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1 IntroductionVirtual Circuit Routing High-speed integrated communication networks are going to be-come a reality in the near future. Implementation of these networks raises numerous new issuesthat either did not exist or could be easily addressed in the context of the existing low-speednetworks. In particular, the increase in the network speed by several orders of magnitude leadsto a situation where a small delay of a high-rate bit stream quickly exceeds the available bu�erspace. This makes it advantageous to use bandwidth-reservation techniques.The main abstraction through which the customer can use the network is by a virtual circuit.In order to use the network, the customer requests it to reserve the required bandwidth betweenthe two communicating points. The network guarantees that the reserved bandwidth will indeedbe available as long as needed, creating an illusion of a real circuit dedicated to the customer.One of the basic services that appears in the proposals for future high-speed networks (e.g.ATM [1]) is the permanent virtual circuit (PVC) service. As far as the user is concerned, suchvirtual circuit is supposed to behave like a physical line connecting the corresponding points,and hence it is desirable that once such a circuit is created, it will not be \rerouted" by thenetwork except as a result of failures. (Hence the name \permanent".)In this paper we develop a framework and techniques that allow us to address the problemof online virtual circuit routing. We consider the following idealized setting: We are given anetwork where each edge has an associated capacity (bandwidth). Requests for virtual circuitsarrive on line, where each request speci�es the source and destination points, and the requiredbandwidth. The routing algorithm has to choose a path from the source to the destination andreserve the required bandwidth along this path. The goal is to minimize the maximum (overall edges) of the relative load, de�ned as the reserved (used) edge bandwidth, measured as apercentage of the total edge capacity. In this paper, we assume that no rerouting is allowedand that the virtual circuits never disappear. Because all requests must be routed, it followsthat the relative load may exceed 1, which can be viewed as a slowdown.For some applications it is more e�cient to use multicast circuits, where instead of a singledestination there are multiple destinations. Examples include teleconferencing, video on de-mand, database updates, etc. In this case the routing algorithm has to choose a tree that spansthe nodes participating in the multicast.Our framework and techniques can be applied to several alternative models; discussion ofthese models is deferred to the end of the introduction. Several recent papers show how toextend the techniques developed in this paper to more general cases, including the routing ofswitched virtual circuits (SVC), i.e. circuits that have limited duration in time [11, 6], concurrentrouting [2], routing with limited rerouting [7], and min-cost circuit routing [4]. Multicast circuitswere analyzed in [3]. Analysis of routing in a Poisson arrivals model was done in [21]. Simulationand implementation results described in [17, 18] indicate that online routing algorithms based onour techniques outperform traditional algorithms for routing virtual circuits in ATM networks.As customary, we evaluate the performance of the on-line algorithms in terms of competitiveratio, introduced in [36] and further developed in [24, 14, 30]. In our case, it corresponds to1



the supremum, over all possible input sequences, of the ratio of the maximum relative loadachieved by the on-line algorithm to the maximum relative load achieved by the optimal o�-line algorithm.Using our framework, we derive online virtual circuit routing algorithms (point-to-point andmulticast) that are O(logn) competitive with respect to load, where n is the number of nodesin the network. We also show an 
(logn) lower bound on the competitive ratio of any virtualcircuit routing algorithm in the case where the underlying network is directed. (The upperbound works for both directed and undirected cases.)Load Balancing We view virtual circuit routing as a generalization of on-line machinescheduling/load balancing. To this end, we concentrate on non-preemptive load-balancing,de�ned as follows: There are n parallel machines and a number of independent jobs; the jobsarrive one by one, where each job has an associated load vector and has to be assigned to exactlyone of the machines, thereby increasing the load on this machine by the amount speci�ed by thecorresponding coordinate of the load vector. Once a job is assigned, it cannot be re-assigned.The objective is to minimize the maximum load.The load balancing problems can be categorized into three classes according to the propertiesof the load vectors, as it is done for the non-preemptive scheduling problems [20]. In the identicalmachines case, all the coordinates of a load vector are the same. This case was �rst considered byGraham [19], who showed a (2� 1n)-competitive algorithm, where n is the number of machines.The bound was improved in [13] to 2 � � for a small constant � (the value of � was furtherimproved in [22]). In the related machines case, the ith coordinate of each load vector is equalto w(j)=v(i), where the \weight" w(j) depends only on the job j and the \speed" v(i) dependsonly on the machine i. All other cases are referred to as unrelated machines. The special casewhere all coordinates of the load vector are either 1 or equal to a given value that dependsonly on the job, was considered in [12], who described an O(logn)-competitive algorithm. Thiscase can be viewed as a hybrid between the identical and the unrelated machines case, and itis incomparable to the related machines case. A similar special case was studied in [25].In this paper we show an O(logn)-competitive algorithm for the unrelated machines case,and an 8-competitive algorithm for the related machines case. Although competitive analysisnotions apply to algorithms without any restrictions on their running times, all on-line algo-rithms presented in this paper run in deterministic polynomial time, whereas the matchinglower bounds are based on information-theoretic arguments and apply even if we allow theonline algorithm to use randomization.The related machines case is a generalization of the identical machines problem, for whichGraham [19] has shown that a greedy algorithm achieves a constant competitive ratio. Thus, itis natural to ask whether an adaptation of such an algorithm can give a constant competitiveratio for the related machines case as well. We prove that the natural greedy approach (thatis, assigning every new job to the machine that will complete it with the lowest resulting load)is �(logn) competitive. Our (non-greedy) 8-competitive algorithm for this problem can beviewed as an adaptation of the scheduling algorithm of Shmoys, Wein, and Williamson [35] to2



