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High-level operations implemented by low-level steps.
Asynchronous: interleaving of steps controlled by adversary.

°
°
@ Obstruction-free: any operation finishes if it runs alone.
°

Historyless base objects, where a step either doesn't change
the state or wipes out previous history.

o Examples: read/write registers, test-and-set, swap.
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Covering arguments
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Historyless objects permit covering arguments:

@ Suppose first k registers read by reader are covered by
pending update steps.

@ Any new operation must update some other register to be
visible.

@ This new update can be delayed to cover another register.
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Perturbable objects

(Jayanti, Tan, and Toeug, SICOMP 2000)
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@ Object is perturbable if v always exists.

@ Choose truncated 7/ that leaves delayed write wy 1 to first
uncovered register read by final operation.

@ lterate n — 1 times to get lower bound.
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JTT lower bound

Theorem (JTT): Any obstruction-free implementation of a
perturbable object from historyless base objects requires n — 1
steps and n — 1 space in the worst case.

Gives lower bounds on:
@ counters,
@ mod-2n counters,
e fetch-and-increment, O CONE O CONCON
¢ s )2 2 22 3]
@ collects, OI0
:
°

snapshots,

and many others.
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Restricted-use objects
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@ Consider an m-bounded counter that returns m after any
number of increments > m.

This is not perturbable: after m increments, further
increments have no effect.

So JTT bound doesn't apply.

In general, can make any object m-limited-use by ignoring all
but first m updates.
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Examples of restricted-use objects

@ m-valued max registers cost O(log m) (Aspnes, Attiya,
Censor-Hillel, JACM 2012).

o m-valued counters cost O(log? m) (ibid).

o m-limited-use snapshots cost O(log? mlog n) (Aspnes, Attiya,
Censor-Hillel, Ellen, PODC 2012, to appear).

Unrestricted versions are all perturbable = Q(n) cost.
Can we adapt perturbability to apply to restricted-use objects?
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L-perturbable objects

perturbable
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L-perturbable
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Q(log L) steps Q(L) space Q(log L) stalls

We define a new notion of L-perturbable objects to extend JTT to
restricted-use objects.

@ Intuition: object is L-perturbable if we can perturb it L times.

@ But also have fewer restrictions on structure of executions.
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Backtracking covering

(Fich, Hendler, Shavit, FOCS 2005)
13

@ Can't necessarily cover first
k registers read by reader.

o Write to early register might @ @ @
divert reader away from later D D D
covered registers.

@ This frees up covering
processes for re-use.

SPAA 2012 Lower bounds for restricted-use objects



Backtracking covering

(Fich, Hendler, Shavit, FOCS 2005)

@ Can't necessarily cover first
k registers read by reader.
o Write to early register might @ @

divert reader away from later

covered registers.

@ This frees up covering
processes for re-use.

SPAA 2012 Lower bounds for restricted-use objects



L-perturbable objects: definition
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@ Object is L-perturbable if this works until kK = L or we reach a
saturated execution where |A\x| = n — 1, no matter how we
do the ~'/X /N split.

@ Perturbable objects are L-perturbable.
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Example: m-bounded counters
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@ Invariant: ay Ak includes < k partial increments.
@ So k + 1 new increments change value.
e Total over \/m stages is < m = Q(+/m)-perturbable.
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We'll use different sequences of perturbations to get different lower
bounds:
o Access-perturbation sequence: gives lower bound on steps.
o Cover-perturbation sequence: gives lower bound on space.

@ Access-stall-perturbation sequence: gives lower bound on
stalls (contention) or steps, even for non-historyless base
objects.
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Access-perturbation sequence
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@ Access-perturbation sequence is a sequence of L
perturbations that shows many accesses by reader.

@ Associate a bit-vector with each sequence of reader
operations: 1 = covered register, 0 = uncovered register.

e Bit vectors are lexicographically increasing (= no
repetitions) and prefix-free.

e L distinct vectors = some vector has length > log, L (or
n — 1 if saturated) = Q(min(log L, n)) steps.
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Cover-perturbation sequence
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e Cover-perturbation sequence shows many registers are
covered.

o Like access-perturbation sequence, but never release covering
processes.

@ [ stages = L covered registers (or n — 1 if saturated) =
Q(min(L, n)) space.
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Access-stall-perturbation sequence
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@ Access-stall-perturbation sequence shows high contention
or high steps with arbitrary base objects.

@ Vector of bits becomes vector of counts: still lexicographically
increasing.

e Gives Q(min(log L, n)) stalls or steps.
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Randomized implementations

@ For randomized implementations, we do not have a general

lower bound.

log log m
log log log m

lower bound on expected steps for approximate counters, with
an oblivious adversary, for m < n.

@ But we use similar techniques to show an (

@ This is close to O(loglog n) upper bound for single-use
approximate counters (Bender and Gilbert, FOCS 2011).

@ Still open: adapt L-perturbability for general randomized
implementations.
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Summary of lower bounds

perturbation

step complexity,

space complexity

(randomized)
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bound (L) | max(steps, stalls)
compare 3= . s
and swap vm—1 Q (min (log m, n)) | Q (min (¥/m, n))
collect m—1 Q (min (log m,n)) | Q(min(m,n))
max register | m—1 Q (min (log m, n))* | Q(min(m, n))
counter vVm—1 Q (min (log m, n))* | Q (min (y/m, n))
counter o . m % . m
within -k 71 Q(mln (Iog o, n ) Q(mln( ?’”))
counter

*Step complexity bounds also in (Aspnes, Attiya, Censor-Hillel, JACM 2012)
TExpected steps, when n > m.
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