an Q(logn) lower bound on the competitive ratio of any virtual
circuit routing algorithm in the case where the underlying network is directed. (The upper
bound works for both directed and undirected cases.)

Load Balancing We view virtual circuit routing as a generalization of on-line machine
scheduling/load balancing. To this end, we concentrate on non-preemptive load-balancing,
defined as follows: There are n parallel machines and a number of independent jobs; the jobs
arrive one by one, where each job has an associated load vector and has to be assigned to exactly
one of the machines, thereby increasing the load on this machine by the amount specified by the
corresponding coordinate of the load vector. Once a job is assigned, it cannot be re-assigned.
The objective is to minimize the maximum load.

The load balancing problems can be categorized into three classes according to the properties
of the load vectors, as it is done for the non-preemptive scheduling problems [20]. In the identical
machines case, all the coordinates of a load vector are the same. This case was first considered by
Graham [19], who showed a (2 — %)—Competitive algorithm, where n is the number of machines.
The bound was improved in [13] to 2 — ¢ for a small constant € (the value of € was further
improved in [22]). In the related machines case, the ith coordinate of each load vector is equal
to w(j)/v(¢), where the “weight” w(j) depends only on the job j and the “speed” v(¢) depends
only on the machine 7. All other cases are referred to as unrelated machines. The special case
where all coordinates of the load vector are either oo or equal to a given value that depends
only on the job, was considered in [12], who described an O(logn)-competitive algorithm. This
case can be viewed as a hybrid between the identical and the unrelated machines case, and it
is incomparable to the related machines case. A similar special case was studied in [25].

In this paper we show an O(logn)-competitive algorithm for the unrelated machines case,
and an 8-competitive algorithm for the related machines case. Although competitive analysis
notions apply to algorithms without any restrictions on their running times, all on-line algo-
rithms presented in this paper run in deterministic polynomial time, whereas the matching
lower bounds are based on information-theoretic arguments and apply even if we allow the
online algorithm to use randomization.

The related machines case is a generalization of the identical machines problem, for which
Graham [19] has shown that a greedy algorithm achieves a constant competitive ratio. Thus, it
is natural to ask whether an adaptation of such an algorithm can give a constant competitive
ratio for the related machines case as well. We prove that the natural greedy approach (that
is, assigning every new job to the machine that will complete it with the lowest resulting load)
is O(logn) competitive. Our (non-greedy) 8-competitive algorithm for this problem can be
viewed as an adaptation of the scheduling algorithm of Shmoys, Wein, and Williamson [35] to



the context of load balancing.

We show that for the unrelated machines case, the natural greedy algorithm is exactly n-
competitive. This bound should be contrasted with the optimal O(logn)-competitive greedy
strategy of [12] for the special case where all coordinates of the load vector are either oo or
equal to a given value that depends only on the job. Thus, the unrelated machines case requires
development of new techniques. We introduce a new approach that leads to an O(logn)-
competitive algorithm for the general unrelated machines case. As shown in [12], this is the
best bound on the competitive ratio one can hope for in this case.

It is easy to see that the identical and related machines problems are special cases of virtual
circuit routing. These problems can be reduced to a virtual circuit routing problem on a 2
vertex network, with multiple edges between them. Every edge represents a machine, and the
edge capacities represent the relative machine speeds. Every arriving job is translated into a
call between the two vertices s and ¢ where the call bandwidth corresponds to the job weight.
The unrelated machine is a special case of a generalization of virtual circuit routing where the
call requires different bandwidth depending on the edge used. Our virtual circuit algorithms
give an optimal O(logn) competitive ratio for this problem.

Other related work Some of the techniques which are used for our on-line framework are
based on ideas developed in the context of approximation algorithms for the multicommodity
flow and related problems (see eg. [34, 26, 28, 33, 23]). In particular, we assign each link
a weight that is exponential in the link’s load, and choose the routes by computing shortest
paths with respect to this weight. The main difference between the algorithms presented here
and the previously known offline approximation algorithms is in a novel way of proving the
approximation factor which allows us to execute the algorithm in an online fashion.

All the results in this paper concentrate on the case where jobs and virtual circuits are
permanent, i.e. jobs never leave and virtual circuits never terminate. Azar, Broder, and
Karlin [10] introduced a natural generalization of this model, in which requests have duration
in time. They show an Q(y/n) lower bound on the competitive ratio of any load balancing
algorithm that deals with the unknown duration case, i.e. the case where the duration of a
request becomes known only upon its termination.

