
Lower bounds for restricted-use objects

James Aspnes (Yale)
Hagit Attiya (Technion)

Keren Censor-Hillel (MIT)
Danny Hendler (BGU)

June 26th, 2012

SPAA 2012 Lower bounds for restricted-use objects

Model

Time

High-level operations implemented by low-level steps.

Asynchronous: interleaving of steps controlled by adversary.

Obstruction-free: any operation finishes if it runs alone.

Historyless base objects, where a step either doesn’t change
the state or wipes out previous history.

Examples: read/write registers, test-and-set, swap.

SPAA 2012 Lower bounds for restricted-use objects

Covering arguments

12 12 12 1212

13

Historyless objects permit covering arguments:

Suppose first k registers read by reader are covered by
pending update steps.

Any new operation must update some other register to be
visible.

This new update can be delayed to cover another register.

SPAA 2012 Lower bounds for restricted-use objects

Covering arguments

12 12 12 1212 13

Historyless objects permit covering arguments:

Suppose first k registers read by reader are covered by
pending update steps.

Any new operation must update some other register to be
visible.

This new update can be delayed to cover another register.

SPAA 2012 Lower bounds for restricted-use objects

Covering arguments

12 12 12 1212 13

14

Historyless objects permit covering arguments:

Suppose first k registers read by reader are covered by
pending update steps.

Any new operation must update some other register to be
visible.

This new update can be delayed to cover another register.

SPAA 2012 Lower bounds for restricted-use objects

Perturbable objects

(Jayanti, Tan, and Toeug, SICOMP 2000)

αk︸︷︷︸
prefix

w1w2 . . .wk︸ ︷︷ ︸
delayed writes λk

r1r2 . . . rk . . .︸ ︷︷ ︸
final read → x

αk︸︷︷︸
prefix

γ︸︷︷︸
perturbation

w1w2 . . .wk︸ ︷︷ ︸
delayed writes λk

r1r2 . . . rk . . .︸ ︷︷ ︸
final read → x ′ 6= x

αk γ′︸︷︷︸
truncated perturbation︸ ︷︷ ︸

new prefix αk+1

w1w2 . . .wkwk+1︸ ︷︷ ︸
delayed writes λk+1

r1r2 . . . rk rk+1 . . .︸ ︷︷ ︸
final read

Object is perturbable if γ always exists.

Choose truncated γ′ that leaves delayed write wk+1 to first
uncovered register read by final operation.

Iterate n − 1 times to get lower bound.

SPAA 2012 Lower bounds for restricted-use objects

JTT lower bound

Theorem (JTT): Any obstruction-free implementation of a
perturbable object from historyless base objects requires n − 1
steps and n − 1 space in the worst case.

Gives lower bounds on:

counters,

mod-2n counters,

fetch-and-increment,

max registers,

collects,

snapshots,

and many others.

12 12 12 1212 13

14

SPAA 2012 Lower bounds for restricted-use objects

Restricted-use objects

αk︸︷︷︸
prefix

w1w2 . . .wk︸ ︷︷ ︸
delayed writes λk

r1r2 . . . rk . . .︸ ︷︷ ︸
final read → m

αk︸︷︷︸
prefix

γ︸︷︷︸
perturbation

w1w2 . . .wk︸ ︷︷ ︸
delayed writes λk

r1r2 . . . rk . . .︸ ︷︷ ︸
final read → m

Consider an m-bounded counter that returns m after any
number of increments ≥ m.

This is not perturbable: after m increments, further
increments have no effect.

So JTT bound doesn’t apply.

In general, can make any object m-limited-use by ignoring all
but first m updates.

SPAA 2012 Lower bounds for restricted-use objects

Examples of restricted-use objects

m-valued max registers cost O(logm) (Aspnes, Attiya,
Censor-Hillel, JACM 2012).

m-valued counters cost O(log2 m) (ibid).

m-limited-use snapshots cost O(log2 m log n) (Aspnes, Attiya,
Censor-Hillel, Ellen, PODC 2012, to appear).

Unrestricted versions are all perturbable ⇒ Ω(n) cost.
Can we adapt perturbability to apply to restricted-use objects?

SPAA 2012 Lower bounds for restricted-use objects

L-perturbable objects

perturbable

L-perturbable

Ω(log L) steps Ω(L) space Ω(log L) stalls

We define a new notion of L-perturbable objects to extend JTT to
restricted-use objects.

Intuition: object is L-perturbable if we can perturb it L times.

But also have fewer restrictions on structure of executions.

SPAA 2012 Lower bounds for restricted-use objects

Backtracking covering

(Fich, Hendler, Shavit, FOCS 2005)

Can’t necessarily cover first
k registers read by reader.

Write to early register might
divert reader away from later
covered registers.

This frees up covering
processes for re-use.

12

13

12 12

SPAA 2012 Lower bounds for restricted-use objects

Backtracking covering

(Fich, Hendler, Shavit, FOCS 2005)

Can’t necessarily cover first
k registers read by reader.

Write to early register might
divert reader away from later
covered registers.

This frees up covering
processes for re-use.

