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Abstract

We study the convergence properties of a simple population protocol for consensus using
binary signaling, where the communication in each interaction is limited to a single bit trans-
mitted from the initiator to the responder. We consider a population which consists of n agents,
where pairs of individuals are drawn uniformly at random to interact. Each agent has a con-
fidence level for a binary preference and a more confident agent supports the preference with
higher probability. An agent increases its confidence level when interacting with another agent
supporting the preference, and decreases its confidence level otherwise. We prove that with high
probability a three-state binary signaling population protocol reaches consensus after Θ(n log n)
interactions in the worst case, regardless of the initial configuration. In the general case, a
continuous-time binary signaling process in the limit will converge within O(r log nr) time (cor-
responding to O(nr log nr) interactions in expectation) if the initial configuration is monotone,
where r is the number of confidence levels. In the other direction, we also show a convergence
lower bound Ω(nr + n log n) on the number of interactions for any r ≥ 2. Experimental results
are presented to support our theoretical results and to provide evidence for some conjectures.

1 Introduction

A population protocol [AAD+06] is where agents may interact in pairs and each individual agent is
extremely limited (in fact, being equipped only with a finite number of possible states). Then the
complex behavior of the system emerges from the rules governing the possible pairwise interactions
of the agents. The agents in a population protocol are anonymous, i.e., there is only one transition
function which is common to all agents and the output of the transition function only depends on
the states of the two involved agents, regardless of their identities. Nor does each agent have any
knowledge of its identity. Usually it is assumed that interactions between agents happen under
some kind of a fairness condition.

Angluin et al. [AAE07] introduced a simple population protocol for majority computation. This
protocol assigns only three possible states to every agent, including two opposite states and one
intermediate state, and initially every agent starts from one of the two opposite states. There
is a 3 × 3 transition table capturing all possible interactions and the interactions between agents
are dictated by a probabilistic scheduler. The essential idea of this protocol is that when two
agents with different preferences meet, one drops its preference and enters the intermediate state;
an agent at the intermediate state adopts the preference of any biased agent it meets. Nothing
happens when two unbiased agents meet. The protocol converges at the point where all the agents
have the same preference with no unbiased agents left. They show that with high probability this
protocol reaches convergence within O(n log n) interactions with a complete interaction graph of
n vertices, if the process starts from a biased initial configuration. In addition, if the difference
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between the initial majority and the initial minority is ω(
√
n log n), their protocol converges to the

correct initial majority with high probability.
Becchetti et al. [BCN+15] is the most recent result we know of that generalizes Angluin et al.’s

population protocol to computing plurality consensus in the gossip model. Instead of two opposite
preferences, an agent could have one of many preferences (or “colors” in the paper). The update rule
is the same: when two agents with different preferences meet, one shifts to the intermediate state
(blank); a blank agent will be colored by a colored agent with its color. Another major difference
concerns timing. They analyze the synchronous version of population protocol in the gossip model,
where at each round every agent updates its state simultaneously. Perron et al. [PVV09] analyzed
the continuous-time process of Angluin et al.’s three-state population protocol in the limit by
studying the corresponding system of differential equations modeling the expected change of the
protocol. An additional continuous-time three-state protocol is defined where instead of being
passive, a blank agent acts as in the two opposite states uniformly at random in an interaction.
The authors gave an elegant upper bound on the time to convergence of a differential equation
approximation that converges to the behavior of the discrete process for any fixed time in the limit
by Kurtz’s theorem [Kur81]. They claim the stronger result that this approximation converges for
time Θ(log n). While this claim may in fact be true, applying Kurtzs theorem in this case requires
an unjustified interchange of limits that gives incorrect results in many cases. Subsequent work
by Jung et al. [JKV12] gives an extended version of Kurtz’s theorem that might apply here with
additional analysis, but our approach instead has been to employ a potential-function approach
similar to that used by Angluin et al. [AAE07]. For more related works and theoretical background
about population protocols we refer to the survey of Aspnes and Ruppert [AR09].

Binary signaling consensus in the context of population protocols, which was first introduced
by Perron et al. [PVV09], is where two interacting agents communicate with only one binary
bit, without knowing each other’s state or identity. The population protocol reaches consensus if
all the agents have the same preference and the process stays at convergence. For example, the
protocol in [AAE07] is not a binary signaling one since the communication between two interacting
agents is ternary, while the second protocol in [PVV09] is, even though the state space of an
agent is also ternary. One scenario of binary signaling consensus is as a model of the language
emergence process in a human society, i.e., the process of how people learn and acquire a language
from interactions [RYC14, KDG07, GW94]. Given the connection between population protocols
and biological systems [CCN12], more potential applications of binary signaling consensus may be
found in biology.

In Section 2 we formalize our population protocol for binary signaling consensus. A comprehen-
sive analysis of fast convergence for three-state binary signaling consensus then follows in Section
3. We show that with high probability, the three-state binary signaling protocol converges after
Θ(n log n) interactions in the worst case, regardless of the initial configuration. In Section 4, we
study the general binary signaling consensus protocol with any resistance r ≥ 2. We prove that
the continuous-time binary signaling process with large r in the limit will reach consensus within
O(r log nr) time (corresponding to O(nr log nr) interactions in expectation) if the initial configu-
ration is monotone. We also provide a convergence lower bound of Ω(nr + n log n) in the general
case. Experimental results are presented in Section 5 to support our theoretical results and to pro-
vide evidence for some conjectures. We describe only the main idea of the proofs in the extended
abstract, with most technical details deferred to the appendix.
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2 Binary Signaling Consensus

We consider a population consisting of n agents. Define an interaction graph G = (V,E) over this
population to be a directed graph with |V | = n whose edges indicate the possible interactions that
may take place. Each agent i ∈ V in the crowd has a confidence level cl(i) for a preference, which
is an integer between 0 and r. We say r is the resistance (or the recalcitrance). At each step, an
edge (i, j) is chosen uniformly at random from E. The “source” agent i is the initiator (or the
speaker), and the “sink” agent j is the responder (or the listener). The two agents communicate in
a way that the initiator sends a binary bit to the responder. With probability cl(i)/r agent i sends
a positive bit to agent j and the latter does the update cl(j) = min(cl(j) + 1, r). Otherwise the
initiator sends a negative bit to the responder who updates cl(j) = max(cl(j)−1, 0). Starting from
an initial configuration, the communication process keeps going until convergence, where either all
agents are of confidence level r (when the whole population accepts the preference, i.e., positive
convergence) or all agents are of confidence level 0 (when the preference is discarded, i.e., negative
convergence).

We inherit the terminology binary signaling used by Perron et al. [PVV09], in the sense that
the signaling between the agents is binary and the communication between two interacting agents
doesn’t depend on the knowledge of their states or identities. In this paper, we study the case
where the interaction graph G is a complete graph. For algebraic convenience we assume self-loops
are allowed in the interaction graph, while all our results can be easily applied to the setting of no
self-loops as the number of agents n goes to infinity.

The parameter r is called the resistance or the recalcitrance as the larger r is, the more difficult
to persuade an individual of the opposite opinion. A more general model could allow different
agents to have different resistance values. In this setting, the range of the confidence level of
agent i is from 0 to r(i). Everything remains the same except that the initiator i has probability
cl(i)/r(i) of sending a positive bit and the responder updates cl(j) = min(cl(j)+1, r(j)). Although
this is a more general setting, it complicates the model and also violates the anonymity condition
in population protocols, where the output of the transition function should be independent of the
identities of the two involved agents. Hence, in this paper we assume all agents are of the same
resistance r.

Note that in our setting we consider one particular preference and all agents eventually either
accept the preference or reject it. Some readers might prefer an equivalent setting where we consider
two opposite preferences (corresponding to being supportive and being opposed in our setting) and
the population eventually agrees with one of them. However, this would make the concrete meaning
of confidence level confusing in some contexts. Thus in this paper we employ the setting we have
described above.

One application of binary signaling consensus is to model the language emergence process in a
human society, which is the process of how people learn and acquire a language from interactions
[RYC14, KDG07, GW94]. In this scenario we consider a society of population n. Each person has a
confidence level for a grammar (or a language). A person with higher confidence level speaks with
this grammar with higher probability. Each individual adjusts her opinion of the grammar while
interacting with others. Positive convergence of this process means a new grammar eventually
emerges while negative convergence indicates extinction of this grammar. More applications of
binary signaling consensus can be found in the study of other fields such as rumor spreading,
epidemiology and biological systems.
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3 Three-State Binary Signaling Consensus

When studying a population protocol, it is common to assume a very large population n and
constant parameter, which in our model is the value of resistance r. Since the r = 0 case is trivial
and the r = 1 model doesn’t involve probabilistic interactions, the three-state case with r = 2 is
a reasonable start for us to study this protocol. In this section, we show that starting from any
initial configuration, the three-state protocol will converge within Θ(n log n) interactions with high
probability. Sketches of the proofs are provided in this section, with most technical details deferred
to Appendix A.

Let τ∗ be the number of interactions until the three-state binary signaling model reaches con-
sensus. The main result of this section is the following theorem. Note that the stated convergence
bound is a worst-case bound.

Theorem 1. With probability 1 − o(1), τ∗ = Θ(n log n) in the worst case. In addition, for any
constant c > 0 we have

P (τ∗ ≥ 96930(c+ 1)n log n) ≤ max

(
9n−c,

c log n
3
√
n

)
The convergence lower bound τ∗ = Ω(n log n) can be easily obtained from the well-known

coupon collector bound. When the initial configuration is cl(i) being 1 for all i ∈ V , in order to
achieve consensus, every agent must participate in at least one interaction, leading to the coupon
collector lower bound. However, the upper bound τ∗ = O(n log n) requires a substantial amount of
work. It may be surprising that fast convergence of such a simple consensus process needs such a
lengthy proof. Part of the reason is that we want to obtain exact asymptotic bounds with explicit
constants that work for arbitrary configurations.

The core of our proof is to construct a supermartingale for each region in the configuration
space. This technique is inspired by the proof used by Angluin et al. [AAE07]. Recall that a
supermartingale is a discrete stochastic process {Mt} where Mt satisfies E(|Mt|) < +∞ and E(Mt |
M0, . . . ,Mt−1) ≤Mt−1. The expected value of each Mt is bounded by the initial value EMt ≤ EM0.
Supermartingales are commonly studied with a stopping time. A stopping time with respect to a
stochastic process {Mt} is an almost surely finite random variable τ with positive integer values and
the property that the event τ = t depends only on the values of M0,M1, . . . ,Mt. A supermatingale
with a stopping time is still a supermartingale. In this section, we let τ = min(τ∗, dn log n) for
some fixed constant d. Thus τ is a stopping time. This truncation guarantees that τ and quantities
defined in terms of it are finite and well-defined, despite the logical possibility that convergence is
not achieved and τ∗ is ill-defined.

Now that r = 2 and an agent has only three possible states, we denote by w (white), g (gray) and
b (black) the states with confidence levels 0 (negative), 1 (neutral) and 2 (positive) respectively. For
notational convenience we also overload w, g, b to denote the number of each token in a configuration.
Meanwhile, let b̃ = b/n, g̃ = g/n and w̃ = w/n be the corresponding proportions. Obviously we
always have b̃+ g̃+ w̃ = 1. Denote u = b−w and v = b+w. Note that −n ≤ u ≤ n and 0 ≤ v ≤ n.
The point when |u| = n is equivalent to convergence. The change of basis to u and v allows us to
take advantage of the symmetry between b and w tokens. Auxiliary 0-1 indicators and counters for
the proof are defined in Table 1.