This lower bound suggests considering the case where the duration of a request becomes
known upon its arrival (the known duration case). The methods developed in this paper were
generalized in [11], giving an O(log nT')-competitive algorithm for the problems of scheduling
unrelated machines in the known duration case, where T is the ratio of maximum to minimum
duration. Similar results can be achieved for the virtual circuit routing problem. Recently,
the lower bound in [10] was simplified and improved by Ma and Plotkin [29]. In particular,
their bound implies that we can not expect to have a poly(lognT) competitive algorithm for
the unknown duration case.

Another way to overcome the lower bound in the unknown-duration case is to allow re-
assignments of existing jobs. For the case where the coordinates of the load vector are restricted
to be 1 or oo, Phillips and Westbrook [31] proposed an algorithm that achieves O(logn) compet-



itive ratio while making O(1) amortized reassignments per job. The general case was considered
in [7], who show how to extend the techniques presented here to design an O(log n)-competitive
algorithm with respect to load that reroutes each circuit at most O(logn) times.

An alternative measure of network performance is the amortized throughput defined as the
average over time of the number of bits transmitted by the accepted connections. In this setting,
the network’s bandwidth is assumed to be insufficient to satisfy all the requests so some of the
requests may need to be rejected upon their arrival. An on-line algorithm in this setting is a
combination of a decision mechanism that determines which requests to satisfy together with
a strategy that specifies how to route these requests. The goal is to maximize the amortized
throughput. A competitive algorithm that maximizes the throughput in a single-link case was
provided by Garay and Gopal [16]; the case where the network consists of single line of nodes
was considered by Garay, Gopal, Kutten, Mansour and Yung in [15]. The techniques presented
here were extended by Awerbuch, Azar, and Plotkin [6] to provide competitive solutions for
networks with unrestricted topology. Other studies on the throughput performance measure
appear in [9, 8, 27]. Our routing and scheduling algorithms assume a central scheduler that
makes all the decisions. In [2], Awerbuch and Azar extended the techniques of this paper to the
case where there are concurrent requests that have to be satisfied in a decentralized fashion.
See [32] for a survey of different online routing strategies. We note that another measure of
performance for load balancing algorithms appears in [5] who provided competitive algorithms
for that measure.

2 Virtual Circuit Routing

In this section we consider the problem of on-line routing of virtual circuits in a capacitated
network. Formally, we are given a graph G = (V, F) with |V| = n and |E| = m, and a capacity
function u : F — R*. The requests arrive as tuples (s;,t;, p(¢)), where s;,t; € V and p(i) € R.
Request i is satisfied by choosing a route F; from s; to ¢; and reserving capacity p(¢) along this
route.

Since we will always normalize the requested bandwidth to the total available bandwidth,
it will be convenient to define:

Ve € E,pe(i) = p(i)/ule).

Let P = {Poo, Pey--- 777”} be the routes assigned to requests 1 through k£ by the on-line
algorithm, and let P* = {Px,P¢, ... 777|‘|*} be the routes assigned by the off-line algorithm.
Given a set of routes P, define the relative load after the first j requests are satisfied by

Ce(j) =Y peli) (1)
'L':(::Sf’,’

and let A(j) = maxeep le(j). Similarly, define £%(j) and A*(j) to be the corresponding quantities
for the routes produced by the off-line algorithm. For simplicity we will abbreviate A(k) as A



procedure AssiGN-RoOUTE(p, s,t, G, A, B);
/* A — current estimate of L*.
/* B — designed performance guarantee of the algorithm.
Ve € E, pe := p/u(e);
Ve € E, e := pe/A;
Ve € E,l, :=(,/A;
Yee E: c,:= qletpe _ aZe;
Let P be the shortest path from s to ¢ in G w.r.t. costs ce;
ifdec P: le+pe > BA
then b :=fail
else begin
Ve € P: lg = le+ pe;
b :=success
end;
return (P, 7, b).
end.

Figure 1: Algorithm AssiaN-RoOUTE.

and A*(k) as A*. The goal of the on-line algorithm is to produce a set of routes P that minimizes

A/A*.

This problem can be viewed as an instance of 2-terminal net routing or path-packing. Mini-
mizing A/A* corresponds to asking how much larger we should make the capacities of the edges
in order for the on-line algorithm to be able to satisfy all the requests that the off-line algorithm
could have satisfied in the network with the original capacities.

It is easy to see that the algorithms presented in this section can be extended to the case
where the increase in the bandwidth is not uniform along the route. Namely, the case where a
routing request is a vector giving the capacity requirement of the call on each and every edge
in the network, should that edge we used in the route. The goal here is to present a connected
path of edges from source to destination, where the capacity used on the edges for this call is
obtained from the input vector. This is clearly a generalization of the standard routing problem
where the entry associated with all edges e is simply the (single) call bandwidth.