the context of load balancing.We show that for the unrelated machines case, the natural greedy algorithm is exactly n-competitive. This bound should be contrasted with the optimal O(logn)-competitive greedystrategy of [12] for the special case where all coordinates of the load vector are either 1 orequal to a given value that depends only on the job. Thus, the unrelated machines case requiresdevelopment of new techniques. We introduce a new approach that leads to an O(logn)-competitive algorithm for the general unrelated machines case. As shown in [12], this is thebest bound on the competitive ratio one can hope for in this case.It is easy to see that the identical and related machines problems are special cases of virtualcircuit routing. These problems can be reduced to a virtual circuit routing problem on a 2vertex network, with multiple edges between them. Every edge represents a machine, and theedge capacities represent the relative machine speeds. Every arriving job is translated into acall between the two vertices s and t where the call bandwidth corresponds to the job weight.The unrelated machine is a special case of a generalization of virtual circuit routing where thecall requires di�erent bandwidth depending on the edge used. Our virtual circuit algorithmsgive an optimal O(logn) competitive ratio for this problem.Other related work Some of the techniques which are used for our on-line framework arebased on ideas developed in the context of approximation algorithms for the multicommodity
ow and related problems (see eg. [34, 26, 28, 33, 23]). In particular, we assign each linka weight that is exponential in the link's load, and choose the routes by computing shortestpaths with respect to this weight. The main di�erence between the algorithms presented hereand the previously known o�ine approximation algorithms is in a novel way of proving theapproximation factor which allows us to execute the algorithm in an online fashion.All the results in this paper concentrate on the case where jobs and virtual circuits arepermanent, i.e. jobs never leave and virtual circuits never terminate. Azar, Broder, andKarlin [10] introduced a natural generalization of this model, in which requests have durationin time. They show an 
(pn) lower bound on the competitive ratio of any load balancingalgorithm that deals with the unknown duration case, i.e. the case where the duration of arequest becomes known only upon its termination.This lower bound suggests considering the case where the duration of a request becomesknown upon its arrival (the known duration case). The methods developed in this paper weregeneralized in [11], giving an O(lognT )-competitive algorithm for the problems of schedulingunrelated machines in the known duration case, where T is the ratio of maximum to minimumduration. Similar results can be achieved for the virtual circuit routing problem. Recently,the lower bound in [10] was simpli�ed and improved by Ma and Plotkin [29]. In particular,their bound implies that we can not expect to have a poly(lognT ) competitive algorithm forthe unknown duration case.Another way to overcome the lower bound in the unknown-duration case is to allow re-assignments of existing jobs. For the case where the coordinates of the load vector are restrictedto be 1 or1, Phillips and Westbrook [31] proposed an algorithm that achieves O(logn) compet-3



itive ratio while making O(1) amortized reassignments per job. The general case was consideredin [7], who show how to extend the techniques presented here to design an O(logn)-competitivealgorithm with respect to load that reroutes each circuit at most O(logn) times.An alternative measure of network performance is the amortized throughput de�ned as theaverage over time of the number of bits transmitted by the accepted connections. In this setting,the network's bandwidth is assumed to be insu�cient to satisfy all the requests so some of therequests may need to be rejected upon their arrival. An on-line algorithm in this setting is acombination of a decision mechanism that determines which requests to satisfy together witha strategy that speci�es how to route these requests. The goal is to maximize the amortizedthroughput. A competitive algorithm that maximizes the throughput in a single-link case wasprovided by Garay and Gopal [16]; the case where the network consists of single line of nodeswas considered by Garay, Gopal, Kutten, Mansour and Yung in [15]. The techniques presentedhere were extended by Awerbuch, Azar, and Plotkin [6] to provide competitive solutions fornetworks with unrestricted topology. Other studies on the throughput performance measureappear in [9, 8, 27]. Our routing and scheduling algorithms assume a central scheduler thatmakes all the decisions. In [2], Awerbuch and Azar extended the techniques of this paper to thecase where there are concurrent requests that have to be satis�ed in a decentralized fashion.See [32] for a survey of di�erent online routing strategies. We note that another measure ofperformance for load balancing algorithms appears in [5] who provided competitive algorithmsfor that measure.2 Virtual Circuit RoutingIn this section we consider the problem of on-line routing of virtual circuits in a capacitatednetwork. Formally, we are given a graph G = (V;E) with jV j = n and jEj = m, and a capacityfunction u : E ! R+. The requests arrive as tuples (si; ti; p(i)), where si; ti 2 V and p(i) 2 R+.Request i is satis�ed by choosing a route Pi from si to ti and reserving capacity p(i) along thisroute.Since we will always normalize the requested bandwidth to the total available bandwidth,it will be convenient to de�ne: 8e 2 E; pe(i) = p(i)=u(e):Let P = fP1;P2; : : : ;Pkg be the routes assigned to requests 1 through k by the on-linealgorithm, and let P� = fP�1;P�2; : : : ;P�kg be the routes assigned by the o�-line algorithm.Given a set of routes P , de�ne the relative load after the �rst j requests are satis�ed by`e(j) = Xi:e2Pii�j pe(i) (1)and let �(j) = maxe2E `e(j). Similarly, de�ne `�e(j) and ��(j) to be the corresponding quantitiesfor the routes produced by the o�-line algorithm. For simplicity we will abbreviate �(k) as �4