The key to constructing a supermartingale in a region is to design a proper potential func-
tion that drops smoothly inside this region and doesn’t increase too much elsewhere. Because
the behavior of the consensus process is qualitatively different in different regions, we choose a
specific potential function for each region of the configuration space. In our proof, we divide the
configuration space into four regions:
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Indicator Counter

Ig−t : g decreases by 1 Sg−t =
∑t

i=1 I
g−
i

Ig+t : g increases by 1 Sg+t =
∑t

i=1 I
g+
i

Isct : the configuration is changed Ssct =
∑t

i=1 I
sc
i

Ict : max(b̃, g̃, w̃) < 3/4 Sct =
∑t

i=1 I
c
i

Ibt : b̃ ≥ 3/4 Sbt =
∑t

i=1 I
b
i

Igt : g̃ ≥ 3/4 Sgt =
∑t

i=1 I
g
i

Iwt : w̃ ≥ 3/4 Swt =
∑t

i=1 I
w
i

Table 1: Indicators and Counters

1. The corner region where at least 3n/4 agents are of confidence level 0 and Iw = 1;
2. The corner region where at least 3n/4 agents are of confidence level 1 and Ig = 1;
3. The corner region where at least 3n/4 agents are of confidence level 2 and Ib = 1;
4. The central region left where the tokens are more evenly balanced and Ic = 1.
More concretely, given that the potential function f decreases consistently by −Θ(n−1) in

expectation when I1
t = 1 and increases by a relatively smaller amount in expectation when I2

t = 1,
we are able to construct a stochastic process of the form {Mt = exp

(
(c1S

1
t − c2S

2
t )/n

)
· f} which

is a supermartingale, where I1
t and I2

t are two different binary indicators, S1
t =

∑t
i=1 I

1
t and

S2
t =

∑t
i=1 I

2
t are their counters, and c1 and c2 are two carefully chosen positive constants. The

supermartingale property EMτ ≤ EM0 together with Markov’s inequality then gives us the desired
O(n log n) upper bound for S1

τ (depending on S2
τ ). Here we assume either S2

τ is already well
bounded (Lemma 9, Lemma 10, Lemma 11 and Lemma 12), or there exists some auxiliary inequality
relationship between S1

τ and S2
τ (Lemma 5 and Lemma 7). A formal statement of this proof

technique is presented in Lemma 4.
The proof of the upper bound consists of four components. Notice that t = Sct + Sbt + Sgt + Swt

for any time t. Thus upper bounds for Scτ , Sbτ , Sgτ and Swτ imply one for τ . We will later find
that these four quantities can be bounded using an upper bound on the number of state-changing
interactions Sscτ . Therefore, the proof starts with an O(n log n) upper bound for Sscτ .

In three-state binary signaling consensus, every state-changing interaction must increase or
decrease the value of g by 1. Hence, we have Sscτ = Sg+τ + Sg−τ . The proof of bounding Sscτ =
O(n log n) (Lemma 3) is done case by case. First we show that if the process starts from some
point in the region {g ≤ min(b, w)/4}, then within O(n log n) state-changing interactions, it will
either converge or leave the region (Lemma 5). If the former happens then we are done. Otherwise,
we have g > min(b, w)/4 and we prove that within the next O(n log n) state-changing interactions,
either the process will never enter the region {g < min(b, w)/10} again, or it will enter the region
{min(b, w) = O(log n)

∧
g = O(log n)} (Lemma 6 and Corollary 2). In the first case, we show the

population protocol will converge within the next O(n log n) state-changing interactions (Lemma
7). In the latter case, we show the protocol will converge within the next O(n) state-changing
interactions (Lemma 8).

Based on the upper bound on state-changing interactions, we are able to construct a family
of supermartingales for different regions in the configuration space. To bound the number of
interactions Scτ in the central region, we prove the stochastic process Ct = exp((Sct − 9Ssct )/n) to
be a supermartingale. The key observation is that in the central region where max(b̃, g̃, w̃) < 3/4,
we should have either b̃ and w̃ are both ≥ 1/8, or g̃ ≥ 1/8. We then show that in both cases
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we have Ct dropping in expectation, which implies an O(n log n) upper bound for Scτ . For the
corner region where g̃ ≥ 3/4, we choose the potential function to be f = 1/(2v + 1). We show
that this potential function drops consistently by Θ(−1/n) of its current value in expectation in
the large-g region, while its rise when Igt = 0 can be upper-bounded by O(Ig+t /n). With this
we then construct a supermartingale in the form M = exp(aS/n)f(b, w) as described above and
achieve the bound Sgτ = O(n log n). For the corner region where b ≥ 3n/4, the potential function
we use is f = 3w + g + 1. Similar to the idea of bounding Sgτ , we bound Sbτ by showing the value
of the potential function decreases by a factor of exp(−Θ(1/n)) when b is large, and increases
otherwise by an amount we can bound using Sg+t and Sg−t . Thus the number of interactions Sbτ
that happen in the large-b region is also O(n log n). The number of interactions Swτ that happen in
the large-w region can be bounded in a symmetric way using the potential function f = 3b+ g+ 1.
Finally, for τ = Scτ + Sbτ + Sgτ + Swτ , summing the bounds for all the four regions we will obtain
a bound on the total number of interactions. Given a convergence upper bound O(n log n) with
an explicit constant c, we then choose a slightly larger constant d > c to truncate the process and
let τ = min(τ∗, dn log n) to make τ a well defined stopping time. Some readers might think this
truncation at Θ(n log n) interactions already assumes the correctness of the target statement, but
we have proved that the total number of interactions is smaller than dn log n with high probability
so we have the convergence upper bound τ∗ = O(n log n) as stated in Theorem 1.

4 Binary Signaling Consensus with r > 2

In the previous section we studied the population protocol for binary signaling consensus with
r = 2. This is a reasonable start for understanding binary signaling consensus process, but to gain
an insight into the population protocol in depth, we have to investigate the general binary signaling
consensus process with larger r.

In this section we allow the value of resistance r to be arbitrarily large, i.e., not necessarily
a small constant. Denote by ni the number of agents of confidence level i and by xi = ni/n the
corresponding proportion. Any configuration over the population can be represented as a (r + 1)-
dimensional vector ~x ∈ [0, 1]r+1 where

∑r
i=0 xi = 1. Denote by p =

∑r
i=0(i/r)xi. We say an

interaction is a positive interaction if the initiator sends a positive bit, and is a negative interaction
otherwise. Then p is the probability of occurrence of a positive interaction. The curve of p serves
as a significant indicator of the underlying status of the society. A large p implies the preference is
almost accepted and p = 1 is equivalent to positive convergence. A small p indicates the preference
is close to extinction and p = 0 is equivalent to negative convergence. If we expect a positive
convergence, then a positive interaction is never harmful while a negative interaction never helps,
and vice versa for negative convergence.

Unfortunately, rigorous and comprehensive analysis of large-r case turns out to be rather diffi-
cult. This is not surprising given that even the proof for the three-state binary signaling consensus
is already very lengthy. The increase of degrees of freedom with large r leads to high dimension-
ality of the configuration space and makes the process more unpredictable. One path of p could
correspond to a large number of possible hidden configuration sequences, which does not permit
us to generalize the potential functions in Section 3 to large-r case. In addition, the fact that
the corresponding systems of differential equations do not have closed-form solutions (even for the
r = 2 case) rules out arguments based on techniques involving reduction to a continuous process in
the limit. In fact we will see later an essential difference between the r = 2 case and the r > 2 case.
In the r = 2 case p is always increasing or always decreasing in the limit, but the curve of p in the
r > 2 case doesn’t have this nice property and is more unpredictable. This intrinsic difference is
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one indication of that we should expect more difficulties in analyzing the large-r case.

4.1 Continuous-time binary signaling consensus

When the gap between the discrete time steps in the model goes to zero in the limit, the communi-
cation process becomes continuous-time. To study this continuous process, we use the asynchronous
timing defined by Boyd et al. [BGPS06]. Each agent in the population has a clock which ticks at
the times of a Poisson process of rate r. The inter-tick times at each agent are exponentials of rate
r, independent across agents and over time. Equivalently, this corresponds to a single clock ticking
according to a Poisson process of rate nr at time tk, k ≥ 1, where {tk+1− tk} are i.i.d. exponentials
of rate nr. At time tk, an edge (i, j) is chosen uniformly at random from E and the two chosen
agents interact as defined in the protocol.

Note that the continuous process can be arbitrarily close to but never reaches complete consensus
where p = 0 or 1. A direct reason is that the derivative of p goes to 0 as the process approaches
to convergence. Therefore, instead of entire convergence, we redefine consensus for the continuous
process to be the region where min(p, 1−p) = O(1/(nr)), which is the closest point the process can
achieve to complete convergence. We say a configuration is monotone if it has x0 ≤ x1 ≤ . . . ≤ xr
with at least one < in the middle, or x0 ≥ x1 ≥ . . . ≥ xr with at least one > in the middle. The
set of all monotone configuration is called the monotone region. In this subsection we will show
the fast convergence to consensus of the continuous process inside the monotone region.

Theorem 2. If the initial configuration is monotone, then the continuous binary signaling process
will reach consensus within O(r log nr) time.

The proof starts with derivation of the corresponding ODE system of the process, which can
be inferred by taking the limit of the expectation of the configuration vector. This ODE system
provides a mathematical formula of the vector field in the configuration space. We show that
the vector field anywhere at the boundary of the monotone region always points inwards into the
monotone region, which means the process stays in the monotone region and never leaves. We
divide the monotone region into two sub-areas A+, the region where x0 ≤ x1 ≤ . . . ≤ xr with at
least one < in the middle, and A−, the region where x0 ≥ x1 ≥ . . . ≥ xr with at least one > in the
middle. The ODE system also gives us the differential equation for p, from which we prove that
p is always increasing in A+ and is always decreasing in A−. It suffices to show the convergence
bound for A+, as it holds for A− symmetrically.

The above two facts already tell us that once the process enters A+, p will keep increasing until
convergence. What we need is a positive lower bound for the derivative of p that will lead to the
desired convergence time. We need to take care of two cases where dp/dt is very small. The first
case is when the process is almost at convergence and p is very close to 1. The other is when the
configuration vector is almost uniform and p is very close to 1/2. To do so, we divide the path of
p from 1/2 + 1/(nr) to 1− 1/(nr) into two corresponding stages: from 2/3 to 1− 1/(nr) and from
1/2 + 1/(nr) to 2/3. We show the time for the former stage is O(log nr) and the time for the latter
is O(r log nr). All technical details are deferred to Appendix B.

We have bounded the convergence time for the monotone region. To achieve a complete bound
for the whole configuration space, we need either a convergence bound for the non-monotone region
separately if the process can stay in the non-monotone region, or to bound the time until the
process enters the monotone region and show this always happens. Empirical results presented
in Section 5 suggest that the process will eventually enter the monotone region regardless of the
initial configuration and that the time needed for this to happen is short (see Conjecture 4), which
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indicates bounding the convergence time in the monotone region will be essential to the general
bound for the entire configuration space. This is why the monotone case is interesting to us.

When the resistance r = 2 or r = O(1), the convergence time is O(log n) and the rate of the
clock is Θ(n), so the total number of ticks of the clock is O(n log n), which matches our result for
three-state binary signaling consensus in Section 3.

The analysis of the continuous process above gives us the following lemma (see Appendix B for
a formal proof).

Lemma 1. When r = 2, p is always increasing when p > 1/2 and is always decreasing when
p < 1/2. This doesn’t hold for any r > 2.

Therefore, when r = 2 the probability of positive interaction p is always pushed towards con-
vergence in the correct direction, but in the r > 2 case the change of p is more unpredictable. This
shows an intrinsic difference between the r = 2 case and the r > 2 case.

4.2 A convergence lower bound

Although convergence upper bounds are our primary interest in the population protocol for binary
signaling consensus, in this subsection we study the general protocol in another direction and
prove a convergence lower bound on the number of interactions. Recall that for the three-state
population protocol, the convergence lower bound Ω(n log n) is an immediate result from the well-
known coupon collector’s bound, because when the initial configuration is cl(i) = 1 for all i ∈ V ,
every agent must participate in at least one interaction in order to achieve consensus. Likewise,
to bound the number of interactions for the r > 2 case, we consider a generalized version of the
coupon collector problem. An r-coupon collector is where instead of collecting at least one copy
for each type of coupon, we need to keep drawing coupons until we have collected at least r copies
for each type of coupon. The number of steps an (r/2)-coupon collector takes gives a convergence
lower bound for the general binary signaling consensus process, as every agent must participate
in at least r/2 interactions before convergence, when the initial configuration of the population is
xr/2=1 and xi = 0 for all i 6= r/2.

Another important reason for us to study the r-coupon collector problem here is the inspiration
from the three-state population protocol that the convergence bound of the binary signaling con-
sensus process is exactly the tight bound of coupon collector. This fact leads to our conjecture that
this connection also holds for r > 2 (see Conjecture 2 in Section 5). To the best of our knowledge,
there exists no direct result for this generalized coupon collector problem so we prove the bound
here. Since we are only interested in the magnitude, we will consider an r-coupon collector instead
of an (r/2)-coupon collector, for algebraic convenience.

Theorem 3. An r-coupon collector needs Θ(nr + n log n) steps with high probability.