2.1 Routing Algorithm

The AssieN-RouTE algorithm is shown in Figure 1. Given a request to allocate a route of
capacity p from s to ¢, AssiaN-RoUTE assigns a weight to each edge as a function of the change
in its relative load that would occur if it were to be used by the new route, and then computes
a shortest path from s to ¢ with respect to these weights; a is an appropriately chosen constant.

For convenience, we define the notion of a designed performance guarantee § as follows: the
algorithm accepts a parameter A and never creates load that exceeds SA. The algorithm is



allowed to return “fail” and to refuse to route a circuit if A < A*, otherwise it has to route all
of the requests.

Lemma 2.1 If A* < A, then there exists 3 = O(logn) such that algorithm AssiGN-ROUTE never
fails. Thus, the relative load on an edge never exceeds (- A.

Proof: To simplify the formulas, we will use tilde to denote normalization by A, for example
le(j) = Le(j)/A. Define the potential function:

=3 Oy - 25, (2)
ecE
where a,y > 1 are constants. Note that & is a function of both ENE and K;*. If the on-line
algorithm satisfies the (5 + 1)st request with route Pj4; and the off-line algorithm satisfies it
with route P, ;, we get the following change in the potential function:

QU+ -@() = X (v - U — D) = 3T GGy @)

eEP]‘+1 eeP]+1

< Y y(ale@pelit) _ (L)) 3 el (4 1)
EGPj+1 EGP]_*_H

S Z (,)/(ale( )+pe(.7+1) aZE(J))_aZe(J)ﬁe(]—I—l))
e€Ply,

_ Z aZe(J)(p)/(aﬁe(j‘Fl) 1) pe(J—l-l))
e€Ply,

The first equality can be viewed as an application of the identity (z + A(2))(y + A(y)) =
yA(z)+ (z+A(z))A(y), where z = a’e e(d) gy = (v—0%(5)), A(z) and A(y) represent the changes
in the value of these terms between ®(j+ 1) and ®(j). The first inequality follows because £*(5)
is non-negative for all e. The last inequality follows from the fact that P;;; is the shortest path

between the endpoints of the j + 1st request with respect to the costs ale(i)+Be(i+1) _ ofe(d),

Since the (j + 1)st request is satisfied by the optimal algorithm by assigning it the route
Pr 1, it means that Ve € PF ;1 0 < Pe(j+1) < A*/A < 1. Therefore, in order to show that the
potential function does not increase, it is sufficient to show that Vo € [0,1]: ~(a® — 1) < =,
which is true for a = 1+ 1/~.

Initially, ®(0) < ym, where m is the number of edges in the graph. Since ® does not
increase, and since (*(7) < 1, then after satisfying &k requests, we have:



The last inequality, and the fact that v > 1 imply

ym
< — ] = .
rglez};(ﬂe(k) < Alog, ( 1) O(Alogn)

We use a simple doubling technique to overcome the problem that A in unknown. This
causes the competitive ratio to be a factor of 4 larger than the designed performance ratio.

The algorithm works in phases, where the difference between phases is the value of A
assumed by the algorithm. Within a phase the algorithm AssiGN-RouTE is used to route
calls, ignoring all calls routed in previous phases. The first phase has A = mine pe(l) =
mine p(1)/u(e), where p(1) is the bandwidth request of the first call. At the beginning of every
subsequent phase the value of A doubles. A new phase starts when AssiGN-ROUTE returns
“fail”. As mentioned above, Assign-Route will ignore all calls routed in previous phases.

It is easy to see that this approach can increase the competitive factor by at most a factor
of 4 (a factor of 2 due to the load in all the rest of the phases except the last, and another factor
of 2 due to imprecise approximation of A* by A). Since the designed performance guarantee of
AssigN-RovuTE is O(log n), we get the following theorem (observe that it holds both for directed
and undirected graphs):

Theorem 2.2 Algorithm AssiGN-ROUTE can be used to achieve O(logn) competitive ratio with
respect to load.

2.2 Routing Multicast Circuits

Many applications (teleconferencing, video on demand, etc.) are based on multicast instead of

point-to-point circuits. A request for a multicast circuit consists of a tuple (¢},¢2,.. .tf",p(i))
where t},12, ... ,tfi are the communicating points and p(7) is the required bandwidth. Any one

of the communicating points can serve as a “source”. To satisfy such request, the algorithm
needs to assign the required bandwidth p(¢) along the edges of some tree T; that spans nodes
2, ... ,tf". As in the point-to-point case considered in the previous section, the goal is to
minimize load. Also note that the case k; = 2 directly corresponds to the point-to-point case.