procedure Assign-Route(p; s; t; G; ~̀;�; �);/* � | current estimate of L�./* � | designed performance guarantee of the algorithm.8e 2 E; pe := p=u(e);8e 2 E; ~pe := pe=�;8e 2 E; ~̀e := `e=�;8e 2 E : ce := a~̀e+~pe � a~̀e ;Let P be the shortest path from s to t in G w.r.t. costs ce;if 9e 2 P : `e + pe > ��then b :=failelse begin8e 2 P : `e := `e + pe;b :=successend;return(P; ~̀; b).end. Figure 1: Algorithm Assign-Route.and ��(k) as ��. The goal of the on-line algorithm is to produce a set of routes P that minimizes�=��.This problem can be viewed as an instance of 2-terminal net routing or path-packing. Mini-mizing �=�� corresponds to asking how much larger we should make the capacities of the edgesin order for the on-line algorithm to be able to satisfy all the requests that the o�-line algorithmcould have satis�ed in the network with the original capacities.It is easy to see that the algorithms presented in this section can be extended to the casewhere the increase in the bandwidth is not uniform along the route. Namely, the case where arouting request is a vector giving the capacity requirement of the call on each and every edgein the network, should that edge we used in the route. The goal here is to present a connectedpath of edges from source to destination, where the capacity used on the edges for this call isobtained from the input vector. This is clearly a generalization of the standard routing problemwhere the entry associated with all edges e is simply the (single) call bandwidth.2.1 Routing AlgorithmThe Assign-Route algorithm is shown in Figure 1. Given a request to allocate a route ofcapacity p from s to t, Assign-Route assigns a weight to each edge as a function of the changein its relative load that would occur if it were to be used by the new route, and then computesa shortest path from s to t with respect to these weights; a is an appropriately chosen constant.For convenience, we de�ne the notion of a designed performance guarantee � as follows: thealgorithm accepts a parameter � and never creates load that exceeds ��. The algorithm is5



allowed to return \fail" and to refuse to route a circuit if � < ��, otherwise it has to route allof the requests.Lemma 2.1 If �� � �, then there exists � = O(logn) such that algorithm Assign-Route neverfails. Thus, the relative load on an edge never exceeds � � �.Proof : To simplify the formulas, we will use tilde to denote normalization by �, for example~̀e(j) = `e(j)=�. De�ne the potential function:�(j) = Xe2E a~̀e(j)(
 � ~̀�e(j)); (2)where a; 
 > 1 are constants. Note that � is a function of both ~̀e and ~̀e�. If the on-linealgorithm satis�es the (j + 1)st request with route Pj+1 and the o�-line algorithm satis�es itwith route P �j+1, we get the following change in the potential function:�(j + 1)� �(j) = Xe2Pj+1(
 � ~̀�e(j))(a~̀e(j+1) � a~̀e(j))� Xe2P �j+1 a~̀e(j+1)~pe(j + 1) (3)� Xe2Pj+1 
(a~̀e(j)+~pe(j+1) � a~̀e(j))� Xe2P �j+1 a~̀e(j)~pe(j + 1)� Xe2P �j+1�
(a~̀e(j)+~pe(j+1) � a~̀e(j))� a~̀e(j)~pe(j + 1)�= Xe2P �j+1 a~̀e(j)�
(a~pe(j+1) � 1)� ~pe(j + 1)�The �rst equality can be viewed as an application of the identity (x + �(x))(y + �(y)) =y�(x)+(x+�(x))�(y), where x = a~̀e(j), y = (
� ~̀�e(j)), �(x) and �(y) represent the changesin the value of these terms between �(j+1) and �(j). The �rst inequality follows because ~̀�e(j)is non-negative for all e. The last inequality follows from the fact that Pj+1 is the shortest pathbetween the endpoints of the j + 1st request with respect to the costs a~̀e(j)+~pe(j+1) � a~̀e(j):Since the (j + 1)st request is satis�ed by the optimal algorithm by assigning it the routeP �j+1, it means that 8e 2 P �j+1 : 0 � ~pe(j+1) � ��=� � 1. Therefore, in order to show that thepotential function does not increase, it is su�cient to show that 8x 2 [0; 1] : 
(ax � 1) � x,which is true for a = 1 + 1=
.Initially, �(0) � 
m, where m is the number of edges in the graph. Since � does notincrease, and since ~̀�(j) � 1, then after satisfying k requests, we have:Xe (
 � 1)a `e(k)� � 
m:6