To prove this bound, we consider the equivalent balls-in-bins problem: if we keep throwing balls
uniformly at random into n bins, how many balls do we need to throw such that every bin has
at least r balls with high probability? Let N be the answer to this question. The proof is easy
for r = O(1), by doing at most r rounds of classic coupon collector to fill the bins. For r = ω(1),
the proof is done by using Poisson approximation. Let Y be the minimum load among the n
bins, which is the minimum among n i.i.d. Poisson random variables with mean N/n in Poisson
approximation. We show case by case, depending on the magnitude of r, that we can always
find an N0 = Θ(nr + n log n) such that P(Y < r) goes to zero after throwing N0 balls. Because
P(Y < r) is monotonically decreasing in N , all N ≥ N0 have P(Y < r) → 0. Therefore, we have
N ≤ N0 = O(nr + n log n). A detailed proof is presented in Appendix C.
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An intuitive interpretation of this bound is that we throw the first Θ(nr) balls to have all the
bins almost full, and after that the last stage is to wait for these almost-full bins to be eventually
full, which is a classic coupon collector. The r-coupon collector gives a convergence lower bound
for the binary signaling consensus process.

Corollary 1. With high probability, a binary signaling consensus process needs Ω(nr + n log n)
interactions to converge.

5 Empirical Results and Conjectures

To support our theoretical results, in this section we present a series of empirical results, based
on which we propose several conjectures for different aspects of the binary signaling consensus
process. To be more robust against fluctuation from randomness, each test was run for ten times
and the medians were taken. The simulation of the discrete model strictly follows the description
in Section 2 using discrete time steps, and the continuous-time process is simulated according to
the corresponding system of differential equations derived in Section 4.1 using the Runge-Kutta
method. All figures for this section are presented in Appendix D.

The experiments start from verifying the fast convergence result for three-state binary signaling
consensus process. In Section 3, we have proved that with high probability a population with
fixed resistance r = 2 will reach consensus within Θ(n log n) interactions. We study two groups of
experiments with different initial configurations. Group 1 is a society starting with everyone in the
intermediate state. Group 2 is a society with initial balanced configuration where half of population
supports the preference with full confidence while the other half is in the opposite state. These are
two worst cases that are expected to have the longest convergence time and are ideal for examining
convergence upper bound. We fix the resistance r as 2 and vary the number of agents n. The
results are plotted in Figure 1 with the curves of convergence time (i.e., the number of interactions
in discrete protocol) of the two groups respectively. These two curves indicate the population in
group 2 converges slightly slower than the one in group 1. To verify the order of the convergence
time and estimate the concrete constant, we divide the number of interactions by n log n and also
show this quotient on the plot. From the results we can see this quotient is stable around 5. This
is supportive evidence of our theoretical results on the order of convergence rate. However, the
constant we provided in Theorem 1 seems too large, as the experiments suggest this constant be 5,
or conservatively speaking, smaller than 10, which leads to our first conjecture.

Conjecture 1. With high probability, the number of interactions for a population with resistance
2 to reach consensus is at most 10 · n log n for all sufficiently large n.

This means there is still lots of space to improve our constants in Theorem 1.
What interests us more is the large-r case, for the questions we are not able to answer the-

oretically. We have noticed that the convergence bound Θ(n log n) of the three-state population
protocol for binary signaling consensus is exactly the tight bound of the coupon collector problem.
This inspires us that the tight bound of the r-coupon collector might also indicate (or at least
approximate) the convergence bound of large-r binary signaling consensus. In Section 4.2 we have
shown Θ(nr+n log n) is a tight bound for the r-coupon collector process. Thus it is reasonable for
us to conjecture Θ(nr + n log n) as the convergence bound in the large-r case.

Conjecture 2. With high probability, the number of interactions for a population with resistance
r to reach consensus in the worst case is Θ(nr + n log n).

10



We seek empirical evidence to support this conjecture. Since the bound Θ(nr+n log n) involves
both r and n, we conduct two sets of experiments with fixed r (shown in Figure 2) and with fixed n
(shown in Figure 3) respectively. With fixed r and varying n, we expect the number of interactions
to increase in the order of Θ(n log n). In fact the experiments we presented above for the three-
state protocol can serve as the supportive fixed-r experiments needed here. Nevertheless, given the
intrinsic difference between the r = 2 case and the r > 2 case discussed in Section 4.1, we found it
more persuasive to choose a larger value of r. In Figure 2, we fix the resistance r as 50 and vary
the population n. The four curves are plotted as in the previous experiments with r = 2 and have
similar shapes. The population protocol converges obviously slower with r = 50 than with r = 2.
As expected, the constant is also larger with larger fixed r. For group 1 the quotient is stable
around 28 and for group 2 it is around 33. The process in group 2 is still slower to converge than
the one in group 1 but the difference is now more apparent. Hence, the behaviors of the curves
match what our conjecture predicts. Figure 3 shows the curves of convergence time when we fix
the population n as 1000 and vary the resistance r. The same four curves are plotted and the only
difference is now we divide the number of interactions by r, as we expect the convergence time to
be Θ(r) with fixed n. Group 1 is still faster than group 2 in the sense of convergence rate and also
with smaller constant, which is stable around 5000 while the constant of group 2 is about 8200.
These large constants are not surprising since all the values of n and r we choose for this set are
quite large. Again these results agree with the prediction of our conjecture.

In Section 4.1 we studied the continuous-time process in the limit with infinitesimal time step
and showed that the convergence time is O(r log nr) if it starts from a monotone initial config-
uration. However, the behavior of the process outside the monotone region is still uncertain.
Fortunately, empirical simulation suggests the process will enter the monotone region fast enough
and then go to convergence rapidly. To simulate the continuous-time binary signaling consensus
process, we follow the corresponding system of differential equations derived in Section 4.1 using
the Runge-Kutta method. As this is a numerical method, we are unable to have n equal to infinity
with infinitesimal time step. To approximate the process well, we choose a large value of n and let
n = 100000. In order to show the process will eventually enter the monotone region with any initial
configuration, we conduct more groups of simulations with different types of initial configuration.
Figure 4 demonstrates the experimental results in the form of a bar chart to compare the time in
the non-monotone region and the time in the monotone region. The initial setup of each group is
as follows.

Group 1: 40% of the population at confidence level 0 and 60% at confidence level r;
Group 2: 1/2 − 1/(nr) of the population at confidence level 0 and 1/2 + 1/(nr) at confidence

level r;
Group 3: 0.1% of the population at confidence level 0 and 99.9% at confidence level r;
Group 4: 50% of the population at confidence level 1 and 50% at confidence level r;
Group 5: 40% of the population at confidence level 1 and 60% at confidence level r.
The first group is designed for the majority computation scenario. Group 2 and group 3 are to

show the process will enter the monotone region first before convergence regardless of whether the
population is almost balanced (group 2) or almost converged (group 3). As expected, group 2 is
the slowest to converge while group 3 is the fastest. Group 4 and group 5 are designed to witness
the drop of p in the p > 1/2 region, which is an essential difference between the r = 2 case and the
r > 2 case (Lemma 1). From these results we propose the following conjecture.

Conjecture 3. A continuous-time binary signaling process will enter the monotone region before
convergence starting from any initial configuration.

The bar chart also suggests the time needed to enter the monotone region doesn’t dominate
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the whole process, although it is still considerable in some special cases such as group 2. Thus it
is reasonable to conjecture that the total convergence time is of the same order as the convergence
time inside the monotone region we presented in Theorem 2.

Conjecture 4. A continuous-time binary signaling process reaches consensus within O(r log nr)
time.

6 Conclusion and Future Work

We study here the process of binary signaling consensus. To capture this process, we describe and
analyze a simple population protocol for binary signaling consensus. We present a tight convergence
bound Θ(n log n) with concrete constants for the three-state binary signaling consensus process
where the resistance parameter r is 2. Even though this protocol appears to be quite simple, it
turns out to be very hard to analyze. When the resistance r is large, we show the continuous-
time binary signaling process in the limit will reach consensus within O(r log nr) time if the initial
configuration is monotone. We show that the binary signaling consensus process needs at least
Ω(nr + n log n) interactions to converge with high probability. To support our theoretical results,
we have done a series of experiments, based on which we also propose several conjectures for the
convergence properties of the process.

One open question is to prove or disprove the conjectures we propose in this paper, especially
those for the large-r case. A potential way to study the large-r case is to generalize the proof
idea for the three-state protocol, which divides the configuration space into several regions and
constructs a well-bounded supermartingale process for each region using carefully chosen potential
functions. The high dimensionality of the configuration space would be one of the trickiest parts in
the analysis. Another direction of future work is to study a more general model of binary signaling
consensus where, for example, the interaction graph is not necessarily complete, or different agents
in the population could have different resistance values. We are also interested in multi-valued
consensus under this binary signaling setting, where there is more than one preference spreading
among the society which are not independent. Last but not least, there are possibilities that this
model can be generalized and applied to other real-world problems, as discussed in Section 1. We
believe this work will not only interest the distributed computing community, but also make a
contribution to other related fields such as evolutionary linguistics, epidemiology and biology.
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Appendix A Proof of Theorem 1

In this section we present a formal proof of the O(n log n) convergence bound on the three-state
binary signaling consensus process.

Theorem 1 (in the main paper) With probability 1 − o(1), τ∗ = Θ(n log n) in the worst
case. In addition, for any constant c > 0 we have

P (τ∗ ≥ 96930(c+ 1)n log n) ≤ max

(
9n−c,

c log n
3
√
n

)

The convergence lower bound τ∗ = Ω(n log n) can be easily obtained from the well-known coupon
collector bound. When the initial configuration is cl(i) being 1 for all i ∈ V , in order to achieve
consensus, every agent must participate in at least one interaction, leading to the coupon collector
lower bound.

Lemma 2. With probability 1− o(1), τ∗ = Ω(n log n) in the worst case.

However, the upper bound τ∗ = O(n log n) requires a substantial amount of work.

A.1 Bounding Sscτ = O(n log n)

In this subsection we show the number of state-changing interactions Sscτ is at most O(n log n)
with high probability. In the three-state model, every state-changing interaction must increase or
decrease the value of g by 1. Hence, we have Sscτ = Sg+τ + Sg−τ with the following upper bounds.

Lemma 3. With probability 1 − o(1), Sscτ = O(n log n). In addition, for any constant c > 0 we
have

P (Sscτ ≥ 372.72(c+ 1)n log n) ≤ max

(
5n−c,

c log n
3
√
n

)
P
(
Sg+τ ≥ 186.36(c+ 1)n log n

)
≤ max

(
4n−c,

c log n
3
√
n

)
and

P
(
Sg−τ ≥ 186.36(c+ 1)n log n

)
≤ max

(
4n−c,

c log n
3
√
n

)
The proof of Lemma 3 is done case by case. First we show that if the process starts from some

point in the region {g ≤ min(b, w)/4}, then within O(n log n) state-changing interactions, it will
either converge or leave the region (Lemma 5). If the former happens then we are done. Otherwise,
we have g > min(b, w)/4 and we prove that within the next O(n log n) state-changing interactions,
either the process will never enter the region {g < min(b, w)/10} again, or it will enter the region
{min(b, w) = O(log n)

∧
g = O(log n)} (Lemma 6 and Corollary 2). In the first case, we show the

population protocol will converge within the next O(n log n) state-changing interactions (Lemma
7). In the latter case, we show the protocol will converge within the next O(n) state-changing
interactions (Lemma 8).

The essential idea of our proof is to construct a family of supermartingales for different regions
in the configuration space by carefully selecting a series of corresponding potential functions. The
following lemma is a general statement of this proof technique.
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Lemma 4. Let f be a potential function and A be a region in the configuration space. If in region
A, E(∆f/f | I1) ≤ −k1/n and E(∆f/f | I2) ≤ k2/n where k1 and k2 are two constants such
that k1 > k2 > 0, and I1 and I2 are two binary indicators such that I1

t · I2
t ≡ 0 at any number of

interactions t, then the stochastic process {Mt} given by

Mt = exp

(
c1S

1
t − c2S

2
t

n

)
· ft

is a supermartingale in region A, where S1
t =

∑t
i=1 I

1
t and S2

t =
∑t

i=1 I
2
t , and c1, c2 are two

constants such that k1 > c1 > c2 > k2 > 0.
In addition, given f0/ft ≤ nc3 for some positive constant c3 > 0 at any number of interactions

t, if the process never leaves region A, we have

P
(
c1S

1
τ ≥ c2S

2
τ + (c3 + c4)n log n

)
≤ n−c4

for any positive constant c4 > 0.