12 13 1212

SPAA 2012 Lower bounds for restricted-use objects

L-perturbable objects: definition

αk︸︷︷︸
prefix

λk︸︷︷︸
≤ 1 step per process

opn︸︷︷︸
final read → x

αk︸︷︷︸
prefix

γ︸︷︷︸
ops by p` 6∈ λk

λk︸︷︷︸
≤ 1 step per process

opn︸︷︷︸
final read → x ′ 6= x

αk︸︷︷︸
prefix

γ′e︸︷︷︸
prefix of γ

λk︸︷︷︸
≤ 1 step per process

opn︸︷︷︸
final read → x ′′

αk︸︷︷︸
prefix

γ′ λ′︸︷︷︸
subpermutation of λke︸ ︷︷ ︸
αk+1

λ′′︸︷︷︸
rest of λke︸ ︷︷ ︸

λk+1

opn︸︷︷︸
final read

Object is L-perturbable if this works until k = L or we reach a
saturated execution where |λk | = n − 1, no matter how we
do the γ′/λ′/λ′′ split.

Perturbable objects are L-perturbable.

SPAA 2012 Lower bounds for restricted-use objects

Example: m-bounded counters

αk︸︷︷︸
prefix

λk︸︷︷︸
≤ k steps

opn︸︷︷︸
final read → x

αk︸︷︷︸
prefix

I ′0︸︷︷︸
finish partial inc

I1 . . . Ik+1︸ ︷︷ ︸
new incs︸ ︷︷ ︸

γ

λk︸︷︷︸
≤ k steps

opn︸︷︷︸
final read → x ′ 6= x

αk︸︷︷︸
prefix

γ′ λ′︸︷︷︸
subpermutation of λke︸ ︷︷ ︸
αk+1

λ′′︸︷︷︸
≤ k + 1 steps︸ ︷︷ ︸

λk+1

opn︸︷︷︸
final read

Invariant: αkλk includes ≤ k partial increments.

So k + 1 new increments change value.

Total over
√
m stages is ≤ m ⇒ Ω(

√
m)-perturbable.

SPAA 2012 Lower bounds for restricted-use objects

Lower bounds

We’ll use different sequences of perturbations to get different lower
bounds:

Access-perturbation sequence: gives lower bound on steps.

Cover-perturbation sequence: gives lower bound on space.

Access-stall-perturbation sequence: gives lower bound on
stalls (contention) or steps, even for non-historyless base
objects.

SPAA 2012 Lower bounds for restricted-use objects

Access-perturbation sequence

12

14

13

15

1212100110

110000

1101000

Access-perturbation sequence is a sequence of L
perturbations that shows many accesses by reader.
Associate a bit-vector with each sequence of reader
operations: 1 = covered register, 0 = uncovered register.
Bit vectors are lexicographically increasing (⇒ no
repetitions) and prefix-free.
L distinct vectors ⇒ some vector has length ≥ log2 L (or
n − 1 if saturated) ⇒ Ω(min(log L, n)) steps.

SPAA 2012 Lower bounds for restricted-use objects

Cover-perturbation sequence

12

14

13

15

1212

Cover-perturbation sequence shows many registers are
covered.

Like access-perturbation sequence, but never release covering
processes.

L stages ⇒ L covered registers (or n − 1 if saturated) ⇒
Ω(min(L, n)) space.

SPAA 2012 Lower bounds for restricted-use objects

Access-stall-perturbation sequence

12 12

14

15

1212120310

130000

1301000

118713

Access-stall-perturbation sequence shows high contention
or high steps with arbitrary base objects.

Vector of bits becomes vector of counts: still lexicographically
increasing.

Gives Ω(min(log L, n)) stalls or steps.

SPAA 2012 Lower bounds for restricted-use objects

Randomized implementations

For randomized implementations, we do not have a general
lower bound.

But we use similar techniques to show an Ω
(

log log m
log log log m

)
lower bound on expected steps for approximate counters, with
an oblivious adversary, for m ≤ n.

This is close to O(log log n) upper bound for single-use
approximate counters (Bender and Gilbert, FOCS 2011).

Still open: adapt L-perturbability for general randomized
implementations.

SPAA 2012 Lower bounds for restricted-use objects

Summary of lower bounds

perturbation
bound (L)

step complexity,
max(steps, stalls)

space complexity

compare
and swap

3
√
m − 1 Ω (min (logm, n)) Ω

(
min

(
3
√
m, n

))
collect m − 1 Ω (min (logm, n)) Ω (min (m, n))

max register m − 1 Ω (min (logm, n))∗ Ω (min (m, n))

counter
√
m − 1 Ω (min (logm, n))∗ Ω

(
min

(√
m, n

))
counter
within ±k

√
m
k − 1 Ω

(
min

(
log m

k , n
))∗ Ω

(
min

(√
m
k , n

))
counter
(randomized)

Ω
(

log log m
log log log m

)
†

∗Step complexity bounds also in (Aspnes, Attiya, Censor-Hillel, JACM 2012)
†Expected steps, when n ≥ m.

SPAA 2012 Lower bounds for restricted-use objects