The algorithm to route multicast circuits is a direct extension of the point-to-point routing
strategy presented above. Instead of routing over min-weight paths, multicast circuits are routed
over min-weight Steiner trees.

As finding min-weight Steiner tress is NP-hard, we actually approximate them. However,
imagine for now that we were to route the multicast calls along the Steiner trees. The proof of
the competitive ratio is nearly identical to the proof of Lemma 2.1. The only difference is in
the summation range in Equation (3). Instead of summing over the edges on the path chosen
by the algorithm and the edges on the optimum path, the sum will be over the edges of the tree
chosen by the algorithm and the edges of the tree chosen by the optimum offline algorithm.



Equation (3) is based on the fact that the cost of the edges chosen by the algorithm for
routing of the current circuit is not larger than the cost of edges chosen by the optimum
algorithm for routing of this circuit. The fact that these edges form a path is not used. In other
words, Equation (3) remains correct if the summation range is changed and if the algorithm
routes over min-weight Steiner trees. Thus, a multicast algorithm that routes over min-weight
Steiner trees is O(log n)-competitive.

Instead of routing the multicast call over the min-weight Steiner tree, we route it over a
tree that is a constant factor approximation to the min-weight Steiner tree. Such trees can be
found by applying a min-cost spanning tree algorithm over an appropriately constructed graph

[37].

If we use a 2-approximation to the min-weight steiner tree then in the 3rd and 4th lines of
Equation (3) the value v is replaced by 2v. However, we can ensure that 2v(a® — 1) < z is true
by choosing @ = 1+ 1/(27v) (replacing the previously used a =14 1/7).

The above discussion implies the following claim:

Theorem 2.3 There exists an O(log n)-competitive algorithm for multicast virtual circuit routing,
where each decision can be implemented in polynomial time.

2.3 Lower Bound for Routing

In this section we show a lower bound of Q(logn) for the competitive ratio of any on-line
routing algorithm in a directed network, i.e. a network where the capacity between v and
w is not necessarily equal to the capacity between w and v. This implies that our O(logn)-
competitive algorithm presented in the previous section is optimal in this case. Our lower bound
also holds for randomized algorithms working against an oblivious adversary, 7.e. an adversary
that has to generate new requests independently of the outcome of the coin flips of the online
algorithm. The basic idea is to modify the lower bound of Azar, Naor and Rom [12] for on-line
load balancing.

Without loss of generality, assume that n is a power of 2. Consider a directed graph that has
a single source s, connected to each one of n vertices vy, vs,...,v,. There is one sink, denoted
by 51,1, connected to vy, ..., vn; two sinks, denoted by Sz 1,532 2, connected to vi, ..., v,/3 and
Un/241; -« -  Un, respectively, etc. In general, for each 1 <7 <logn, we divide vertices vy, ..., v,
into 2°~1 sets, the jth of which, for j = 1,...,2""!, contains vertices V(j=1)n/2i-141) - - - s Ujn/2i~1-
Each of the vertices in a set is connected to a sink associated with this set, where the sinks are
denoted by S; ;forj=1,... ,2*=1. Observe that the vertices associated with S; ; are the union
of two disjoint sets associated with S;11,2;—1 and Siy1 2;.

We construct a sequence of requests for paths from the source to the sinks, for which the
off-line load is at most 1 but the online algorithm assigns at least load 105" to some edge (s, vj).
This, combined with the fact that the size of the graph is O(n), will yield the Q(logn) lower

bound.




We will refer to the load on an edge (s,v;) as the load of vj. Requests are generated in
log n phases; the bandwidth of every request is equal to 1. We will maintain that the following
conditions hold for each phase 1 < i < logn:

L. In phase i, there are 3 requests of paths from the source to a sink .5; ; for some j, where
1<j<2t,

2. At the end of phase ¢, the average of the expected load, over the vertices vy, associated
with sink S; ; is at least i/2.

Clearly, before the first phase begins, the load of each vertex is 0. Assume that the above
conditions hold for phase i. The vertices associated with .5; ; are the union of two disjoint sets:
vertices associated with sink S;41,2;—1, and those associated with S;;12;. Hence, one of these
sets must have average expected load of i/2 at the end of the ith phase. Denote this subset
by S. Generate 377 requests for unit capacity from source s to the sink associated with S.

n

Since S is of size 37, the average expected load of S must increase by 1/2, to at least (i +1)/2,

implying that the conditions are satisfied for phase ¢ 4+ 1.