Proof Given

E
(

∆f

f
| I1

)
= E

(
ft+1 − ft

ft
| I1
t+1

)
≤ −k1

n

and

E
(

∆f

f
| I2

)
= E

(
ft+1 − ft

ft
| I2
t+1

)
≤ k2

n

we have

E
(
ft+1 | I1

t+1

)
≤
(

1− k1

n

)
· ft ≤ exp

{
−c1

n

}
· ft

and

E
(
ft+1 | I2

t+1

)
≤
(

1 +
k2

n

)
· ft ≤ exp

{c2

n

}
· ft

Boosting the constants from −k1 to −c1 and from k2 to c2 is to absorb the second-order and higher
terms in the Taylor series expansion of the exponential.

The expected value of Mt+1 in each case is as follows.

E
(
Mt+1 | I1

t+1 + I2
t+1 = 0

)
= Mt

E
(
Mt+1 | I1

t+1

)
=E

(
exp

(
c1(S1

t + 1)− c2S
2
t

n

)
· ft+1 | I1

t+1

)
=E

(
Mt · ft+1 · exp(c1/n)

ft
| I1
t+1

)
= exp

{c1

n

}
· E
(
ft+1 | I1

t+1

)
· Mt

ft

≤Mt

E
(
Mt+1 | I2

t+1

)
=E

(
exp

(
c1S

1
t − c2(S2

t + 1)

n

)
· ft+1 | I2

t+1

)
=E

(
Mt · ft+1 · exp(−c2/n)

ft
| I2
t+1

)
= exp

{
−c2

n

}
· E
(
ft+1 | I2

t+1

)
· Mt

ft

≤Mt
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In any case we always have E (Mt+1) ≤Mt so the stochastic process {Mt} is a supermartingale
in region A. If the process never leaves region A, we have E(Mτ ) ≤M0 = f0. Given f0/ft ≤ nc3 at
any number of interactions t (including the stopping time t = τ), we have

E(Mτ ) = E
(

exp

(
c1S

1
τ − c2S

2
τ

n

)
· fτ
)
≤M0 = f0

and

E
(

exp

(
c1S

1
τ − c2S

2
τ

n

))
≤ nc3

From Markov’s inequality,

P
(

exp

(
c1S

1
τ − c2S

2
τ

n

)
≥ nc3+c4

)
≤ n−c4

for any positive constant c4 > 0 and then

P
(
c1S

1
τ − c2S

2
τ ≥ (c3 + c4)n log n

)
≤ n−c4

which completes the proof. �

Lemma 4 presents the proof technique we use throughout this section. When using this tech-
nique, we have either S2

τ is already well bounded (Lemma 9, Lemma 10, Lemma 11 and Lemma 12),
or there exists some auxiliary inequality relationship between S1

τ and S2
τ (Lemma 5 and Lemma 7).

Lemma 5. If the binary signaling consensus process starts with g ≤ min(b, w)/4, then for any
constant c > 0, with probability 1−n−c one of the following two events will happen within Oc(n log n)
state-changing interactions:

1. g > min(b, w)/4.

2. The process converges and

P
(
Sg−τ ≥ 1000

7

(
n log

(
2

5
n+ 1

)
+ cn log n

)
+

392

7
n

)
≤ n−c

and

P
(
Sg+τ ≥ 1000

7

(
n log

(
2

5
n+ 1

)
+ cn log n

)
+

399

7
n

)
≤ n−c

Proof We can prove this fact by showing that if event 1 doesn’t happen, then event 2 will
surely happen. That is, if we always have g ≤ min(b, w)/4 and never have g > min(b, w)/4, then
with probability 1 − o(1) the process converges after O(n log n) state-changing interactions. For
notational convenience, let value f = u2 + 5n/2 so the potential function is 1/f . We have

∆f =(u+ ∆u)2 + 5n/2− u2 − 5n/2

=u2 + 2u∆u+ (∆u)2 − u2

=2u(∆u) + (∆u)2

Because |∆u| ≤ 1 and |∆f | ≤ 2|u|+1, we have |∆f/f | ≤ (2|u|+1)/(u2+5n/2) = O(min(1/|u|, 2|u|/5n)),
which is maximized at u = Θ(

√
n) so that |∆f/f | = O(1/

√
n).
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Let Ibw be the indicator of the event that neither of the two agents in a state-changing interaction
is in state gray. Let Igv be the indicator of the event that the speaker in a state-changing interaction
is in gray and the listener is in black or white. Denote by p = b̃+ g̃/2 and by M = 2bw+ 1

2gv. The
expected change of value f conditioned on each case of state-changing interactions is as follows.

E
(
∆f | Ig−

)
=p(2u+ 1) + (1− p)(−2u+ 1)

=1 + (2p− 1) · 2u

=1 + 2u · 2b+ g − n
n

=1 +
2u2

n

E
(

∆f | Ibw
)

=
1

2
(2u+ 1) +

1

2
(−2u+ 1) = 1

E (∆f | Igv) =(2u+ 1)
w

v
+ (−2u+ 1)

b

v

=1 + 2u · w − b
v

=1− 2u2

v

E
(
∆f | Ig+

)
=

2bw

M
+

gv

2M

(
1− 2u2

v

)
= 1− gu2

M

E
(

(∆f)2 | Ig−
)

=p(2u+ 1)2 + (1− p)(−2u+ 1)2

=p(4u2 + 4u+ 1) + (1− p)(4u2 − 4u+ 1)

=4u2 + 1 + (2p− 1) · 4u

=4u2 + 1 + 4u · 2b+ g − n
n

=4u2 + 1 +
4u2

n

E
(

(∆f)2 | Ibw
)

=
1

2
(2u+ 1)2 +

1

2
(−2u+ 1)2 = 4u2 + 1

E
(

(∆f)2 | Igv
)

=
w

v
(2u+ 1)2 +

b

v
(−2u+ 1)2

=
w

v
(4u2 + 4u+ 1) +

b

v
(4u2 − 4u+ 1)

=4u2 + 1 +
w − b
v
· 4u

=4u2 + 1− 4u2

v
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E
(

(∆f)2 | Ig+
)

=
2bw

M
(4u2 + 1) +

gv

2M

(
4u2 + 1− 4u2

v

)
=4u2 + 1− 2gu2

M

When g ≤ min(b, w)/4, we have

M =2bw +
1

2
gv

=2 min(b, w) ·max(b, w) +
1

2
g · (min(b, w) + max(b, w))

≥g ·
(

17

2
max(b, w) +

1

2
min(b, w)

)
As 4g = 4(n−min(b, w)−max(b, w)) ≤ min(b, w) ≤ max(b, w), we know

4

5
(n−max(b, w)) ≤ min(b, w) ≤ max(b, w)

Note that function 17
2 x + 1

2y given 4
5(1 − x) ≤ y ≤ x and y ≥ 0 and x ≤ 1 is at least 4. Thus

we have M ≥ 4gn. Let z = u2/n.

E
(

∆(1/f)

1/f
| Ig−

)
=E

(
−∆f

f
+

(
∆f

f

)2

+O(n−3/2) | Ig−
)

=− 1 + 2u2/n

u2 + 5n/2
+

4u2 + 1 + 4u2/n

(u2 + 5n/2)2
+O(n−3/2)

=
(
u2 + 5n/2

)−2 ·
(
−(1 + 2u2/n)(u2 + 5n/2) + 4u2 + 1 + 4u2/n

)
+O(n−3/2)

=

(
u2 +

5n

2

)−2(
−u2 − 5n

2
− 2u2

n

(
u2 +

5n

2

)
+ 4u2 + 1 +

4u2

n

)
+O(n−3/2)

=

(
u2 +

5n

2

)−2(
3u2 − 5n

2
+ 1 +

(
−u2 − 5n

2
+ 2

)
· 2u2

n

)
+O(n−3/2)

=n−2(z + 5/2)−2(3zn− 5n/2 + 1 + 2z(−zn− 5n/2 + 2)) +O(n−3/2)

=n−2(z + 5/2)−2((3z − 5/2)n+ 1− 2z(z + 5/2)n+ 4z) +O(n−3/2)

=
1

n
· −2z2 + (3− 5)z − 5/2

(z + 5/2)2
+

1

n2
· 1 + 4z

(z + 5/2)2
+O(n−3/2)

where the first equality is due to ∆(1/f)
1/f =

∑+∞
i=1 (−∆f/f)i for |∆f/f | < 1. Note that function

−2x2−2x−5/2
(x+5/2)2

given x ≥ 0 is at most −2/5 and function 1+4x
(x+5/2)2

given x ≥ 0 is at most 4/9. Thus

we have

E
(

∆(1/f)

1/f
| Ig−

)
≤ −2

5
n−1 +

4

9
n−2 +O(n−3/2) = −2

5
n−1 +O(n−3/2)
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In the other case when Ig+ = 1, we have

E
(

∆(1/f)

1/f
| Ig+

)
=E

(
−∆f

f
+

(
∆f

f

)2

+O(n−3/2) | Ig+
)

=− 1− gu2/M

u2 + 5n/2
+

4u2 + 1− 2gu2/M

(u2 + 5n/2)2
+O(n−3/2)

=
(
u2 + 5n/2

)−2 ·
(
−(1− gu2/M)(u2 + 5n/2) + 4u2 + 1− 2gu2/M

)
+O(n−3/2)

=

(
u2 +

5n

2

)−2(
−u2 − 5n

2
+
gu2

M

(
u2 +

5n

2

)
+ 4u2 + 1− 2gu2

M

)
+O(n−3/2)

=

(
u2 +

5n

2

)−2(
3u2 − 5n

2
+ 1 +

(
u2 +

5n

2
− 2

)
· gu

2

M

)
+O(n−3/2)

≤
(
u2 +

5n

2

)−2(
3u2 − 5n

2
+ 1 +

(
u2 +

5n

2
− 2

)
· u

2

4n

)
+O(n−3/2)

=n−2(z + 5/2)−2(3zn− 5n/2 + 1 + z(zn+ 5n/2− 2)/4) +O(n−3/2)

=n−2(z + 5/2)−2((3z − 5/2)n+ 1 + z(z + 5/2)n/4− z/2) +O(n−3/2)

=
1

n
· z

2/4 + (3 + 5/8)z − 5/2

(z + 5/2)2
+

1

n2
· 1− z/2

(z + 5/2)2
+O(n−3/2)

Note that function x2/4+29x/8−5/2
(x+5/2)2

given x ≥ 0 is at most 1001/2560 and function 1−x/2
(x+5/2)2

given

x ≥ 0 is at most 4/25. Thus we have

E
(

∆(1/f)

1/f
| Ig+

)
≤ 1001

2560
n−1 +

4

25
n−2 +O(n−3/2) =

1001

2560
n−1 +O(n−3/2)

According to Lemma 4, we can see the stochastic process {Lt} given by

Lt =
exp
(

(0.399Sg−t − 0.392Sg+t )/n
)

u2
t + 5n/2

is a supermartingale if we always have g ≤ min(b, w)/4. Because u2 + 5n/2 ≤ n2 + 5n/2,

E

(
exp

(
0.399Sg−τ − 0.392Sg+τ

n

))
≤ 2(n2 + 5n/2)

5n
=

2n

5
+ 1

and then
P
(
0.399Sg−τ − 0.392Sg+τ ≥ n log(2n/5 + 1) + cn log n

)
≤ n−c

Because at any number of interactions t, the number of gray tokens the process has produced can’t
be more than the number of gray tokens the process has consumed plus n, we have Sg+τ ≤ Sg−τ +n,
giving the bound

P
(
0.399Sg−τ − 0.392(Sg−τ + n) ≥ n log(2n/5 + 1) + cn log n

)
≤ n−c

and

P
(
Sg−τ ≥ 1000

7

(
n log

(
2

5
n+ 1

)
+ cn log n

)
+

392

7
n

)
≤ n−c
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interaction b w g g − w
(b,+, w) −1 +1 +2

(w,−, b) −1 +1 +1

(b,+, g) +1 −1 −1

(w,−, g) +1 −1 −2

(g,+, g) +1 −1 −1

(g,−, g) +1 −1 −2

(g,+, w) −1 +1 +2

(g,−, b) −1 +1 +1

Table 2: Changes in (g − w) by state-changing interactions

which implies

P
(
Sg+τ ≥ 1000

7

(
n log

(
2

5
n+ 1

)
+ cn log n

)
+

399

7
n

)
≤ n−c

which completes the proof. �

Now we have shown that if the population starts from the region {g ≤ min(b, w)/4}, within
O(n log n) state-changing steps, it will either reach consensus or leave the region with high prob-
ability. While once the process leaves the region and has g > min(b, w)/4, we prove that within
the next O(n log n) state-changing interactions, either the population will never enter the region
{g < min(b, w)/10}, or it will enter the region {min(b, w) = O(log n)

∧
g = O(log n)} (Lemma 6

and Corollary 2).

