Lower bounds for restricted-use objects

James Aspnes (Yale)
Hagit Attiya (Technion)
Keren Censor-Hillel (MIT)
Danny Hendler (BGU)

June 26th, 2012

SPAA 2012 Lower bounds for restricted-use objects

(@ (] o @ em o0 (o mo

(o @ " = 0 m e

Time

High-level operations implemented by low-level steps.
Asynchronous: interleaving of steps controlled by adversary.

°
°
@ Obstruction-free: any operation finishes if it runs alone.
°

Historyless base objects, where a step either doesn't change
the state or wipes out previous history.

o Examples: read/write registers, test-and-set, swap.

SPAA 2012 Lower bounds for restricted-use objects

Covering arguments

13

@ & @ @D
2)[12)[2][2][[]

Historyless objects permit covering arguments:

@ Suppose first k registers read by reader are covered by
pending update steps.

@ Any new operation must update some other register to be
visible.

@ This new update can be delayed to cover another register.

SPAA 2012 Lower bounds for restricted-use objects

Covering arguments

12][12][12][12)[13][|

Historyless objects permit covering arguments:

@ Suppose first k registers read by reader are covered by
pending update steps.

@ Any new operation must update some other register to be
visible.

@ This new update can be delayed to cover another register.

SPAA 2012 Lower bounds for restricted-use objects

Covering arguments

121(121[12)12][13 m

Historyless objects permit covering arguments:

@ Suppose first k registers read by reader are covered by
pending update steps.

@ Any new operation must update some other register to be
visible.

@ This new update can be delayed to cover another register.

SPAA 2012 Lower bounds for restricted-use objects

Perturbable objects

(Jayanti, Tan, and Toeug, SICOMP 2000)

(7% WiWwp ... Wik nrp...rg...
prefix delayed writes Ay final read — x
(0% Y Wiwo ... Wk nro...rg...