Thus, after the last phase, the average expected load of the two vertices in the last set is at

187 Hence the expected load of one of them is at least 10%.

least 5

To complete the proof, we have to show that the off-line algorithm can maintain unit
maximum load. It is enough to show that at each phase the off-line can satisfy the requests by
using edge-disjoint paths and without using vertices associated with sinks requested in latter

phases. Indeed, at phase ¢ there are J; requests for paths from the source to some sink 5; ;.

The set of vertices associated with this sink contains two disjoint sets each of size 3. By
construction, one of these sets is not associated with sinks of latter requests. Thus, the off-line
algorithm can route all the requests of phase ¢ through edge-disjoint paths that use only vertices

of that set.

3 Online Machine Load-Balancing

In this section we present several algorithms for online machine load-balancing. Jobs arrive
online, and each has to be immediately assigned to one of the machines. The goal is to minimize
maximum load.

Formally, each job j is represented by its “load vector” p(j) = (p1(4),p2(4),---,pn(j)),
where p;(j) > 0. Assigning job j to machine ¢ increases the load on this machine by p;(j). Let
(;(j) denote the load on machine ¢ after we have already assigned jobs 1 through j:

f()— fk(j—l)—l—pk(j) it k=1
KI)= (- 1) otherwise

Consider a sequence of jobs defined by o = (p(1), p(2), ..., p(k)). Denote by 5 (j) the load
on machine ¢ achieved by the off-line algorithm A* after assigning jobs 1 through j in o. The



goal of both the off-line and the on-line algorithms is to minimize L*(k) = max; ¢} (k) and
L(k) = max; {;(k), respectively. More precisely, we measure the performance of the on-line
algorithm by the supremum over all possible sequences of L(k)/L*(k) (of arbitrary length k).

As we have mentioned in the Introduction, the load-balancing problems are usually cate-
gorized into three classes, based on the properties of the load vectors. For identical machines,
Vi, i',j: pi(j) = pa(j). For related machines, Vi, 7, j, j' = pi(j)/puli) = pi(f")/par (i) = vir v
where v; denotes the speed of machine ¢. All other cases are referred to as unrelated machines.

Note that instead of “load” one can talk about “execution time”. Restating the problem in
these terms, our goal is to decrease maximum execution time under the requirement that the
arriving jobs are scheduled immediately.

3.1 Unrelated Machines

In this section we consider on-line load-balancing on unrelated machines. As we will show in
Section 4, the natural greedy approach is far from optimal for this case, achieving a competitive

ratio of ©(n).

An O(log n)-competitive algorithm for the unrelated machines load-balancing can be con-
structed as a reduction to the routing problem considered in the previous section. Unfortunately,
such reduction results in a confusing and non-intuitive algorithm. Instead, we present a simpler
algorithm, specifically designed for the machine load-balancing problem.

For simplicity, we first consider the case where we are given a parameter A, such that
A > L*. As before, an appropriate value of A can be “guessed” using a simple doubling
approach, increasing the competitive ratio by at most a factor of 4. We use tilde to denote
normalization by A, i.e. & = a/A.

Algorithm AssigN-U is shown in Figure 2. The basic step is to assign job j to make
Yo at(?) as small as possible. In the description of the algorithm, we have omitted the
job index j, since a single invocation of the algorithm deals only with a single job. We will
use the notion of designed performance guarantee similarly to its use in the online routing case:
the algorithm accepts a parameter A and never creates load that exceeds SA. The algorithm is
allowed to return “fail” and to refuse to schedule a job if A < L*, otherwise it has to schedule
all of the arriving jobs.

Lemma 3.1 If A* < A, then there exists 5 = O(logn) such that algorithm AssiaN-U never fails.
Thus, the load on a machine never exceeds 3 - A.

Proof: Consider the state of the system after scheduling j—1 jobs, and let a,v > 1 be constants.
(Later we show that a good choice is @ &~ 2,y &~ 1.) Recall the assumption that L*(j) < L* <A,
and define the potential function:

10



procedure AssiaN-U(p, (A, B);
/* A — current estimate of L*.
/* B — designed performance guarantee of the algorithm.
Let s be the index minimizing A; = allitpi) aZ";
if {5+ ps > BA
then b :=fail
else begin
Ly =Ly + ps;
b :=success
end;
return (£, b).
end.

Figure 2: Algorithm AssigN-U.

n ~

o(j) = d“OD(y - G (j)).

=1

(4)

Assume that job j was assigned to machine i’ by the on-line algorithm and to machine ¢ by

the off-line algorithm. Analogously to the proof of Equation (3) we now have:

()= —1) = (y—05(j —1))(abl) = ofaG-1) — LG (j)
< (a0 _ la(m1)y B0 )
<y (aBGAEG) _ By B0 )

a%U=1 (4 (P — 1) — pi(5)).