Lemma 6. If the process starts with g > min(b, w)/4, then with probability 1 − n−ω(1), for any
polynomial T = poly(n), we have either gt ≥ min(bt, wt)/10 holds for all 1 ≤ t ≤ T or at some stage
1 ≤ t ≤ T , the process reaches min(b, w) = O(log n), g = O(log n) and max(b, w) = n−O(log n).

Proof Again we can show this fact by showing that if latter event doesn’t happen, former event
will happen. Let’s consider how the value of (g − min(b, w)) changes in different state-changing
interactions. Without loss of generality, assume that at the current time step max(b, w) = b and
min(b, w) = w. Let N = ng + 2bw + 1

2gv. Table 2 lists all the cases.
Thus

P(∆(g − w) = +1 | Isc) =

(
bw +

1

2
gb

)
/N =

n2

N
(1− g̃ − w̃)

(
w̃ +

1

2
g̃

)

P(∆(g − w) = −1 | Isc) =

(
bg +

1

2
g2

)
/N

=
n2

N

(
(1− w̃ − g̃)g̃ +

1

2
g̃2

)
=
n2

N

(
(1− w̃)g̃ − 1

2
g̃2

)
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P(∆(g − w) = +2 | Isc) =

(
bw +

1

2
gw

)
/N

=
n2

N

(
w̃

(
1− g̃ − w̃ +

1

2
g̃

))
=
n2

N

(
w̃

(
1− w̃ − 1

2
g̃

))

P(∆(g − w) = −2 | Isc) =
n2

N

(
w̃g̃ +

1

2
g̃2

)
Note that if the process enters the region {g < min(b, w)/10} from the initial region {g >

min(b, w)/4}, it must pass through the region {min(b, w)/10 ≤ g ≤ min(b, w)/4}. We show that
even passing through this intermediate region already requires strictly more than a polynomial
number of state-changing interactions, let alone the whole fleeing path.

Note that function (1−x−y)(x+y/2)
(1−x)y−y2/2 conditioned on 0 ≤ x ≤ (1 − y)/2 and x/10 ≤ y ≤ x/4 is

always ≥ 4. Also, function x(1−x−y/2)
xy+y2/2

conditioned on 0 ≤ x ≤ (1 − y)/2 and x/10 ≤ y ≤ x/4 is

always ≥ 4. Thus when w/10 ≤ g ≤ w/4, we always have

P(∆(g − w) = +1 | Isc)
P(∆(g − w) = −1 | Isc)

≥ 4 and
P(∆(g − w) = +2 | Isc)
P(∆(g − w) = −2 | Isc)

≥ 4

The value of (g − w) never stays put with Isc = 1.
When min(b, w) = ω(log n), the length of this gap min(b, w)/4−min(b, w)/10 = 3 min(b, w)/20

is also ω(log n). Let length ` = ω(log n). Consider the following one-dimensional random walk on
integers from 0 to `. State 0 is a reflecting barrier always pushing the walk back to state 1. At any
state 1 ≤ i ≤ `− 1, the forward probability is 1/5 and the backward probability is 4/5. The walk
starts at state 1 and we are interested in the first hitting time of state `.

The number of steps until this random walk first hits state ` provides an upper bound on the
number of interactions needed by the process to flee from the region {g > min(b, w)/4} and enter
the region {g < min(b, w)/10}, conditioned on the event that min(b, w) = ω(log n) always holds.
Now we show it needs strictly more than a polynomial number of steps with high probability.

Note that every time that the walk hits state 0, the reflecting barrier “resets” it to state 1.
Everything the walk does between two consecutive “resets” can be viewed as a Bernoulli trial. And
we shall show with probability 1−o(1), this Bernoulli process needs strictly more than polynomially
many trials to succeed. Here for each trial, hitting 0 before hitting ` is a failure and otherwise it
succeeds.

Denote by βi = P(hitting state 0 before hitting state ` | starting at state i). Then β0 = 1 and
β` = 0. The probability of failure is β1.

For any 1 ≤ i ≤ `− 1, βi = βi+1/5 + 4βi−1/5. Define

∆βi =βi − βi+1

=βi −
1

5
βi+2 −

4

5
βi

=
1

5
(βi − βi+2)

=
1

5
(βi − βi+1 + βi+1 − βi+2)

=
1

5
∆βi +

1

5
∆βi+1
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which implies 4
5∆βi = 1

5∆βi+1 or ∆βi+1 = 4∆βi. Thus ∆βi = 4i∆β0 = 4i(1− β1).
Note that

`−1∑
i=0

∆βi = β0 − β1 + β1 − β2 + . . .+ β`−1 − β` = β0 − β` = 1

Then
`−1∑
i=0

∆βi = (1− β1)
`−1∑
i=0

4i = (1− β1) · 4` − 1

3
= 1

Therefore, (1− β1)(4` − 1) = 3 and β1 = 1− 3/(4` − 1).
Let c be any arbitrarily large constant. The probability that all the first nc trials fail is

βn
c

1 =

(
1− 3

4` − 1

)nc

=

(
1− 1

nω(1)

)nc

= exp
(
−nc−ω(1)

)
∼ 1− nc−ω(1)

The probability goes to 1 in order nω(1)−c. Thus with probability 1− O(n−ω(1)) the random walk
won’t hit state ` within a polynomial number of steps.

Therefore, we can have g < min(b, w)/10 only when min(b, w) = O(log n) happens. In this case
g < min(b, w)/10 = O(log n) too so the other event happens. �

Because in this problem we are only interested in the next O(n log n) state-changing interactions,
we have

Corollary 2. If the process starts with g > min(b, w)/4, then with probability 1 − n−ω(1), for any
T = O(n log n), we have either gt ≥ min(bt, wt)/10 holds for all 1 ≤ t ≤ T or at some stage
1 ≤ t ≤ T , the process reaches min(b, w) = O(log n), g = O(log n) and max(b, w) = n−O(log n).

Next we will show the process also converges fast within the region {g ≥ min(b, w) · 1/10}.

Lemma 7. If g ≥ min(b, w)/10 holds for a polynomial number of state-changing interactions, then
for any constant c > 0, with probability 1 − n−c, after Oc(n log n) state-changing interactions, the
process will converge and we have

P
(
Sscτ ≥ 87n log

(
1

64
n+ 1

)
+ 87cn log n

)
≤ n−c

P
(
Sg+τ ≥ 87

2
n log

(
1

64
n+ 1

)
+

87

2
cn log n+

1

2
n

)
≤ n−c

and

P
(
Sg−τ ≥ 87

2
n log

(
1

64
n+ 1

)
+

87

2
cn log n+

1

2
n

)
≤ n−c

Proof In this proof we use the potential function 1/(u2 + 64n) and denote by f = u2 + 64n.
Similarly we have ∆f = 2u(∆u)+(∆u)2 and |∆f/f | = O(1/

√
n). Recall that N = ng+2bw+ 1

2gv.
We have

E (∆f | Isc) =
ng

N

(
1 +

2u2

n

)
+

2bw

N
+
gv

2N

(
1− 2u2

v

)
=1 + 2u2 ·

(
ng

N
· 1

n
− gv

2N
· 1

v

)
=1 +

gu2

N
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E
(

(∆f)2 | Isc
)

=
ng

N

(
4u2 + 1 +

4u2

n

)
+

2bw

N
(4u2 + 1) +

gv

2N

(
4u2 + 1− 4u2

v

)
=4u2 + 1 + 4u2

(
ng

N
· 1

n
− gv

2N
· 1

v

)
=4u2 + 1 +

2gu2

N

When g ≥ min(b, w)/10, we have bw = min(b, w) · max(b, w) ≤ min(b, w) · n ≤ 10bn and N =
ng + 2bw + gv/2 ≤ gn+ 20gn+ gn/2 = 43gn/2. Again let z = u2/n. We have

E
(

∆(1/f)

1/f
| Isc

)
=E

(
−∆f

f
+

(
∆f

f

)2

+O(n−3/2) | Isc
)

=− 1 + gu2/N

u2 + 64n
+

4u2 + 1 + 2gu2/N

(u2 + 64n)2
+O(n−3/2)

=
(
u2 + 64n

)−2 ·
(
−(1 + gu2/N)(u2 + 64n) + 4u2 + 1 + 2gu2/N

)
+O(n−3/2)

=
(
u2 + 64n

)−2
(
−u2 − 64n− gu2

N

(
u2 + 64n

)
+ 4u2 + 1 +

2gu2

N

)
+O(n−3/2)

=
(
u2 + 64n

)−2
(

3u2 − 64n+ 1 +
(
−u2 − 64n+ 2

)
· gu

2

N

)
+O(n−3/2)

≤
(
u2 + 64n

)−2
(

3u2 − 64n+ 1 +
(
−u2 − 64n+ 2

)
· 2u2

43n

)
+O(n−3/2)

=n−2(z + 64)−2(3zn− 64n+ 1 + 2z(−zn− 64n+ 2)/43) +O(n−3/2)

=n−2(z + 64)−2((3z − 64)n+ 1− 2z(z + 64)n/43 + 4z/43) +O(n−3/2)

=
1

n
· −2z2/43 + (3− 128/43)z − 64

(z + 64)2
+

1

n2
· 1 + 4z/43

(z + 64)2
+O(n−3/2)

Note that function −2x2/43+x/43−64
(x+64)2

given x ≥ 0 is at most −22015/1893376 < −1/87 and

function 1+4x/43
(x+64)2

given x ≥ 0 is at most 4/9159. Thus from Lemma 4 we have the stochastic

process {Kt} given by

Kt =
exp(Ssct /(87n))

u2
t + 64n

is a supermartingale if we always have g ≥ min(b, w)/10. This gives us

E (exp(Sscτ /(87n))) ≤ (n2 + 64n)/(64n) = n/64 + 1

For Markov’s inequality
P (exp(Sscτ /(87n)) ≥ nc(n/64 + 1)) ≤ n−c

and
P (Sscτ /87 ≥ n log(n/64 + 1) + cn log n) ≤ n−c

P
(
Sscτ ≥ 87n log

(
1

64
n+ 1

)
+ 87cn log n

)
≤ n−c
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Since Sscτ = Sg+τ + Sg−τ , Sg+τ ≤ Sg−τ + n and Sg−τ ≤ Sg+τ + n, we have

P
(
Sg+τ ≥ 87

2
n log

(
1

64
n+ 1

)
+

87

2
cn log n+

1

2
n

)
≤ n−c

and

P
(
Sg−τ ≥ 87

2
n log

(
1

64
n+ 1

)
+

87

2
cn log n+

1

2
n

)
≤ n−c

which completes the proof. �

The only case left is when the protocol enters the region {min(b, w) = O(log n)
∧
g = O(log n)}.

Recall that p = b̃+g̃/2. Once it enters this region, we will have p = O(log n/n) or 1−p = O(log n/n).

Lemma 8. If the process starts with p = O(log n/n) or 1 − p = O(log n/n), then with probability

1−O
(

logn
3√n

)
the population will reach consensus within O(n) state-changing interactions.

Proof The proof is completed by worst-case analyses. Without loss of generality, assume
1 − p = O(log n/n) and we will show with high probability p will converge to 1 within O(n)
state-changing interactions. In this case, we have

P
(
pt+1 = pt +

1

2n
| Isc

)
=

pt(1− x̃t)
pt(1− x̃t) + (1− pt)(1− ỹt)

and

P
(
pt+1 = pt −

1

2n
| Isc

)
=

(1− pt)(1− ỹt)
pt(1− x̃t) + (1− pt)(1− ỹt)

Note that xt ≤ pt. We have

P (pt+1 = pt + 1/2n | Isc)
P (pt+1 = pt − 1/2n | Isc)

≥ pt(1− pt)
1− pt

= pt

To provide an upper bound on the moves of p in the region {1− 2 3
√
n/(2n) ≤ p ≤ 1}, consider

the following one-dimensional random walk on integers from 0 to 2 3
√
n. (Obviously each state i

corresponds to the configuration p = 1 − (2 3
√
n − i)/(2n).) State 0 is a reflecting barrier always

pushing the walk back to state 1. At any state 1 ≤ i ≤ 2 3
√
n − 1, the forward probability is

p/(p + 1) = 1−(2 3√n−i)/(2n)
2−(2 3√n−i)/(2n)

and the backward probability is 1/(p + 1) = 1
2−(2 3√n−i)/(2n)

. The walk

starts at some state k = 2 3
√
n−O(log n). Denote by ti the number of steps needed to first hit state

2 3
√
n, starting at state i. And let hi be the number times hitting state 0 before reaching state 2 3

√
n,

starting at state i. Then the total number of state-changing interactions for the process starting
from this region to entirely converge is at most hk ·O(n log n) + tk.

