Faster than Optimal Snapshots
(for a While)

James Aspnes, Yale University
Hagit Attiya, Technion

Keren Censor-Hillel, MIT

Faith Ellen, University of Toronto

Snapshot Objects

N— _

update (v) ///g;an

update your
location

Model

System of n processes, m multi-writer registers
Asynchronous schedule controlled by an adversary

Crash failures — require wait-free implementations

read// v write (v)// ok

Linearizable implementations

Snapshots - Step Complexity

Using multi-writer registers:
can be done in O(n) steps [Inoue and Chen, WDAG 1994]
and requires Q(n) steps [Jayanti, Tan, and Toueg, SICOMP 1996]

pe)

Goal: "

a faster snapshot implementation (sub-linear)

This talk:
snapshot implementation in O(log3(n)) steps per operation

for polynomially many update operations
(limited-use snapshot object)

Tree structure, Updates help Scans

Polylogarithmic snapshots

Max register: returns largest value

previously written
[Aspnes, Attiya, and Censor-Hillel, JACM 2012]

Polylogarithmic snapshots

PRAES

S+,

2-component max array

max 1 max 2

update (v, 1)

2-component max array

max 1

ScCan

max 2

10

2-component max array

Simply reading one max register and then the
other does not work

1.p; read O 4.p; read O
2.p, write (700) ‘ML Imax2 5 0 write (700)
3. p; read 100 6. p; read 100

p; returns(0,100)
P, returns (100, 0)

11

2-component max array

Read max registers again to see if they change
— Might change many times

— What if they were only binary?
(0,0) and (1,1) are comparable with any pair
If you see (0,1) or (1,0) read again

1.p; read O 4.p; read O
2.p, write (700) ' M* L Tmax2 5 0 write (700)
3. p; read 100 6. p; read 100

12

Max register — recursive construction

[Aspnes, Attiya, and Censor-Hillel, JACM 2012]

* MaxReg, supports values in {0,...,k-1}

— Built from two MaxReg, , objects with values in {0,...,k/2-1}
— and one additional multi-writer register “switch”

WriteMax

ReadMax

switch=0 : return t

switch=1 : return t+k/2

13

O(logk)

MaxReg, unfolded

MaxReg,

Complexﬂ does not depend on n:
WriteMax and ReadMax

in O(logk) steps

switch switch

MaxReg, MaxReg, MaxReg, MaxReg,

0 1 2 k-1

14

A 2-component max array

Write

Read

x=ReadMax component 2
switch=0 :
WriteMax(x,2) to left subtree
Return (Read left subtree)
switch=1: [MaxReg,] MaxReg, [MaxReg,]
x=ReadMax component 2
WriteMax(x,2) to right subtree
Return (k/2,0)+(Read right subtree)

15

Key idea:

a reader going right at the switch always sees a
value for component 2 that is at least as

large as any value that a reader going left sees

Write

Read switch [MaxReg,]

x=ReadMax component 2

switch=0 :

WriteMax(x,2) to left subtree

Return (Read left subtree) MaxReg,,, MaxReg,,,
switch=1: [MaxReg,] MaxReg, [MaxReg,]

x=ReadMax component 2
WriteMax(x,2) to right subtree
Return (k/2,0)+(Read right subtree)

16

A 2-component max array unfolded

MaxReg, %[MaxReg,]
Complexity is
O(logk logt) steps
[MaxReg,]

[MaxReg,] switch [MaxReg,]

[MaxReg,][MaxReg,][MaxReg,][MaxReg,] [MaxReg,]
17

Summary

For b-limited use snapshot we get O(log?b logn) steps
— This is O(log3(n)) steps for polynomially many updates

Paper also shows:

— Multi-writer snapshot implementation: every process can
update each location

— Cc-component max arrays

Open problems:
— Snapshot implementations using single-writer registers
— Lower bounds
— Randomized implementations and lower bounds

18