Note that since the off-line algorithm has assigned job j to machine ¢, we have 0 < p;(j) <
L*/A < 1. Therefore, in order to show that the potential function does not increase, it is

sufficient to show that Vo € [0,1]: ~(a® — 1) < z. This is true for a =1+ 1/7.

Since initially ®(0) = yn, at any point in the assignment process
n ~

i@ (y —1) < m,

=1
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and hence

L = max/{;(k) = Amax/t;(k)

1

< Alogg (2
P)/_

I n) = O(Alogn) (6)

Notice that the constants in the big O of (6) are small; for example for v = 1.1, we get
L/A < 1.07logn + 3.7. By changing the value of 4, one can trade off the multiplicative factor
against the additive term.

Observe that log n is a lower bound even for the restricted case considered in [12]. Moreover,
it is interesting to note that for the case where the coordinates of the load vector p(j) are either
oo or equal to some constant p; that depends only on the job j, our algorithm behaves exactly
like the greedy algorithm considered in [12].

3.2 Related Machines

The related machines case is a generalization of the identical machines case. In Section 4 we
show that a natural generalization for the related machines case of Graham’s greedy algorithm
for the identical machines case, leads to an ©(logn) competitive ratio. Here we present a
non-greedy algorithm that achieves a constant competitive ratio.

As before, we first consider the case where we are given a parameter A, such that A > L*(k),
where k is the index of the last job. A simple doubling technique can be used to eliminate this
assumption. Roughly speaking, the algorithm will assign jobs to the slowest machine possible
while making sure that the maximum load will not exceed an appropriately chosen bound. The
idea of assigning each job to the “least capable machine” first appeared in the paper by Shmoys,
Wein, and Williamson [35], where they considered an online scheduling problem.

Algorithm AssigN-R is shown in Figure 3. The basic step is to assign job j to the slowest
machine such that the load on this machine will be below 2A after the assignment. In the
description of the algorithm, we have omitted the job index j, since a single invocation of the
algorithm deals only with a single job. We assume that the machines are indexed according to
increasing speed.

In the following discussion we will omit the index & when it can be understood from the
context. In particular, we use L and L* instead of L(k) and L*(k), respectively. We use the
notion of “designed performance guarantee” in the same sense as in the previous section.

Lemma 3.2 If A* < A, then algorithm AssiaN-R never fails. Thus, the load on a machine never
exceeds 2A.

12



procedure AssiGN-R(7, / A);
/* A — current estimate of L*.
Let S := {i|l; + p; < 2A};
ifS=10
then b :=fail
else begin
k:= min{i|i € S};
Uy =l + pr;
b :=success
end;
return (£, b).
end.

Figure 3: Algorithm AssigN-R.

Proof: Assume AssigN-R fails first on task j. Let r be the fastest machine whose load does
not exceed L*, i.e. r = max{¢|(;(j — 1) < L*}. If there is no such machine, we set r = 0.

Obviously, r # n, otherwise j could have been assigned to the fastest machine n, since
ln(j— 1)+ pn(j) < L*+ L* < 2A. Define I' = {i|i > r}, the set of overloaded machines. Since
r < n, ' # (. Denote by Sy and by S>* the set of jobs assigned to machine ¢ by the on-line and
the off-line algorithms, respectively. Since we are dealing with related machines, we have:

DPnis Uy Vs
IPNCED IS D YED ITEED DETAED DD DFICED PN
€T, icr, 7t i€l " ses) ier n i€l ' ses ier,  (7)
868) 868) 568;‘

This implies that there exists a job s € U;er Sy, such that s & User S>*7 t.e. there exists a
job assigned by the on-line algorithm to a machine ¢ € I', and assigned by the off-line algorithm
to a slower machine i’ € T'.

By our assumptions, py(s) < L* < A. Since r > ¢, machine r is at least as fast as machine
i', and thus p,(s) < L* < A. Since job s was assigned before job j, (n(s—1) < l.(j —1) < L*.
But this means that the on-line algorithm should have placed job s on r or a slower machine
instead of 7, which is a contradiction. |

As we have mentioned above, the definition of the AssianN-R algorithm facilitates a doubling
approach to approximate A. More precisely, we start with A = 0. At the beginning of the first
phase, Aj is set to be equal to the load generated by the first job on the fastest machine for
the job. At the beginning of a new phase h > 1, we set A, = 2A,_;. During a single phase,
jobs are assigned independently of the jobs assigned in the previous phases. Phase h ends when
AssiaN-R returns “fail”. It is easy to see that this approach can increase the competitive factor
by at most a factor of 4 (a factor of 2 due to the load in all the rest of the phases except the last,
and another factor of 2 due to imprecise approximation of A). Since the designed performance
guarantee of AssiaN-R is 2, we get:
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Theorem 3.3 Algorithm AssiaN-R can be modified to achieve a competitive ratio of 8.