The last inequality, and the fact that 
 > 1 implymaxe2E `e(k) � � loga � 
m
 � 1� = O(� logn):We use a simple doubling technique to overcome the problem that � in unknown. Thiscauses the competitive ratio to be a factor of 4 larger than the designed performance ratio.The algorithm works in phases, where the di�erence between phases is the value of �assumed by the algorithm. Within a phase the algorithm Assign-Route is used to routecalls, ignoring all calls routed in previous phases. The �rst phase has � = mine pe(1) =mine p(1)=u(e), where p(1) is the bandwidth request of the �rst call. At the beginning of everysubsequent phase the value of � doubles. A new phase starts when Assign-Route returns\fail". As mentioned above, Assign-Route will ignore all calls routed in previous phases.It is easy to see that this approach can increase the competitive factor by at most a factorof 4 (a factor of 2 due to the load in all the rest of the phases except the last, and another factorof 2 due to imprecise approximation of �� by �). Since the designed performance guarantee ofAssign-Route is O(logn), we get the following theorem (observe that it holds both for directedand undirected graphs):Theorem 2.2 Algorithm Assign-Route can be used to achieve O(logn) competitive ratio withrespect to load.2.2 Routing Multicast CircuitsMany applications (teleconferencing, video on demand, etc.) are based on multicast instead ofpoint-to-point circuits. A request for a multicast circuit consists of a tuple (t1i ; t2i ; : : :tkii ; p(i))where t1i ; t2i ; : : : ; tkii are the communicating points and p(i) is the required bandwidth. Any oneof the communicating points can serve as a \source". To satisfy such request, the algorithmneeds to assign the required bandwidth p(i) along the edges of some tree Ti that spans nodest1i ; t2i ; : : : ; tkii . As in the point-to-point case considered in the previous section, the goal is tominimize load. Also note that the case ki = 2 directly corresponds to the point-to-point case.The algorithm to route multicast circuits is a direct extension of the point-to-point routingstrategy presented above. Instead of routing overmin-weight paths, multicast circuits are routedover min-weight Steiner trees.As �nding min-weight Steiner tress is NP-hard, we actually approximate them. However,imagine for now that we were to route the multicast calls along the Steiner trees. The proof ofthe competitive ratio is nearly identical to the proof of Lemma 2.1. The only di�erence is inthe summation range in Equation (3). Instead of summing over the edges on the path chosenby the algorithm and the edges on the optimum path, the sum will be over the edges of the treechosen by the algorithm and the edges of the tree chosen by the optimum o�ine algorithm.7



Equation (3) is based on the fact that the cost of the edges chosen by the algorithm forrouting of the current circuit is not larger than the cost of edges chosen by the optimumalgorithm for routing of this circuit. The fact that these edges form a path is not used. In otherwords, Equation (3) remains correct if the summation range is changed and if the algorithmroutes over min-weight Steiner trees. Thus, a multicast algorithm that routes over min-weightSteiner trees is O(logn)-competitive.Instead of routing the multicast call over the min-weight Steiner tree, we route it over atree that is a constant factor approximation to the min-weight Steiner tree. Such trees can befound by applying a min-cost spanning tree algorithm over an appropriately constructed graph[37].If we use a 2-approximation to the min-weight steiner tree then in the 3rd and 4th lines ofEquation (3) the value 
 is replaced by 2
. However, we can ensure that 2
(ax� 1) � x is trueby choosing a = 1+ 1=(2
) (replacing the previously used a = 1 + 1=
).The above discussion implies the following claim:Theorem 2.3 There exists an O(logn)-competitive algorithm for multicast virtual circuit routing,where each decision can be implemented in polynomial time.2.3 Lower Bound for RoutingIn this section we show a lower bound of 
(logn) for the competitive ratio of any on-linerouting algorithm in a directed network, i.e. a network where the capacity between v andw is not necessarily equal to the capacity between w and v. This implies that our O(logn)-competitive algorithm presented in the previous section is optimal in this case. Our lower boundalso holds for randomized algorithms working against an oblivious adversary, i.e. an adversarythat has to generate new requests independently of the outcome of the coin 
ips of the onlinealgorithm. The basic idea is to modify the lower bound of Azar, Naor and Rom [12] for on-lineload balancing.Without loss of generality, assume that n is a power of 2. Consider a directed graph that hasa single source s, connected to each one of n vertices v1; v2; : : : ; vn. There is one sink, denotedby S1;1, connected to v1; : : : ; vn; two sinks, denoted by S2;1; S2;2, connected to v1; : : : ; vn=2 andvn=2+1; : : : ; vn, respectively, etc. In general, for each 1 � i � logn, we divide vertices v1; : : : ; vninto 2i�1 sets, the jth of which, for j = 1; : : : ; 2i�1, contains vertices v(j�1)n=2i�1+1; : : : ; vjn=2i�1 .Each of the vertices in a set is connected to a sink associated with this set, where the sinks aredenoted by Si;j for j = 1; : : : ; 2i�1. Observe that the vertices associated with Si;j are the unionof two disjoint sets associated with Si+1;2j�1 and Si+1;2j.We construct a sequence of requests for paths from the source to the sinks, for which theo�-line load is at most 1 but the online algorithm assigns at least load logn2 to some edge (s; vj).This, combined with the fact that the size of the graph is O(n), will yield the 
(logn) lowerbound. 8



