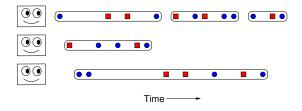
Lower bounds for restricted-use objects

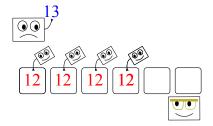
James Aspnes (Yale) Hagit Attiya (Technion) Keren Censor-Hillel (MIT) Danny Hendler (BGU)

June 26th, 2012



- High-level operations implemented by low-level steps.
- Asynchronous: interleaving of steps controlled by adversary.
- Obstruction-free: any operation finishes if it runs alone.
- **Historyless** base objects, where a step either doesn't change the state or wipes out previous history.
 - Examples: read/write registers, test-and-set, swap.

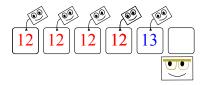
Covering arguments



Historyless objects permit covering arguments:

- Suppose first *k* registers read by reader are **covered** by pending update steps.
- Any new operation must update some other register to be visible.
- This new update can be delayed to cover another register.

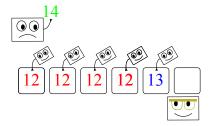
Covering arguments



Historyless objects permit covering arguments:

- Suppose first *k* registers read by reader are **covered** by pending update steps.
- Any new operation must update some other register to be visible.
- This new update can be delayed to cover another register.

Covering arguments

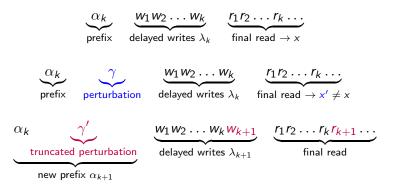


Historyless objects permit covering arguments:

- Suppose first *k* registers read by reader are **covered** by pending update steps.
- Any new operation must update some other register to be visible.
- This new update can be delayed to cover another register.

Perturbable objects

(Jayanti, Tan, and Toeug, SICOMP 2000)



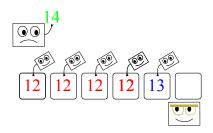
- Object is **perturbable** if γ always exists.
- Choose truncated γ' that leaves delayed write w_{k+1} to first uncovered register read by final operation.
- Iterate n-1 times to get lower bound.

JTT lower bound

Theorem (JTT): Any obstruction-free implementation of a perturbable object from historyless base objects requires n-1 steps and n-1 space in the worst case.

Gives lower bounds on:

- counters,
- mod-2*n* counters,
- fetch-and-increment,
- max registers,
- collects,
- snapshots,
- and many others.

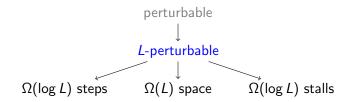


Restricted-use objects

- Consider an *m*-bounded counter that returns *m* after any number of increments ≥ *m*.
- This is not perturbable: after *m* increments, further increments have no effect.
- So JTT bound doesn't apply.
- In general, can make *any* object *m*-limited-use by ignoring all but first *m* updates.

- *m*-valued max registers cost $O(\log m)$ (Aspnes, Attiya, Censor-Hillel, JACM 2012).
- *m*-valued counters cost $O(\log^2 m)$ (ibid).
- *m*-limited-use snapshots cost O(log² m log n) (Aspnes, Attiya, Censor-Hillel, Ellen, PODC 2012, to appear).

Unrestricted versions are all perturbable $\Rightarrow \Omega(n)$ cost. Can we adapt perturbability to apply to restricted-use objects?

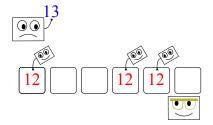


We define a new notion of *L*-perturbable objects to extend JTT to restricted-use objects.

- Intuition: object is *L*-perturbable if we can perturb it *L* times.
- But also have fewer restrictions on structure of executions.

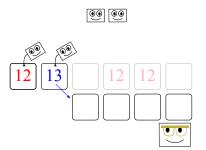
(Fich, Hendler, Shavit, FOCS 2005)

- Can't necessarily cover first k registers read by reader.
- Write to early register might divert reader away from later covered registers.
- This frees up covering processes for re-use.