4 The Greedy Algorithm

The simple greedy machine load balancing algorithm due to Graham [19] gives a competitive
ratio of 2 for the identical machines case and competitive ratio of O(logn) for the special case
considered in [12]. It is natural to consider whether extensions of this algorithm can lead to small
competitive ratios in the respectively more general cases of related and unrelated machines. In
this section we show that, unfortunately, this is not the case. More precisely, we show that
natural greedy approaches give ©(n) competitive ratio for the unrelated machines case, and
O(logn) competitive ratio for the related machines case. This is in contrast to the O(logn)
and 8 competitive ratios, respectively, produced by the algorithms presented in the previous
sections.

We consider the following greedy algorithm: each job j is assigned upon arrival to the
machine & that minimizes the resulting load, i.e., the machine k that minimizes (g (5 —1)+pg(j).!
Ties are broken by some arbitrary rule.

Lemma 4.1 The greedy algorithm has a competitive ratio no better than n for unrelated machines.

Proof: Consider a sequence of jobs such that job j has cost 7 on machine j, cost 1 4+ € on
machine j—1, and cost oo on all other machines (s.e., pj_1(j) = 1+¢€,p;(j) = 7, and p;(j) = o0
for all i # 7 — 1, 7). (To avoid distinguishing between the first job and all the other jobs, we
refer to machine n also as machine 0.) Here € is an arbitrarily small positive constant that is
used to avoid ties. Clearly the optimal off-line algorithm can schedule all of these jobs with a
maximum load of 1+ ¢ by assigning job j to machine j — 1.

On the other hand, the greedy algorithm assigns job 1 to machine 1 for a resulting load of
1 (as opposed to 1+ € on machine n or oo anywhere else). Similarly, when job 2 arrives, the
greedy algorithm assigns it to machine 2 for a resulting load of 2, instead of assigning this job
to machine 1, where it would have produced a load of (2 + ¢€). Likewise, job 3 is assigned to
machine 3 and so forth. A simple induction argument shows that job j is always assigned to
machine j for a resulting load of j, giving a maximum load of n on machine n. The resulting
performance ratio is n/(1 4 €), which can be made arbitrarily close to n. |

Lemma 4.2 The competitive ratio of the greedy algorithm is at most n for unrelated machines.

Proof:  Every job j has a minimum load min; p;(j) that can not be avoided by the optimal

!Note that assigning a job to the machine with the minimum load results in an algorithm with competitive
ratio that is at least equal to the ratio of the fastest to slowest machine speeds.
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off-line algorithm. If S>* is the set of jobs assigned to machine ¢ by the off-line algorithm,

nL* > Y06 =30 pild) > 3o minpi(j).

i JES!

On the other hand, we claim that the the maximum load resulting from the greedy algorithm
will never exceed the sum of the minimum loads. Indeed, suppose that after assigning job j—1,
we have L(j — 1) < ¥aciy min; p;(j'). When job j arrives there is some machine m that
minimizes pp, (7). The load on this machine is at most L(j — 1), and so if j is assigned to m the
resulting load is at most L(j — 1) +pm(J) < 3 ji<j min; p; (7)). And thus, the actual assignment
satisfies L(j) < > j1<; min; pi(j'). By induction, L <37 min; p;(j) < nl*. |

Lemma 4.3 The greedy algorithm has a competitive ratio Q(log n) for related machines.

Proof: For simplicity, first we assume that whenever adding a job to two different machines
will result in the same maximum load, the job is assigned to the faster machine. At the end of
the proof we show how this assumption can be avoided.

Consider a collection of machines with speeds of the form 27% where i € {0,1,...,k} (the
relation between k£ and n will become clear below). Let n; be the number of machines with
speed 27% and suppose ng = 1, n; = 2, and in general

1—1
niQ_i = Z an_j. (8)
o

These values are chosen so that the sum of the speeds of all machines with speed 27* is equal
to the sum of the speeds of all the faster machines. Thus, a collection of jobs that would add 1
to the load of each machine with speed 27* could instead be assigned to add 1 to the loads of
all the faster machines. The total number of machines n =1+ 2(4%F — 1.

Now consider the following sequence of jobs. First we generate ny jobs of size 27, followed
by ng_1 jobs of size 27 =1 and so forth, until at last we generate a single job of size 1. For
every machine with speed 277 there is a corresponding job of size 277. By simply assigning
each job to the corresponding machine, the off-line algorithm can schedule all the jobs with a
resulting maximum load of 1.