We will refer to the load on an edge (s; vj) as the load of vj . Requests are generated inlogn phases; the bandwidth of every request is equal to 1. We will maintain that the followingconditions hold for each phase 1 � i � logn:1. In phase i, there are n2i requests of paths from the source to a sink Si;j for some j, where1 � j � 2i�1.2. At the end of phase i, the average of the expected load, over the vertices v`, associatedwith sink Si;j is at least i=2.Clearly, before the �rst phase begins, the load of each vertex is 0. Assume that the aboveconditions hold for phase i. The vertices associated with Si;j are the union of two disjoint sets:vertices associated with sink Si+1;2j�1, and those associated with Si+1;2j. Hence, one of thesesets must have average expected load of i=2 at the end of the ith phase. Denote this subsetby S. Generate n2i+1 requests for unit capacity from source s to the sink associated with S.Since S is of size n2i , the average expected load of S must increase by 1/2, to at least (i+ 1)=2,implying that the conditions are satis�ed for phase i+ 1.Thus, after the last phase, the average expected load of the two vertices in the last set is atleast logn2 . Hence the expected load of one of them is at least logn2 .To complete the proof, we have to show that the o�-line algorithm can maintain unitmaximum load. It is enough to show that at each phase the o�-line can satisfy the requests byusing edge-disjoint paths and without using vertices associated with sinks requested in latterphases. Indeed, at phase i there are n2i requests for paths from the source to some sink Si;j .The set of vertices associated with this sink contains two disjoint sets each of size n2i . Byconstruction, one of these sets is not associated with sinks of latter requests. Thus, the o�-linealgorithm can route all the requests of phase i through edge-disjoint paths that use only verticesof that set.3 Online Machine Load-BalancingIn this section we present several algorithms for online machine load-balancing. Jobs arriveonline, and each has to be immediately assigned to one of the machines. The goal is to minimizemaximum load.Formally, each job j is represented by its \load vector" ~p(j) = (p1(j); p2(j); : : : ; pn(j)),where pi(j) � 0. Assigning job j to machine i increases the load on this machine by pi(j). Let`i(j) denote the load on machine i after we have already assigned jobs 1 through j:`k(j) = ( `k(j � 1) + pk(j) if k = i`k(j � 1) otherwiseConsider a sequence of jobs de�ned by � = (~p(1); ~p(2); : : : ; ~p(k)). Denote by `�i (j) the loadon machine i achieved by the o�-line algorithm A� after assigning jobs 1 through j in �. The9



goal of both the o�-line and the on-line algorithms is to minimize L�(k) = maxi `�i (k) andL(k) = maxi `i(k), respectively. More precisely, we measure the performance of the on-linealgorithm by the supremum over all possible sequences of L(k)=L�(k) (of arbitrary length k).As we have mentioned in the Introduction, the load-balancing problems are usually cate-gorized into three classes, based on the properties of the load vectors. For identical machines,8i; i0; j : pi(j) = pi0(j). For related machines, 8i; i0; j; j 0 : pi(j)=pi0(j) = pi(j 0)=pi0(j 0) = vi0=vi,where vi denotes the speed of machine i. All other cases are referred to as unrelated machines.Note that instead of \load" one can talk about \execution time". Restating the problem inthese terms, our goal is to decrease maximum execution time under the requirement that thearriving jobs are scheduled immediately.3.1 Unrelated MachinesIn this section we consider on-line load-balancing on unrelated machines. As we will show inSection 4, the natural greedy approach is far from optimal for this case, achieving a competitiveratio of �(n).An O(logn)-competitive algorithm for the unrelated machines load-balancing can be con-structed as a reduction to the routing problem considered in the previous section. Unfortunately,such reduction results in a confusing and non-intuitive algorithm. Instead, we present a simpleralgorithm, speci�cally designed for the machine load-balancing problem.For simplicity, we �rst consider the case where we are given a parameter �, such that� � L�. As before, an appropriate value of � can be \guessed" using a simple doublingapproach, increasing the competitive ratio by at most a factor of 4. We use tilde to denotenormalization by �, i.e. ~x = x=�.Algorithm Assign-U is shown in Figure 2. The basic step is to assign job j to makePni=1 a~̀i(j) as small as possible. In the description of the algorithm, we have omitted thejob index j, since a single invocation of the algorithm deals only with a single job. We willuse the notion of designed performance guarantee similarly to its use in the online routing case:the algorithm accepts a parameter � and never creates load that exceeds ��. The algorithm isallowed to return \fail" and to refuse to schedule a job if � < L�, otherwise it has to scheduleall of the arriving jobs.Lemma 3.1 If �� � �, then there exists � = O(logn) such that algorithm Assign-U never fails.Thus, the load on a machine never exceeds � � �.Proof : Consider the state of the system after scheduling j�1 jobs, and let a; 
 > 1 be constants.(Later we show that a good choice is a � 2; 
 � 1.) Recall the assumption that L�(j) � L� � �,and de�ne the potential function: 10