Though this walk is already simple, we can further simplify it to the same walk with fixed

forward probability q+ = 1−n−2/3

2−n−2/3 and backward probability q− = 1
2−n−2/3 , which also provides an

upper bound, because in the region {1 − 2 3
√
n/(2n) ≤ p ≤ 1} we always have p ≥ 1 − n−2/3. We

overload the notation ti and hi for this simpler walk. Denote by t̄i = Eti and let ∆t̄i be the expected
number of steps the walk takes from state i − 1 to state i. Then ∆t̄1 = 1 due to the reflecting
barrier at state 0. For i ≥ 2, we have

∆t̄i =1 + q+ · 0 + q− · E(number of steps from state i− 2 to state i)

=1 + q−(∆t̄i−1 + ∆t̄i)
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which implies

∆t̄i =
1

q+
+
q−
q+

∆t̄i−1

=
1

q+
+
q−
q+

(
1

q+
+
q−
q+

∆t̄i−2

)
=

1

q+
+
q−
q+

(
1

q+
+
q−
q+

(
1

q+
+
q−
q+

∆t̄i−3

))
= . . .

=
1

q+
+
q−
q2

+

+
q2
−
q3

+

+ . . .+
qi−2
−

qi−1
+

+
qi−1
−

qi−1
+

=
1

q+

(
1 +

q−
q+

+ . . .+
qi−2
−

qi−2
+

)
+

(
q−
q+

)i−1

Note that for any 0 ≤ i ≤ 2 3
√
n, we have

(
1− n−

2
3

)i
≥
(

1− n−
2
3

)2 3√n
=

((
1− n−

2
3

)n 2
3

)2n− 1
3

= exp
(
−2/ 3
√
n
)
→ 1

Thus all
(
q−
q+

)i
→ 1 for large n. Then we have ∆t̄i = 2(i−1)+1 = 2i−1. Hence, t̄k =

∑ 3√n
i=k+1 ∆t̄i =

Θ( 3
√
n log n). Markov’s inequality gives

P(tk ≥ n) ≤ t̄k
n

= Θ

(
log n

n2/3

)
Now if we can show with high probability hk = O(1) then we are done. But in fact we can do

much better: with high probability hk = 0. Denote by γi = P(hi = 0). Then for 1 ≤ i ≤ 2 3
√
n− 1,

γi = q+γi+1 + q−γi−1. Define

∆γi =γi+1 − γi
=q+γi+2 + q−γi − γi
=q+(γi+2 − γi)
=q+(γi+2 − γi+1 + γi+1 − γi)
=q+∆γi+1 + q+∆γi

which implies ∆γi+1 = q−
q+

∆γi and ∆γi =
(
q−
q+

)i
∆γ0. Note that γ2 3√n = 1 and γ0 = 0.

2 3√n−1∑
i=0

∆γi = γ1 − γ0 + γ2 − γ1 + . . .+ γ2 3√n − γ2 3√n−1 = γ2 3√n − γ0 = 1

Then
∑2 3√n−1

i=0 ∆γi = 2 3
√
n∆γ0 = 1 so ∆γ0 = 1/(2 3

√
n). And we have

γk =

k−1∑
i=0

∆γi =
k

2 3
√
n

=
2 3
√
n−O(log n)

2 3
√
n

= 1−O
(

log n
3
√
n

)
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Thus with probability 1 − O
(

logn
3√n

)
, we have hk = 0, which means with high probability, a

population starting from region {min(b, w) = O(log n)
∧
g = O(log n)} will reach consensus after

O(n) state-changing interactions without leaving this region. �

Combining all the lemmas we have so far yields Lemma 3. Note that the error bounds in

these lemmas are all at most n−c except in Lemma 8 where the error bound is O
(

logn
3√n

)
, which

dominates the other error terms (with a tiny increase in the constant) when c is large. Also note
that the constants in the O’s in Lemma 6 (“min(b, w) = O(log n) and g = O(log n)”) and Lemma
8 (“min(p, 1− p) = O(log n/n)” ) can be chosen arbitrarily. We simply make them consistent, and
choose a proper value to have the error bound c logn

3√n as claimed in Lemma 3. Eventually, we have

Lemma 3. �

A.2 Bounding Scτ = O(n log n)

In this subsection we bound the number of interactions Scτ in the central region where max(b̃, g̃, w̃) <
3/4, using the total number of state-changing interactions Sscτ .

Lemma 9. With probability 1 − o(1), Scτ = O(n log n). In addition, for any constant c > 0, we
have

P(Scτ ≥ 9Sscτ + cn log n) ≤ n−c

Proof We show that the stochastic process {Ct} given by

Ct = exp((Sct − 9Ssct )/n)

is a supermartingale. When Ict = 0, the value of Ct cannot increase so obviously E(Ct | Ft−1
∧
Ict =

0) ≤ Ct−1. When Ict = 1, i.e., max(b̃, g̃, w̃) < 3/4, at least two of w̃, b̃ and g̃ must be at least 1/8:

• If b̃ and w̃ are both ≥ 1/8, then P(Ig+ = 1) = (2bw + gv/2)/n2 ≥ 1/8, because function
2xy + (x + y)(1 − x − y)/2 given 1/8 ≤ x, y ≤ 3/4 and x + y ≤ 1 is at least 1/8. Then
the probability of the event that the current interaction increases Sct but not Sg−t or Sg+t
and multiplies Ct by exp(1/n) is at most 7/8. The probability of the event that the current
interaction increases both Sct and Sg+t but not Sg−t and multiplies Ct by exp(−8/n) is at least
1/8.

• If g̃ ≥ 1/8, we have P(Ig− = 1) = ng/n2 ≥ 1/8. Then the probability of the event that the
current interaction increases Sct but not Sg−t or Sg+t and multiplies Ct by exp(1/n) is at most
7/8. The probability of the event that the current interaction increases both Sct and Sg−t but
not Sg+t and multiplies Ct by exp(−8/n) is at least 1/8.

This gives the bound

E(Ct | Ft−1

∧
Ict ) ≤Ct−1

(
7

8
exp

(
1

n

)
+

1

8
exp

(
− 8

n

))
=

(
7

8

(
1 +

1

n

)
+

1

8

(
1− 8

n

)
+O(n−2)

)
=Ct−1

(
1− 1

8
n−1 +O(n−2)

)
<Ct−1
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where the first equality is due to the Taylor expansion of the exponential function. Thus from
Lemma 4 {Ct} is a supermartingale and

P(Scτ ≥ 9Sscτ + cn log n) ≤ n−c

which completes the proof. �

A.3 Bounding Sgτ = O(n log n)

In this subsection we bound the number of interactions Sgτ in the corner region where g̃ ≥ 3/4,
using the total number of g-decreasing interactions Sg−τ .

Lemma 10. With probability 1 − o(1), Sgτ = O(n log n). In addition, for any constant c > 0, we
have

P
(
Sgτ ≥ 26Sg−τ + 6cn log n+ 6n log(2n+ 1) +

45

2
n

)
≤ n−c

Proof In the large-g region, we choose the potential function 1/(2v + 1) and let f = 2v + 1.
When v = 0, the whole population is at state g and the next interaction is surely (g, g). Then

∆(1/f)

1/f
= 1 ·

(
1

2× 1 + 1
− 1

2× 0 + 1

)
= −2

3

When v ≥ 1, we have expectation

E
(

∆(1/f)

1/f

)
=E

(
(2v + 1)

(
Ig−

(
1

2v + 3
− 1

2v + 1

)
+ Ig+

(
1

2v − 1
− 1

2v + 1

)))
=E

(
− 2Ig−

2v + 3
+

2Ig+

2v − 1

)
=n−2

(
− 2ng

2v + 3
+

2(2bw + gv/2)

2v − 1

)
=(n2(2v + 3)(2v − 1))−1 · (−2ng(2v − 1) + (4bw + gv)(2v + 3))

=(n2(4v2 + 4v − 3))−1 · (−4ngv + 2ng + 8bwv + 12bw + 2gv2 + 3gv)

≤(n2(4v2 + 4v − 3))−1 · (−4ngv + 2ng + 8v · v2/4 + 12v2/4 + 2gv2 + 3gv)

=(n2(4v2 + 4v − 3))−1 · (−4ngv + 2ng + 2v3 + 3v2 + 2gv2 + 3gv)

=
−4n(n− v)v + 2n(n− v) + 2v3 + 3v2 + 2(n− v)v2 + 3(n− v)v

n2(4v2 + 4v − 3)

=
−4n2v + 4nv2 + 2n2 − 2nv + 2v3 + 3v2 + 2nv2 − 2v3 + 3nv − 3v2

n2(4v2 + 4v − 3)

=
−4n2v + 6nv2 + 2n2 + nv

n2(4v2 + 4v − 3)

=
−4nv + 6v2 + 2n+ v

n(4v2 + 4v − 3)

=
(2− 4v)n+ 6v2 + v

n(4v2 + 4v − 3)
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When v ≥ 1, we have 2− 4v < 0. Since v = n− g ≤ n/4, we have n ≥ 4v and

E
(

∆(1/f)

1/f

)
≤ (2− 4v) · 4v + 6v2 + v

n(4v2 + 4v − 3)
≤ −1

5
n−1

This is because function (−10x2 + 9x)/(4x2 + 4x− 3) given x ≥ 1 is at most −1/5.
When the population is not in the large-g region, i.e., g̃ < 3/4, we have

∆(1/f)

1/f
= − 2Ig−

2v + 3
+

2Ig+

2v − 1
≤ − 2Ig−

2n+ 3
+

2Ig+

2n/4− 1

Hence, from Lemma 4 the stochastic process {Gt} given by

Gt =
exp

((
1
6S

g
t +

∑t
i=1

(
2
3I

g−
i − 5Ig+i

)
(1− Igi )

)
/n
)

2vt + 1

is a supermartingale process. This gives us the bound

E

exp
((

1
6S

g
τ +

∑τ
i=1

(
2
3I

g−
i − 5Ig+i

)
(1− Igi )

)
/n
)

2n+ 1

 ≤ EGτ ≤ G0 ≤ 1

Again for Markov’s inequality,

P

(
1

6
Sgτ +

τ∑
i=1

(
2

3
Ig−i − 5Ig+i

)
(1− Igi ) ≥ cn log n+ n log(2n+ 1)

)
≤ n−c

Note that
∑t

i=1 I
g−
i (1−Igi ) is the number of Ig− interactions that occur in the region {g < 3n/4}

and
∑t

i=1 I
g+
i (1− Igi ) is the number of Ig+ interactions that occur in the region {g < 3n/4}. If the

process never leaves the region after entering it, we have
∑t

i=1 I
g+
i (1−Igi ) ≤

∑t
i=1 I

g−
i (1−Igi )+3n/4.

If it passes the boundary of the region more than once, because every time that the process leaves
the region it must have g = 3n/4 − 1 and every time that it returns to the region it must have
g = 3n/4 − 1 too, we still have

∑t
i=1 I

g+
i (1 − Igi ) ≤

∑t
i=1 I

g−
i (1 − Igi ) + 3n/4. In addition,∑t

i=1 I
g−
i (1− Igi ) ≤ Sg−t so we have

P

(
1

6
Sgτ +

τ∑
i=1

(
−13

3
Ig−i

)
(1− Igi )− 15

4
n ≥ cn log n+ n log(2n+ 1)

)
≤ n−c

P
(

1

6
Sgτ −

13

3
Sg−τ ≥ cn log n+ n log(2n+ 1) +

15

4
n

)
≤ n−c

and

P
(
Sgτ ≥ 26Sg−τ + 6cn log n+ 6n log(2n+ 1) +

45

2
n

)
≤ n−c

which completes the proof. �
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interaction b w g 3w + g + 1

(b,+, w) −1 +1 −2

(w,−, b) −1 +1 +1

(b,+, g) +1 −1 −1

(w,−, g) +1 −1 +2

(g,+, g) +1 −1 −1

(g,−, g) +1 −1 +2

(g,+, w) −1 +1 −2

(g,−, b) −1 +1 +1

Others 0

Table 3: Changes in (3w + g + 1)

A.4 Bounding Sbτ = O(n log n) and Swτ = O(n log n)

We first bound the number of interactions Sbτ in the corner region where b̃ ≥ 3/4. Then the upper
bound for the number of interactions Swτ in the other corner region where w̃ ≥ 3/4 follows in a
symmetric way.