However, we claim that the greedy algorithm assigns each group of jobs to machines that
are “too fast”. Assume, by induction, that before the jobs of size 27 are assigned, the load on
machines with speed 277 is equal to min(k—i, k—75). (In the base case, when i = k, this condition
simply corresponds to each machine having zero load.) By Equation 8, the greedy algorithm
can assign the jobs of size 27 to all machines with speed 20,271, ... L2~ (i-1), resulting in load
of k — ¢4 1 on each one of these machines. If instead it assigns one of these jobs to a machine
with speed 279, where j > 4, the resulting load will be k — j + 2978 = (k — i) + 297% — (j — ),
which is at least (k — ¢) + 1 since 2® — & > 1 for all non-negative . The greedy algorithm will
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therefore not assign any job of size 27* to a machine with speed 2% or slower, and the induction
step follows.

Consequently, after all the jobs have been assigned, each machine with speed 277 has load
k — j; the single machine with speed 1 has load k = Q(logn). Thus, under the simplifying
assumption that the greedy algorithm always breaks ties in favor of the faster machine, the
greedy algorithm is Q(log n)-competitive.

Next we show how to avoid the above simplifying assumption. Before sending in the “large”
jobs, we will send an “e-job” of size €27 for each machine with speed 2%, giving it a load of
¢;. To avoid changing the greedy algorithm’s choice of where to assign the large jobs, each ¢;
must be less than 2%, the smallest possible difference between loads resulting from large jobs.
To force ties to be broken in favor of faster machines we require that €¢; > ¢; whenever j > 1.
Finally, to ensure that the e-job intended for a machine is not placed on some faster machine,
we generate the jobs for the faster machines first and require that ¢; < ¢; + €j2_j/2_i for j > 1.
all of these conditions can be satisfied by choosing ¢; = 27%=1(1 +272k+1) |

Lemma 4.4 The greedy algorithm has a competitive ratio of O(logn) for related machines.

Proof: Let L be the maximum load generated by the greedy algorithm and L* be the maximum
load generated by the optimal off-line algorithm. The structure of the proof is as follows. First,
we show that the load on the fastest machines is at least I — L*. Next, we show that if the load
on all the machines with speed > v is at least £, then the load on all the machines with speed
> v/2is at least {—4L*. Repeated applications of this claim imply that the load on any machine
that is no more than n times slower than the fastest machine, is at least L — (1 + 4[logn])L*.
Finally, we use an argument similar to the one used in the proof of Lemma 4.2 to show this
condition can only hold if L = O(logn)L*.

First, consider the last job j assigned by the greedy algorithm to a machine ¢, causing the
load of this machine to reach L. Since no job can add more than L* to the load of any fastest
machine, the fact that the new load on ¢ is £ implies that the load on all the fastest machines
is at least L — L*.

Now suppose the load on all the machines with speed v or more is at least £ > 2L*. Consider
the set of jobs that are responsible for the last 2L* load increment on each one of these machines.
Observe that at least one of these jobs (call this job j) has to be assigned by the offline algorithm
to some machine 7 with speed less than v, and hence it can increase the load on 7 by most L*.
Since the speed of ¢ is at most v, job j can increase the load on the machines with speeds above
v/2 by at most 2L*. The fact that job j was assigned when the loads on all the machines with
speed v and above was at least £ — 2L* implies that the loads on all the machines with speed
above v/2 is at least £ — 4L*.

Let v be the speed of the fastest machines. We have shown that all machines with speed v
have load at least I — L*. Iteratively applying the claim in the above paragraph shows that all
machines with speed at least v2~* have load at least L — L* — 4iL*. Thus, every machine with
speed at least v/n has load at least L — (1 + 4[logn])L*.
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Assume, for contradiction, that L — (144[logn])L* > 2L*. Recall that since we are in the
related machines case, for each job j and any two machines ¢ and ', we have W (j) = p;(j)v; =
pit(7) vy, where W (j) can be regarded as the weight of the job. Let I be the set of machines with
speed less than vpayx/n. The total weight of jobs that can be assigned by the offline algorithm
is bounded from above by

n

RS DITEE G Al S T AD LT (9)
i=1 " igl igl

The assumption that the online algorithm causes load of more than 2L* on all the machines not
in I implies that the total weight of the jobs assigned by the online algorithm is greater than
2L* 32;g1 vi, which is a contradiction to 9. Thus, L — (14 4[logn])L* < 2L*, which implies
L =0((logni)L*). 1
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