procedure Assign-U(~p; ~̀;�; �);/* � | current estimate of L�./* � | designed performance guarantee of the algorithm.Let s be the index minimizing �i = a(~̀i+~pi) � a~̀i ;if `s + ps > ��then b :=failelse begin`s := `s + ps;b :=successend;return(~̀; b).end. Figure 2: Algorithm Assign-U.�(j) = nXi=1 a~̀i(j)(
 � ~̀�i (j)): (4)Assume that job j was assigned to machine i0 by the on-line algorithm and to machine i bythe o�-line algorithm. Analogously to the proof of Equation (3) we now have:�(j)� �(j � 1) = (
 � ~̀�i0(j � 1))(a~̀i0(j) � a~̀i0 (j�1))� a ~̀i(j)~pi(j) (5)� 
(a~̀i0(j�1)+~pi0(j) � a~̀i0 (j�1))� a ~̀i(j�1)~pi(j)� 
(a ~̀i(j�1)+~pi(j) � a ~̀i(j�1))� a ~̀i(j�1)~pi(j)= a ~̀i(j�1)(
(a ~pi(j) � 1)� ~pi(j)):Note that since the o�-line algorithm has assigned job j to machine i, we have 0 � ~pi(j) �L�=� � 1. Therefore, in order to show that the potential function does not increase, it issu�cient to show that 8x 2 [0; 1] : 
(ax� 1) � x. This is true for a = 1 + 1=
.Since initially �(0) = 
n, at any point in the assignment processnXi=1 a ~̀i(j)(
 � 1) � 
n; 11



and henceL = maxi `i(k) = �max ~̀i(k)� � � loga � 

 � 1n� = O(� logn) (6)Notice that the constants in the big O of (6) are small; for example for 
 = 1:1, we getL=� � 1:07 logn + 3:7. By changing the value of 
, one can trade o� the multiplicative factoragainst the additive term.Observe that log n is a lower bound even for the restricted case considered in [12]. Moreover,it is interesting to note that for the case where the coordinates of the load vector p(j) are either1 or equal to some constant pj that depends only on the job j, our algorithm behaves exactlylike the greedy algorithm considered in [12].3.2 Related MachinesThe related machines case is a generalization of the identical machines case. In Section 4 weshow that a natural generalization for the related machines case of Graham's greedy algorithmfor the identical machines case, leads to an �(logn) competitive ratio. Here we present anon-greedy algorithm that achieves a constant competitive ratio.As before, we �rst consider the case where we are given a parameter �, such that � � L�(k),where k is the index of the last job. A simple doubling technique can be used to eliminate thisassumption. Roughly speaking, the algorithm will assign jobs to the slowest machine possiblewhile making sure that the maximum load will not exceed an appropriately chosen bound. Theidea of assigning each job to the \least capable machine" �rst appeared in the paper by Shmoys,Wein, and Williamson [35], where they considered an online scheduling problem.Algorithm Assign-R is shown in Figure 3. The basic step is to assign job j to the slowestmachine such that the load on this machine will be below 2� after the assignment. In thedescription of the algorithm, we have omitted the job index j, since a single invocation of thealgorithm deals only with a single job. We assume that the machines are indexed according toincreasing speed.In the following discussion we will omit the index k when it can be understood from thecontext. In particular, we use L and L� instead of L(k) and L�(k), respectively. We use thenotion of \designed performance guarantee" in the same sense as in the previous section.Lemma 3.2 If �� � �, then algorithm Assign-R never fails. Thus, the load on a machine neverexceeds 2�. 12