Lemma 11. With probability 1 − o(1), Sbτ = O(n log n). In addition, for any constant c > 0, we
have

P
(
Sbτ ≥ 153Sg−τ + 85Sg+τ + 17cn log n+ 17n log(3n+ 1)

)
≤ n−c

Proof In the large-b region, we choose the potential function f = 3w+ g+ 1. Table 3 lists the
changes in f by different types of interactions. Suppose 3/4 ≤ b̃ < 1 so max(g, w) ≥ 1. (The case
when b̃ = 1 is convergence.) Again we need to bound the expectation E (∆f/f):

E
(

∆f

f

)
=(n2(3w + g + 1))−1 ·

(
−2bw + bw − bg + 2gw − 1

2
g2 + g2 − gw +

1

2
bg

)
=(n2(3w + g + 1))−1 ·

(
−bw − 1

2
bg + gw +

1

2
g2

)
=(n2(3w + g + 1))−1 ·

(
−1

2
g(2w + g) +

1

2
g(2w + g)

)
≤− b

2n2
· 2w + g

3w + g + 1
+

g(2w + g)

2n2(3w + g)

=
1

2n

(
−b̃ · 2w + g

3w + g + 1
+
g̃(2w̃ + g̃)

3w̃ + g̃

)
≤ 1

2n

(
−3

4
· 1

2
+

1

4

)
=− 1

16n

where the last inequality comes from the facts that function (2y+x)/(3y+x+1) given x, y ≥ 0 and
max(x, y) ≥ 1 is at least 1/2, and that function (x(2y+x))/(3y+x) given x, y ≥ 0 and x+y ≤ 1/4
is at most 1/4.
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When the population is not in the large-b region, i.e., b̃ < 3/4, we have w + g ≥ n/4 and

∆f

f
≤ 2Ig− + Ig+

3w + g + 1
≤ 2Ig− + Ig+

n/4
= (8Ig− + 4Ig+)n−1

Hence, from Lemma 4 the stochastic process {Bt} given by

Bt = (3wt + gt + 1) · exp

((
1

17
Sbt −

t∑
i=1

(
9Ig−i + 5Ig+i

)
(1− Ibi )

)
/n

)

is a supermartingale. This gives us the bound

E

(
exp

((
1

17
Sbτ −

τ∑
i=1

(
9Ig−i + 5Ig+i

)
(1− Ibi )

)
/n

))
≤ EBτ ≤ B0 ≤ 3n+ 1

Again for Markov’s inequality and
∑t

i=1 I
g−
i (1− Ibi ) ≤ S

g−
t and

∑t
i=1 I

g+
i (1− Ibi ) ≤ S

g+
t , we have

P
(

1

17
Sbτ − 9Sg−τ − 5Sg+τ ≥ cn log n+ n log(3n+ 1)

)
≤ n−c

and
P
(
Sbτ ≥ 153Sg−τ + 85Sg+τ + 17cn log n+ 17n log(3n+ 1)

)
≤ n−c

which completes the proof. �

Then the number of interactions Swτ in the other region where w̃ ≥ 3/4 can be bounded in a
symmetric way using the potential function f = 3b+ g + 1.

Lemma 12. With probability 1 − o(1), Swτ = O(n log n). In addition, for any constant c > 0, we
have

P
(
Swτ ≥ 153Sg−τ + 85Sg+τ + 17cn log n+ 17n log(3n+ 1)

)
≤ n−c

Finally, combining all the above lemmas implies a bound on τ = Scτ + Sbτ + Sgτ + Swτ that

P (τ ≥ 96930(c+ 1)n log n) ≤ max

(
9n−c,

c log n
3
√
n

)
As we explained in Section 2, let τ = min(τ∗, 105(c + 1)n log n). This makes τ a well-defined

stopping time and eventually, we have Theorem 1. Again the O
(

logn
3√n

)
error term is because all

the lemmas give error bounds at most O(n−c) except Lemma 8, which gives an O
(

logn
3√n

)
error

bound and dominates the other error terms (with a tiny increase in the constant) when c is large.
�

Appendix B Proof of Theorem 2

This section provides a complete proof of Theorem 2.
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Theorem 2 (in the main paper) If the initial configuration is monotone, then the contin-
uous process will reach consensus within O(r log nr) time.

The proof starts with derivation of the corresponding ODE system of the process, which can
be inferred by taking the limit on the expectation of the configuration vector. This ODE system
provides a mathematical formula of the vector field in the configuration space. We show that
the vector field anywhere at the boundary of the monotone region always points inwards into the
monotone region, which means the process stays in the monotone region and never leaves. We
divide the monotone region into two sub-areas A+, the region where x0 ≤ x1 ≤ . . . ≤ xr with at
least one < in the middle, and A−, the region where x0 ≥ x1 ≥ . . . ≥ xr with at least one > in the
middle. The ODE system also gives us the differential equation for p, from which we prove that
p is always increasing in A+ and is always decreasing in A−. It suffices to show the convergence
bound for A+ and it will holds for A− in a symmetric way.

The above two facts already tell us that once the process enters A+, p will keep increasing until
convergence. What we need is a positive lower bound for the derivative of p that will lead to the
desired convergence time. We need to take care of two cases where dp/dt is very small. The first
case is when the process is almost at convergence and p is very close to 1. The other is when the
configuration vector is almost uniform and p is very close to 1/2. To do so, we divide the path of
p from 1/2 + 1/(nr) to 1− 1/(nr) into two corresponding stages: from 2/3 to 1− 1/(nr) and from
1/2 + 1/(nr) to 2/3. We show the time for the former stage is O(log nr) and the time for the latter
is O(r log nr).

Lemma 13. Once the process enters the monotone region, it never leaves.

Proof The corresponding systems of differential equations of the process can be inferred by
taking the limit of the expectation of the configuration vector. For the change of {xi} and p from
time tick tk to the next time tick tk+1, we have

x0(tk+1) = x0(tk) + (1− p(tk)) · x1(tk) · 1
n − p(tk) · x0(tk) · 1

n

xi(tk+1) = xi(tk) + p(tk) · xi−1(tk) · 1
n + (1− p(tk)) · xi+1(tk) · 1

n − xi(tk) ·
1
n

xr(tk+1) = xr(tk)− (1− p(tk)) · xr(tk) · 1
n + p(tk) · xr−1(tk) · 1

n

where the second equation is for 1 ≤ i ≤ r − 1. Dividing both sides of the equations by the
infinitesimal 1/(nr) gives

x0(tk+1)− x0(tk)

1/(nr)
= r · ((1− p(tk)) · x1(tk)− p(tk) · x0(tk))

xi(tk+1)− xi(tk)
1/(nr)

= r · (p(tk) · xi−1(tk) + (1− p(tk)) · xi+1(tk)− xi(tk))

xr(tk+1)− xr(tk)
1/(nr)

= r · (p(tk) · xr−1(tk)− (1− p(tk)) · xr(tk))
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Since nr is the rate of the Poisson process and we let 1/(nr) go to 0, we have the ODE system

dx0

dt
= r · ((1− p) · x1 − p · x0)

dxi

dt
= r · (p · xi−1 + (1− p) · xi+1 − xi)

dxr

dt
= r · (p · xr−1 − (1− p) · xr)

This ODE system provides a mathematical formula for the vector field in the configuration
space. To complete the proof, we need to show that the vector field anywhere at the boundary of
the monotone region always points inwards into the monotone region. Let A+ be the region where
x0 ≤ x1 ≤ . . . ≤ xr with at least one < in the middle and A− be the region where x0 ≥ x1 ≥ . . . ≥ xr
with at least one > in the middle. It is sufficient to prove the lemma for A+ and the proof for A−
will hold in a symmetric way.

For some 1 ≤ i ≤ r − 2, when the process is close to a point where xi+1 − xi = 0, given that
the process is in region A+, we have

d(xi+1 − xi)
dt

=r · (pxi + (1− p)xi+2 − xi+1 − pxi−1 − (1− p)xi+1 + xi)

=r · (p(xi − xi−1) + (1− p)(xi+2 − xi+1)) > 0

which pushes the system back to the area with xi+1 − xi > 0.
Notice that the probability of positive interaction p =

∑r
i=0(i/r)xi is always greater than 1/2

in region A+. When the process is close to a point where x1 − x0 = 0 or xr − xr−1 = 0, we have

d(x1 − x0)

dt
=r · (px0 + (1− p)x2 − x1 − (1− p)x1 + px0)

=r · (2px0 − x1 + (1− p)(x2 − x1)) > 0

and

d(xr − xr−)

dt
=r · (pxr−1 − (1− p)xr − pxr−2 − (1− p)xr + xr−1)

=r · (p(xr−1 − xr−2)− 2(1− p)xr + xr−1) > 0

which pushes the system back to the area with x1 − x0 > 0 and xr − xr−1 > 0 respectively. There-
fore, the continuous process will never escape from region A+ once it is inside. We can similarly
show symmetric results in the other region A−. �

Lemma 14. The derivative of p is always positive in region A+ and always negative in region A−.

Proof From the above ODE system and p =
∑r

i=0(i/r)xi and
∑r

i=0 xi = 1, we can infer the
differential equation for p, which turns out to be very neat.

dp

dt
= (1− xr)p− (1− x0)(1− p)
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We can interpret the differential equation in a very simple way. With probability p a positive
interaction occurs. This is a stay-put interaction if and only if the responder is already fully
confident. Thus with conditional probability (1−xr) it is a state-changing interaction and increases
p by 1/(nr). Likewise, with probability (1 − x0)(1 − p), we will have a negative interaction that
decreases p by 1/(nr).

Again, it suffices to prove the statement for region A+. We have already shown the process
stays in A+ once it is inside. Denote by B =

∑r−1
i=1 (i/r)xi, which is the contribution of x1 to xr−1

to the probability p. Then p = B + xr and

dp

dt
=(1− xr)p− (1− x0)(1− p)

=(B + xr)(1− xr)− (1−B − xr)(1− x0)

=(2− xr − x0)B + (1− xr)(xr − 1 + x0)

Since 2−xr−x0 and B ≥
∑r−1

i=1 (i/r) · (1−x0−xr)/(r−1) = (1−x0−xr)/2 in region A+, we have

dp

dt
≥ (2− xr − x0) · 1

2
(1− x0 − xr) + (1− xr)(xr − 1 + x0)

Region A+ also gives 1 =
∑r

i=0 xi ≥ x0 + (r − 1)x0 + xr and 0 ≤ x0 ≤ (1 − xr)/r. Note that
function (2− x− y)(1− x− y)/2 + (1− x)(x+ y − 1) for x ≥ y, x+ y < 1 and 0 ≤ y ≤ (1− x)/2
is always non-negative. The only case where this function is 0 is when x = y but we always have
x0 < xr in A+. For any r ≥ 2, x0 ≤ (1 − xr)/r ≤ (1 − xr)/2. Thus, we always have dp/dt > 0
inside region A+. In a symmetric way, we know dp/dt < 0 inside region A−. �

Proof (of Theorem 2) Again without loss of generality, we only study the region A+. We
know the probability of positive interaction p is always greater than 1/2 inside A+ and we expect
a positive convergence p → 1. The above two lemmas already tell us that once the process enters
A+, p will keep increasing until convergence. What we need is a positive lower bound for dp/dt
that will lead to the desired convergence time. Let ε = p− 1/2 and δ = 1− p. There are two cases
where dp/dt is very small.

1. The process is almost at convergence and p is very close to 1 with a very small δ;

2. The configuration vector is almost uniform and p is very close to 1/2 with a very small ε.

To do so, we divide the path of p from 1/2 + 1/(nr) to 1− 1/(nr) into two corresponding stages:

1. p goes from 2
3 to 1− 1

nr ;

2. p goes from 1
2 + 1

nr to 2
3 .

