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Consensus
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Consensus

Termination: All non-faulty processes terminate.

Validity: Every output value is somebody’s input.

Agreement: All output values are equal.

No deterministic solutions! (Fischer, Lynch, and Paterson 1985;
Loui and Abu-Amara 1987)
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Asynchronous shared-memory model
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n concurrent processes with local coins.

Communication by reading and writing atomic registers.

Timing controlled by an adversary scheduler.

Algorithm is wait-free: tolerates n − 1 crash failures.

Cost measure: expected individual steps.
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Oblivious adversary
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Chooses schedule in advance.

Can see algorithm.

Can’t see what algorithm does.

Avoids Ω(n) lower bound for adaptive adversary due to Attiya
and Censor (JACM 2008).
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Previous results
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Long history of algorithms with O(log n) expected steps:
(Aumann, PODC 1997; Aspnes, PODC 2010)

Best lower bound is Ω(1) expected steps, from Ω(log(1/ε))
steps to finish with probability at least 1− ε. (Attiya and
Censor-Hillel, SICOMP 2010).

We’ll show a new upper bound of O(log log n).
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Conciliators
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Monte Carlo version of consensus:

Termination: All non-faulty processes terminate.

Validity: Every output value is somebody’s input.

Probabilistic agreement: All output values are equal with
probability at least δ.

With m possible input values, can detect agreement (and get real
consensus) with O(logm/ log logm) overhead (Aspnes and Ellen,
SPAA 2011).
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Test-and-set
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Good randomized test-and-set implementations for
oblivious-adversary model:

O(log log n) (Alistarh and Aspnes, DISC 2011).
O(log∗ n) (Giakkoupis and Woelfel, later in this session).

Test-and-set gets processes to drop out.

Consensus gets values to drop out.
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Sifting processes for test-and-set
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Single multi-writer register, initially ⊥.

Each process reads with probability 1− 1√
n

, writes with

probability 1√
n

.

A process survives if it reads ⊥ or writes.
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Sifting: one round

•••••••︸ ︷︷ ︸
≤
√
n readers

•◦◦◦◦◦◦◦◦••◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦•◦◦◦◦•◦︸ ︷︷ ︸
√
n writers

Because adversary is oblivious, coin-flips are independent of
ordering.

Before first write, all readers survive.

This is a waiting time process with expectation ≤ 1
p =
√
n.

Otherwise, only writers survive.

pn = 1√
n
· n =

√
n.

Total expected survivors ≤ 2
√
n.
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Sifting: multiple rounds
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⇓
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Tune probabilities so that on average we go from k to 2
√
k .

Linearity of expectation gives

n, 2
√
n, 2

√
2
√
n, 2

√
2

√
2
√
n, . . . ≤ 4n(1/2)

r

expected survivors after r rounds.

Converges to O(1) expected survivors in O(log log n) rounds.
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Sifting personae for consensus

⊥

Generate all coin-flips at start.

Coin-flips + input = persona.

When I write, I write my persona.

When I read, I adopt any persona I see.
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Sifting personae: analysis

⊥

All processes with the same persona in some round do the
same thing.

If all copies write, persona survives (and maybe spreads to
more processes) ⇒

√
k expected survivors.

If they all read, at least one copy of persona survives if the
first read sees ⊥ (other copies might be overwritten) ⇒ ≤

√
k

more expected survivors

So average number of surviving personae is 2
√
k , as in test-and-set.
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Final stage

After O(log log n) rounds, switch to Pr[write] = 1/2.

This reduces expected surviving personae from O(1) to 1 + ε
in O(log(1/ε)) additional rounds.

Total cost to get Pr[agree] > 1− ε is O(log log n + log(1/ε)).

Second term matches Ω(log(1/ε)) lower bound of Attiya and
Censor-Hillel (SICOMP 2010).
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Cheap snapshots
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Snapshot operation reads all registers simultaneously.

In the cheap snapshot model, this costs 1 operation.

Model for Attiya+Censor-Hillel weak-adversary lower bound.

Also popular with topologists.

We’ll show that this gives consensus in O(log∗ n) expected
operations.
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Consensus with cheap snapshots

15 26 11 32

Persona now is input plus random priority for each round.

Algorithm for one round:

Write my persona to my own register.
Take snapshot and adopt highest-priority persona I see.

Pr[i-th persona to be written survives] ≤ (1/i).

So in one round, expected survivors goes from k to∑k
i=1(1/i) = O(log k).

Repeat O(log∗ n) times on average to get to 1.
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Conclusions
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3 3 O(log n) previous bounds

⊥ O(log log n) new bound for multi-writer registers
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-1 O(log∗ n) new bound for cheap snapshots

Ω(1) best known lower bound

Conciliator algorithms work for arbitrarily many inputs m, but
detecting agreement takes O(logm/ log logm) steps, which
dominates O(log log n) unless m is small.

Cheap-snapshot bound shows that combining local coins isn’t
the hard part.

Maybe we can get O(1)?
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