procedure Assign-R(~p; ~̀;�);/* � | current estimate of L�.Let S := fij`i + pi � 2�g;if S = ;then b :=failelse begink := minfiji 2 Sg;`k := `k + pk;b :=successend;return(~̀; b).end. Figure 3: Algorithm Assign-R.Proof: Assume Assign-R fails �rst on task j. Let r be the fastest machine whose load doesnot exceed L�, i.e. r = maxfij`i(j � 1) � L�g: If there is no such machine, we set r = 0.Obviously, r 6= n, otherwise j could have been assigned to the fastest machine n, since`n(j � 1) + pn(j) � L� + L� � 2�: De�ne � = fiji > rg, the set of overloaded machines. Sincer < n, � 6= ;. Denote by Si and by S�i the set of jobs assigned to machine i by the on-line andthe o�-line algorithms, respectively. Since we are dealing with related machines, we have:Xi2�;s2Si pn(s) = Xi2�;s2Si pn(s)pi(s) pi(s) =Xi2� vivn Xs2Si pi(s) >Xi2� vivnL� �Xi2� vivn Xs2S�i pi(s) = Xi2�;s2S�i pn(s)(7)This implies that there exists a job s 2 Si2� Si, such that s 62 Si2� S�i , i.e. there exists ajob assigned by the on-line algorithm to a machine i 2 �, and assigned by the o�-line algorithmto a slower machine i0 62 �.By our assumptions, pi0(s) � L� � �. Since r � i0, machine r is at least as fast as machinei0, and thus pr(s) � L� � �. Since job s was assigned before job j, `r(s� 1) � `r(j � 1) � L�.But this means that the on-line algorithm should have placed job s on r or a slower machineinstead of i, which is a contradiction.As we have mentioned above, the de�nition of the Assign-R algorithm facilitates a doublingapproach to approximate �. More precisely, we start with � = 0. At the beginning of the �rstphase, �1 is set to be equal to the load generated by the �rst job on the fastest machine forthe job. At the beginning of a new phase h > 1, we set �h = 2�h�1. During a single phase,jobs are assigned independently of the jobs assigned in the previous phases. Phase h ends whenAssign-R returns \fail". It is easy to see that this approach can increase the competitive factorby at most a factor of 4 (a factor of 2 due to the load in all the rest of the phases except the last,and another factor of 2 due to imprecise approximation of �). Since the designed performanceguarantee of Assign-R is 2, we get: 13



Theorem 3.3 Algorithm Assign-R can be modi�ed to achieve a competitive ratio of 8.4 The Greedy AlgorithmThe simple greedy machine load balancing algorithm due to Graham [19] gives a competitiveratio of 2 for the identical machines case and competitive ratio of O(logn) for the special caseconsidered in [12]. It is natural to consider whether extensions of this algorithm can lead to smallcompetitive ratios in the respectively more general cases of related and unrelated machines. Inthis section we show that, unfortunately, this is not the case. More precisely, we show thatnatural greedy approaches give �(n) competitive ratio for the unrelated machines case, and�(logn) competitive ratio for the related machines case. This is in contrast to the O(logn)and 8 competitive ratios, respectively, produced by the algorithms presented in the previoussections.We consider the following greedy algorithm: each job j is assigned upon arrival to themachine k that minimizes the resulting load, i.e., the machine k that minimizes `k(j�1)+pk(j).1Ties are broken by some arbitrary rule.Lemma 4.1 The greedy algorithm has a competitive ratio no better than n for unrelated machines.Proof: Consider a sequence of jobs such that job j has cost j on machine j, cost 1 + � onmachine j�1, and cost1 on all other machines (i.e., pj�1(j) = 1+ �; pj(j) = j, and pi(j) =1for all i 6= j � 1; j). (To avoid distinguishing between the �rst job and all the other jobs, werefer to machine n also as machine 0.) Here � is an arbitrarily small positive constant that isused to avoid ties. Clearly the optimal o�-line algorithm can schedule all of these jobs with amaximum load of 1 + � by assigning job j to machine j � 1.On the other hand, the greedy algorithm assigns job 1 to machine 1 for a resulting load of1 (as opposed to 1 + � on machine n or 1 anywhere else). Similarly, when job 2 arrives, thegreedy algorithm assigns it to machine 2 for a resulting load of 2, instead of assigning this jobto machine 1, where it would have produced a load of (2 + �). Likewise, job 3 is assigned tomachine 3 and so forth. A simple induction argument shows that job j is always assigned tomachine j for a resulting load of j, giving a maximum load of n on machine n. The resultingperformance ratio is n=(1 + �), which can be made arbitrarily close to n.Lemma 4.2 The competitive ratio of the greedy algorithm is at most n for unrelated machines.Proof: Every job j has a minimum load mini pi(j) that can not be avoided by the optimal1Note that assigning a job to the machine with the minimum load results in an algorithm with competitiveratio that is at least equal to the ratio of the fastest to slowest machine speeds.14