For Stage 1, we have 2/3 ≤ p =
∑r

i=0(i/r)xi ≤
∑r

i=0(i/r)xr = (1+r)xr/2 and xr ≥ 4/(3(r+1)).
Note that function (2−x−y)(1−x−y)/2+(1−x)(x+y−1) for x ≥ y, x+y < 1, 0 ≤ y ≤ (1−x)/r
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and 4/(3(r + 1)) ≤ x ≤ 1− δ is minimized at (y = δ/r, x = 1− δ). Thus

dp

dt
≥(2− xr − x0) · 1

2
(1− x0 − xr) + (1− xr)(xr − 1 + x0)

≥
(

2− 1 + δ − δ

r

)
· 1

2

(
1− 1 + δ − δ

r

)
+ δ

(
1− δ − 1 +

δ

r

)
=

(
1 +

(
1− 1

r

)
δ

)
· 1

2

(
1− 1

r

)
δ − δ

(
1− 1

r

)
δ

=
1

2

(
1− 1

r

)
δ ·
(

1 +

(
1− 1

r

)
δ − 2δ

)
=

1

2

(
1− 1

r

)
δ ·
(

1−
(

1 +
1

r

)
δ

)
As δ < 1

2 , we have

dp

dt
>

1

2

(
1− 1

r

)
δ ·
(

1−
(

1 +
1

r

)
1

2

)
=

1

2

(
1− 1

r

)
δ ·
(

1− 1

2
− 1

2r

)
=

[
1

2

(
1− 1

r

)]2

· δ

We let c =
[

1
2

(
1− 1

r

)]2
> 0, which doesn’t change with time. Now the ODE becomes simply

dp/dt > c(1−p) which is easy to solve. Let p(t1) = 1/2+1/(nr), p(t2) = 2/3 and p(t3) = 1−1/(nr).
We have

c(t3 − t2) < − log(1− p(t3)) + log(1− p(t2)) = log nr − log 3

Hence, t3 − t2 < (log nr − log 3)/c = O(log nr) time since 1/16 ≤ c < 1/4 for r ≥ 2.
For Stage 2 from t1 to t2, we have 1

2 + ε ≤ (1 + r)xr/2 and xr ≥ (1 + 2ε)/(r + 1). Note that
function (2− x− y)(1− x− y)/2 + (1− x)(x+ y − 1) for x ≥ y, x+ y < 1, 0 ≤ y ≤ (1− x)/r and
(1 + 2ε)/(r + 1) ≤ x ≤ 1− δ is minimized at (y = (1− x)/r, x = (1 + 2ε)/(r + 1)). Thus letting z
be (1 + 2ε)/(r + 1),

dp

dt
≥(2− xr − x0) · 1

2
(1− x0 − xr) + (1− xr)(xr − 1 + x0)

≥
(

2− z − 1− z
r

)
· 1

2

(
1− z − 1− z

r

)
+ (1− z)

(
z − 1 +

1− z
r

)
=

1− z
2

(
2− z − 1− z

r

)(
1− 1

r

)
+ 2

(
z − 1 +

1− z
r

)
=

1− z
2r2

(2r − rz − 1 + z) (r − 1) + 2r (rz − r + 1− z)

=
(1− z)(r − 1)

2r2
[2r − 1− (r − 1)z − 2r (1− z)]

=
(1− z)(r − 1)

2r2
[(r + 1)z − 1]

=
r − 1

2r2
· 2ε · r − 2ε

r + 1

=
(r − 1)(r − 2ε)ε

(r + 1)r2
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As ε < 1
2 , we have

dp

dt
≥ (r − 1)(r − 2ε)ε

(r + 1)r2
>

(r − 1)2

(r + 1)r2
· ε

Again we let g = (r − 1)2/((r + 1)r2) > 0, which doesn’t change with time. Solving the simple
ODE dp/dt > c(p− 1/2) gives

g(t2 − t1) < log(2p(t2)− 1)− log(2p(t1)− 1) = log
1

3
− log

2

nr

and t2 − t1 < (log nr− log 6)/g = O(r log(nr)) time. Thus the total time from p = 1/2 + 1/(nr) to
p = 1 − 1/(nr) is t3 − t1 = (t3 − t2) + (t2 − t1) = O(r log nr). The same statement can be proved
for the other region A− in a symmetric way. �

The analysis of the continuous process above gives us the following lemma.

Lemma 1 (in the main paper) When r = 2, p is always increasing when p > 1/2 and is
always decreasing when p < 1/2. This doesn’t hold for any r > 2.

Proof When r = 2, we have p = x2 + (1− x2 − x0)/2 = (1 + x2 − x0)/2 and

dp

dt
=(1− x2)p− (1− x0)(1− p)

=(1− x2) · 1 + x2 − x0

2
− (1− x0) ·

(
1− 1 + x2 − x0

2

)
=

1

2
((1− x2)(1 + x2)− (1− x2)x0 − (1− x0)(1 + x0) + (1− x0)x2)

=
1

2
(1− x2

2 − x0 + x0x2 − 1 + x2
0 + x2 − x0x2)

=
1

2
((x2 − x2

2)− (x0 − x2
0))

Note that p > 1/2 is equivalent to x0 < x2. Since x0 + x2 ≤ 1 and 0 ≤ x0 < x2, we have either
0 ≤ x0 < x2 < 1/2 or 0 ≤ x0 < 1/2 ≤ x2 < 1. In the former case we have (x2− x2

2)− (x0− x2
0) > 0

and dp/dt > 0. In the latter case we have x0 ≤ 1 − x2 and because function x − x2 is symmetric
with respect to line x = 1/2, we also have dp/dt > 0. Likewise we have dp/dt < 0 when p < 1/2
when r = 2.

When r ≥ 3, we have dp/dt = (1− xr)p− (1− x0)(1− p). We consider a case in which x0 = 0
and x1 + xr = 1. Then we have p = xr + (1− xr)/r and this becomes

dp

dt
=(1− xr)p− (1− x0)(1− p)

=(1− xr)p− (1− p)
=(2− xr)p− 1

=(2− xr) ·
(
xr +

1− xr
r

)
− 1

=
1

r
· ((2− xr)((r − 1)xr + 1)− r)

=
1

r
· ((2r − 3)xr − (r − 1)x2

r + 2− r)
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Thus dp/dt is negative when xr < (r− 2)/(r− 1). When r ≥ 3 we know (r− 2)/(r− 1) ≥ 1/2.
We now let xr = (r − 2)/(r − 1)− 1/5 where dp/dt is surely negative. Then

p =xr +
1− xr
r

=
1

r
+

(
1− 1

r

)
xr

=
1

r
+
r − 1

r
·
(
r − 2

r − 1
− 1

5

)
=

1

r
+ 1− 2

r
− 1

5

(
1− 1

r

)
=

4

5
·
(

1− 1

r

)
≥ 4

5
·
(

1− 1

3

)
=

8

15
>

1

2

which disproves the statement for any r > 2. �

Appendix C Proof of Theorem 3

In this section we prove a Θ(nr + n log n) bound for an r-coupon collector.

Theorem 3 (in the main paper) An r-coupon collector needs Θ(nr + n log n) time with high
probability.

Proof Consider the equivalent balls-in-bins problem: if we keep throwing balls uniformly at
random into n bins, how many balls do we need to throw such that every bin has at least r balls
with high probability? Let N be the answer to this question. When r = O(1) is a constant, we have
N = Ω(n log n) from the classic coupon collector’s bound. We also have N = O(n log n) because at
most r rounds of coupon collector are enough to fill the bins. Thus N = Θ(n log n) = Θ(nr+n log n)
is a tight bound for r = O(1).

When r = ω(1), the lower bound N = Ω(nr + n log n) is also easy to see. We must throw at
least nr balls to fill the bins and the addend Ω(n log n) is again from classic coupon collector. To
prove the upper bound N = O(nr + n log n), by using Poisson approximation, we know the joint
distribution of the number of balls in all the bins is well approximated by assuming the load at
each bin is an independent Poisson random variable with mean λ = N/n after we have thrown
N balls in total. More concretely, if the probability of an event is either monotonically increasing
or monotonically decreasing in the number of balls, then if this event has probability q in Poisson
approximation, it has probability at most 2q in the exact balls-in-bins case. Let Y be the minimum
load among the n bins. Then the probability of Y < r is monotonically decreasing in the number
of balls and satisfies the condition of Poisson approximation. If P(Y < r) → 0 holds in Poisson
approximation, P(Y < r) also goes to zero in the exact balls-in-bins case (or equivalently the
r-coupon collector problem).

In Poisson approximation, Y is the minimum among n i.i.d. Poisson random variables with
mean N/n. We have

P(Y < r) = P(Y ≤ r − 1) = 1−
(

1− Γ(r, λ)

(r − 1)!

)n
where λ = N/n and Γ(·, ·) is the incomplete Gamma function. An asymptotic representation for
Γ(·, ·) is Γ(r, λ) = λr−1e−λ + o(1) when λ → +∞. When N = Ω(nr + n log n), λ = N/n =
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Ω(r + log n) = ω(1) and this asymptotic representation is applicable. Letting s = r − 1, we have

s!

n · Γ(s+ 1, λ)
=O(1) ·

√
s · ss

n · esλse−λ

=O(1) · exp

(
1

2
log s+ s log s+

N

n
− s log

N

n
− s− log n

)
=O(1) · exp

(
s

(
N

ns
− log

N

ns
− 1− 1

s
log

n√
s

))
Denote by f the exponent in this expression. The sign and magnitude of f are crucial for the
convergence bound. When f → −∞, we have s!/Γ(s + 1, λ) = o(n) and P(Y ≥ r) → 0; When
f = O(1) is a constant, we have s!/Γ(s + 1, λ) = Θ(n) and P(Y ≥ r) is a constant between 0 and
1; When f → +∞, we have s!/Γ(s+ 1, λ) = ω(n) and P(Y < r)→ 0.

When r = o(log n), we have Θ(nr + n log n) = Θ(n log n). Choose N1 = 2n log n and then

N1

ns
− log

N1

ns
− 1− 1

s
log

n√
s

=2 · log n

s
− log

2 log n

s
− 1− 1

s
log

n√
s

>
log n

s
− 1

s
log

n√
s

=
1

2s
log s

Since r = ω(1), s is also ω(1). Thus f > s · log s/(2s) = log s/2 = ω(1) and P(Y < r)→ 0. Because
P(Y < r) is monotonically decreasing in N , all N ≥ N1 have P(Y < r) → 0. Therefore, we have
N ≤ N1 = O(nr + n log n).

When r = ω(log n), we choose N2 = 2ns+ n log n and then

N2

ns
− log

N2

ns
− 1− 1

s
log

n√
s

=2 +
log n

s
− log

(
2 +

log n

s

)
− 1− 1

s
log n+

1

2s
log s

=1− log

(
2 +

log n

s

)
+

1

2s
log s >

1

2s
log s

Thus f > s · log s/(2s) = log s/2 = ω(1) and P(Y < r)→ 0. Hence, all N ≥ N2 have P(Y < r)→ 0.
Therefore, we have N ≤ N2 = O(nr + n log n).

The only case left is when r = Θ(log n) and we need to take care of the constant. When
lim logn

s ≤ 2, we choose N3 = 3ns+ n log n and then

N3

ns
− log

N3

ns
− 1− 1

s
log

n√
s

=3 +
log n

s
− log

(
3 +

log n

s

)
− 1− 1

s
log n+

1

2s
log s

=2− log

(
3 +

log n

s

)
+

1

2s
log s

≥2− log 5 +
1

2s
log s >

1

2s
log s

Thus f = ω(1) and P(Y < r) → 0. Hence, all N ≥ N3 have P(Y < r) → 0. Therefore, we have
N ≤ N3 = O(nr + n log n).
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Figure 1: Convergence time with fixed resistance 2 and varying population

When lim logn
s > 2, we choose N4 = ns+2n log n. Notice that function x− log(1 + 2x) is always

greater than 0.2 for all x > 2.

N4

ns
− log

N4

ns
− 1− 1

s
log

n√
s

=1 + 2 · log n

s
− log

(
1 + 2 · log n

s

)
− 1− 1

s
log n+

1

2s
log s

=
log n

s
− log

(
1 + 2 · log n

s

)
+

1

2s
log s

>0.2 +
1

2s
log s >

1

2s
log s

Thus f = ω(1) and P(Y < r) → 0. Hence, all N ≥ N4 have P(Y < r) → 0. Therefore, we have
N ≤ N4 = O(nr + n log n).

Combining with the lower bound N = Ω(nr + n log n) we have N = Θ(nr + n log n) and com-
plete the proof. �

Appendix D Figures of Experimental Results

In this section we present figures of the empirical results described in Section 5.
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Figure 2: Convergence time with fixed resistance 50 and varying population

Figure 3: Convergence time with fixed population 1000 and varying resistance
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Figure 4: Convergence time comparison for continuous process
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