~—
prefix perturbation delayed writes A\ final read — x’ # x

/

(67% Yy WiWwo ... WiWg 1 nr...rnrgy1 ...
~~~ ~~
truncated perturbation delayed writes Axi1 final read

new prefix o1

@ Object is perturbable if v always exists.

@ Choose truncated 7/ that leaves delayed write wy 1 to first
uncovered register read by final operation.

@ lterate n — 1 times to get lower bound.

SPAA 2012 Lower bounds for restricted-use objects



JTT lower bound

Theorem (JTT): Any obstruction-free implementation of a
perturbable object from historyless base objects requires n — 1
steps and n — 1 space in the worst case.

Gives lower bounds on:
@ counters,
@ mod-2n counters,
e fetch-and-increment, O CONE O CONCON
¢ s )2 2 22 3]
@ collects, OI0
:
°

snapshots,

and many others.

SPAA 2012 Lower bounds for restricted-use objects



Restricted-use objects

[(67% Wiwp ... Wik nr...rc...

prefix  delayed writes Ay final read — m

(67 Y Wiwo ... Wik nro...rg...
~~ ~~
prefix  perturbation  delayed writes A4 final read — m

@ Consider an m-bounded counter that returns m after any
number of increments > m.

This is not perturbable: after m increments, further
increments have no effect.

So JTT bound doesn't apply.

In general, can make any object m-limited-use by ignoring all
but first m updates.

SPAA 2012 Lower bounds for restricted-use objects



Examples of restricted-use objects

@ m-valued max registers cost O(log m) (Aspnes, Attiya,
Censor-Hillel, JACM 2012).

o m-valued counters cost O(log? m) (ibid).

o m-limited-use snapshots cost O(log? mlog n) (Aspnes, Attiya,
Censor-Hillel, Ellen, PODC 2012, to appear).

Unrestricted versions are all perturbable = Q(n) cost.
Can we adapt perturbability to apply to restricted-use objects?

SPAA 2012 Lower bounds for restricted-use objects



L-perturbable objects

perturbable

!

L-perturbable

— T

Q(log L) steps Q(L) space Q(log L) stalls

We define a new notion of L-perturbable objects to extend JTT to
restricted-use objects.

@ Intuition: object is L-perturbable if we can perturb it L times.

@ But also have fewer restrictions on structure of executions.

SPAA 2012 Lower bounds for restricted-use objects



Backtracking covering

(Fich, Hendler, Shavit, FOCS 2005)
13

@ Can't necessarily cover first
k registers read by reader.

o Write to early register might @ @ @
divert reader away from later D D D
covered registers.

@ This frees up covering
processes for re-use.

SPAA 2012 Lower bounds for restricted-use objects



Backtracking covering

(Fich, Hendler, Shavit, FOCS 2005)

@ Can't necessarily cover first
k registers read by reader.
o Write to early register might @ @

divert reader away from later

covered registers.

@ This frees up covering
processes for re-use.

SPAA 2012 Lower bounds for restricted-use objects



L-perturbable objects: definition

ak Ak Opn
~— ~— ~—
prefix < 1 step per process  final read — x
(673 Y Ak OPn
~— ~— ~— ~—
prefix — ops by pp ¢ Ay < 1 step per process final read — x’ # x
/

o ye Ak OPn
~— ~— ~— ~—
prefix  prefix of v <1 step per process  final read — x”’/

/ / "
o A A o
k Y N Pn
prefix subpermutation of Aye  rest of Ake  final read
Qpy1 )‘k+1

@ Object is L-perturbable if this works until kK = L or we reach a
saturated execution where |A\x| = n — 1, no matter how we
do the ~'/X /N split.

@ Perturbable objects are L-perturbable.

SPAA 2012 Lower bounds for restricted-use objects



Example: m-bounded counters

Qg Ak Opn

~— ~— ~—

prefix < k steps  final read — x

/
[(07% IO /1 c. Ik+1 )\k Oopn
prefix  finish partial inc new incs < k steps  final read — x’ # x
Y
/ / "

« A A 0
\ﬁ/ " ~~ ~~ \[zf/
prefix subpermutation of Aye < k4 1 steps  final read

et 1 Akt1

@ Invariant: ay Ak includes < k partial increments.
@ So k + 1 new increments change value.
e Total over \/m stages is < m = Q(+/m)-perturbable.

SPAA 2012 Lower bounds for restricted-use objects



We'll use different sequences of perturbations to get different lower
bounds:
o Access-perturbation sequence: gives lower bound on steps.
o Cover-perturbation sequence: gives lower bound on space.

@ Access-stall-perturbation sequence: gives lower bound on
stalls (contention) or steps, even for non-historyless base
objects.

SPAA 2012 Lower bounds for restricted-use objects



Access-perturbation sequence

5ol

~—

©
100110

110000

1101000 DDD[:]

@ Access-perturbation sequence is a sequence of L
perturbations that shows many accesses by reader.

@ Associate a bit-vector with each sequence of reader
operations: 1 = covered register, 0 = uncovered register.

e Bit vectors are lexicographically increasing (= no
repetitions) and prefix-free.

e L distinct vectors = some vector has length > log, L (or
n — 1 if saturated) = Q(min(log L, n)) steps.

SPAA 2012 Lower bounds for restricted-use objects



Cover-perturbation sequence

i@f -’i‘g

DDD

e Cover-perturbation sequence shows many registers are
covered.

o Like access-perturbation sequence, but never release covering
processes.

@ [ stages = L covered registers (or n — 1 if saturated) =
Q(min(L, n)) space.

SPAA 2012 Lower bounds for restricted-use objects



Access-stall-perturbation sequence

15
WG
@@@
120310
130000 &

el

1301000

i

@ Access-stall-perturbation sequence shows high contention
or high steps with arbitrary base objects.

@ Vector of bits becomes vector of counts: still lexicographically
increasing.

e Gives Q(min(log L, n)) stalls or steps.

SPAA 2012 Lower bounds for restricted-use objects



Randomized implementations

@ For randomized implementations, we do not have a general

lower bound.

log log m
log log log m

lower bound on expected steps for approximate counters, with
an oblivious adversary, for m < n.

@ But we use similar techniques to show an (

@ This is close to O(loglog n) upper bound for single-use
approximate counters (Bender and Gilbert, FOCS 2011).

@ Still open: adapt L-perturbability for general randomized
implementations.

SPAA 2012 Lower bounds for restricted-use objects



Summary of lower bounds

perturbation

step complexity,

space complexity

(randomized)

log log log m

@)
—

log log m )T

bound (L) | max(steps, stalls)
compare 3= . s
and swap vm—1 Q (min (log m, n)) | Q (min (¥/m, n))
collect m—1 Q (min (log m,n)) | Q(min(m,n))
max register | m—1 Q (min (log m, n))* | Q(min(m, n))
counter vVm—1 Q (min (log m, n))* | Q (min (y/m, n))
counter o . m % . m
within -k 71 Q(mln (Iog o, n ) Q(mln( ?’”))
counter

*Step complexity bounds also in (Aspnes, Attiya, Censor-Hillel, JACM 2012)
TExpected steps, when n > m.

SPAA 2012 Lower bounds for restricted-use objects