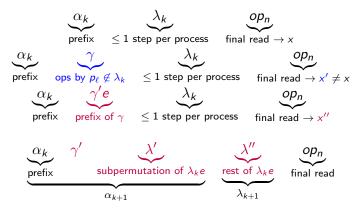


(Fich, Hendler, Shavit, FOCS 2005)

- Can't necessarily cover first k registers read by reader.
- Write to early register might divert reader away from later covered registers.
- This frees up covering processes for re-use.



L-perturbable objects: definition



- Object is *L*-perturbable if this works until k = L or we reach a saturated execution where $|\lambda_k| = n 1$, no matter how we do the $\gamma'/\lambda'/\lambda''$ split.
- Perturbable objects are *L*-perturbable.

Example: *m*-bounded counters

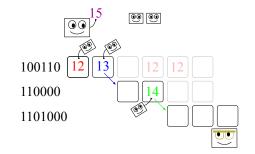


- Invariant: $\alpha_k \lambda_k$ includes $\leq k$ partial increments.
- So k + 1 new increments change value.
- Total over \sqrt{m} stages is $\leq m \Rightarrow \Omega(\sqrt{m})$ -perturbable.

We'll use different sequences of perturbations to get different lower bounds:

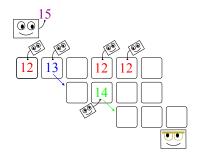
- Access-perturbation sequence: gives lower bound on steps.
- Cover-perturbation sequence: gives lower bound on space.
- Access-stall-perturbation sequence: gives lower bound on stalls (contention) or steps, even for non-historyless base objects.

Access-perturbation sequence



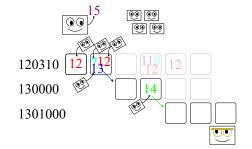
- Access-perturbation sequence is a sequence of *L* perturbations that shows many accesses by reader.
- Associate a bit-vector with each sequence of reader operations: 1 = covered register, 0 = uncovered register.
- Bit vectors are lexicographically increasing (⇒ no repetitions) and prefix-free.
- L distinct vectors \Rightarrow some vector has length $\ge \log_2 L$ (or n-1 if saturated) $\Rightarrow \Omega(\min(\log L, n))$ steps.

Cover-perturbation sequence



- **Cover-perturbation sequence** shows many registers are covered.
- Like access-perturbation sequence, but never release covering processes.
- L stages \Rightarrow L covered registers (or n-1 if saturated) $\Rightarrow \Omega(\min(L, n))$ space.

Access-stall-perturbation sequence



- Access-stall-perturbation sequence shows high contention or high steps with arbitrary base objects.
- Vector of bits becomes vector of counts: still lexicographically increasing.
- Gives $\Omega(\min(\log L, n))$ stalls or steps.

- For randomized implementations, we do not have a general lower bound.
- But we use similar techniques to show an $\Omega\left(\frac{\log \log m}{\log \log \log m}\right)$ lower bound on expected steps for approximate counters, with an **oblivious adversary**, for $m \leq n$.
- This is close to O(log log n) upper bound for single-use approximate counters (Bender and Gilbert, FOCS 2011).
- Still open: adapt *L*-perturbability for general randomized implementations.

	perturbation bound (L)	step complexity, max(steps, stalls)	space complexity
compare and swap	$\sqrt[3]{m} - 1$	$\Omega(\min(\log m, n))$	$\Omega\left(\min\left(\sqrt[3]{m},n\right)\right)$
collect	m-1	$\Omega(\min(\log m, n))$	$\Omega(\min(m, n))$
max register	m-1	$\Omega(\min(\log m, n))^*$	$\Omega(\min(m, n))$
counter	$\sqrt{m}-1$	$\Omega(\min(\log m, n))^*$	$\Omega\left(\min\left(\sqrt{m},n\right)\right)$
counter within $\pm k$	$\sqrt{\frac{m}{k}} - 1$	$\Omega\left(\min\left(\log\frac{m}{k},n\right)\right)^*$	$\Omega\left(\min\left(\sqrt{\frac{m}{k}},n\right)\right)$
counter (randomized)		$\Omega\left(\frac{\log\log m}{\log\log\log m}\right)^{\dagger}$	

*Step complexity bounds also in (Aspnes, Attiya, Censor-Hillel, JACM 2012) [†]Expected steps, when $n \ge m$.