o�-line algorithm. If S�i is the set of jobs assigned to machine i by the o�-line algorithm,nL� �Xi `�i =Xi Xj2S�i pi(j) �Xj mini pi(j):On the other hand, we claim that the the maximum load resulting from the greedy algorithmwill never exceed the sum of the minimum loads. Indeed, suppose that after assigning job j�1,we have L(j � 1) � Pj0�j�1mini pi(j 0). When job j arrives there is some machine m thatminimizes pm(j). The load on this machine is at most L(j� 1), and so if j is assigned to m theresulting load is at most L(j� 1)+ pm(j) �Pj0�j mini pi(j 0). And thus, the actual assignmentsatis�es L(j) �Pj0�j mini pi(j 0). By induction, L �Pj mini pi(j) � nL�.Lemma 4.3 The greedy algorithm has a competitive ratio 
(logn) for related machines.Proof: For simplicity, �rst we assume that whenever adding a job to two di�erent machineswill result in the same maximum load, the job is assigned to the faster machine. At the end ofthe proof we show how this assumption can be avoided.Consider a collection of machines with speeds of the form 2�i where i 2 f0; 1; : : : ; kg (therelation between k and n will become clear below). Let ni be the number of machines withspeed 2�i and suppose n0 = 1, n1 = 2, and in generalni2�i = i�1Xj=0nj2�j : (8)These values are chosen so that the sum of the speeds of all machines with speed 2�i is equalto the sum of the speeds of all the faster machines. Thus, a collection of jobs that would add 1to the load of each machine with speed 2�i could instead be assigned to add 1 to the loads ofall the faster machines. The total number of machines n = 1 + 23(4k � 1).Now consider the following sequence of jobs. First we generate nk jobs of size 2�k , followedby nk�1 jobs of size 2�(k�1), and so forth, until at last we generate a single job of size 1. Forevery machine with speed 2�j there is a corresponding job of size 2�j . By simply assigningeach job to the corresponding machine, the o�-line algorithm can schedule all the jobs with aresulting maximum load of 1.However, we claim that the greedy algorithm assigns each group of jobs to machines thatare \too fast". Assume, by induction, that before the jobs of size 2�i are assigned, the load onmachines with speed 2�j is equal to min(k�i; k�j). (In the base case, when i = k, this conditionsimply corresponds to each machine having zero load.) By Equation 8, the greedy algorithmcan assign the jobs of size 2�i to all machines with speed 20; 2�1; : : : ; 2�(i�1), resulting in loadof k � i+ 1 on each one of these machines. If instead it assigns one of these jobs to a machinewith speed 2�j , where j � i, the resulting load will be k � j + 2j�i = (k � i) + 2j�i � (j � i),which is at least (k � i) + 1 since 2x � x � 1 for all non-negative x. The greedy algorithm will15



therefore not assign any job of size 2�i to a machine with speed 2�i or slower, and the inductionstep follows.Consequently, after all the jobs have been assigned, each machine with speed 2�j has loadk � j; the single machine with speed 1 has load k = 
(logn). Thus, under the simplifyingassumption that the greedy algorithm always breaks ties in favor of the faster machine, thegreedy algorithm is 
(logn)-competitive.Next we show how to avoid the above simplifying assumption. Before sending in the \large"jobs, we will send an \�-job" of size �i2�i for each machine with speed 2�i, giving it a load of�i. To avoid changing the greedy algorithm's choice of where to assign the large jobs, each �imust be less than 2�k, the smallest possible di�erence between loads resulting from large jobs.To force ties to be broken in favor of faster machines we require that �j > �i whenever j > i.Finally, to ensure that the �-job intended for a machine is not placed on some faster machine,we generate the jobs for the faster machines �rst and require that �j < �i + �j2�j=2�i for j > i.all of these conditions can be satis�ed by choosing �i = 2�k�1(1 + 2�2k+i).Lemma 4.4 The greedy algorithm has a competitive ratio of O(logn) for related machines.Proof: Let L be the maximum load generated by the greedy algorithm and L� be the maximumload generated by the optimal o�-line algorithm. The structure of the proof is as follows. First,we show that the load on the fastest machines is at least L�L�. Next, we show that if the loadon all the machines with speed � v is at least `, then the load on all the machines with speed� v=2 is at least `�4L�. Repeated applications of this claim imply that the load on any machinethat is no more than n times slower than the fastest machine, is at least L� (1 + 4dlog ne)L�.Finally, we use an argument similar to the one used in the proof of Lemma 4.2 to show thiscondition can only hold if L = O(logn)L�.First, consider the last job j assigned by the greedy algorithm to a machine i, causing theload of this machine to reach L. Since no job can add more than L� to the load of any fastestmachine, the fact that the new load on i is ` implies that the load on all the fastest machinesis at least L� L�.Now suppose the load on all the machines with speed v or more is at least ` � 2L�. Considerthe set of jobs that are responsible for the last 2L� load increment on each one of these machines.Observe that at least one of these jobs (call this job j) has to be assigned by the o�ine algorithmto some machine i with speed less than v, and hence it can increase the load on i by most L�.Since the speed of i is at most v, job j can increase the load on the machines with speeds abovev=2 by at most 2L�. The fact that job j was assigned when the loads on all the machines withspeed v and above was at least ` � 2L� implies that the loads on all the machines with speedabove v=2 is at least `� 4L�.Let v be the speed of the fastest machines. We have shown that all machines with speed vhave load at least L�L�. Iteratively applying the claim in the above paragraph shows that allmachines with speed at least v2�i have load at least L� L� � 4iL�. Thus, every machine withspeed at least v=n has load at least L� (1 + 4dlogne)L�.16
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