
Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Population Protocols

James Aspnes
Yale University

January 29th, 2007

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Acknowledgments

Joint work with:

Dana Angluin (Yale)

Melody Chan (Princeton)

Zoë Diamadi (McKinsey & Company)

David Eisenstat (Princeton)

Michael J. Fischer (Yale)

Hong Jiang (Yale)

René Peralta (NIST)

Eric Ruppert (York)

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Population protocols
Stable computations
Stably computable predicates

The past and future of computing

Economics of mass production push computer systems toward
large numbers of very limited standardized components:

Centralized systems

Distributed systems

Wireless distributed systems

Sensor networks/RFID chips

Smart molecules?

Our goal: take the limit of this process.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Population protocols
Stable computations
Stably computable predicates

Population protocols

A population protocol
(Angluin, Aspnes, Diamadi,
Fischer, and Peralta, PODC
2004) consists of a
collection of finite-state
agents organized in an
interaction graph.

An interaction between two
neighbors updates the state
of both agents according to
a joint transition function.

Interactions are asymmetric:
one agent is the initiator
and one the responder.

Leader Election

= leader
= non-leader

, → ,
, → ,
, → ,
, → ,

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Population protocols
Stable computations
Stably computable predicates

Population protocols

A population protocol
(Angluin, Aspnes, Diamadi,
Fischer, and Peralta, PODC
2004) consists of a
collection of finite-state
agents organized in an
interaction graph.

An interaction between two
neighbors updates the state
of both agents according to
a joint transition function.

Interactions are asymmetric:
one agent is the initiator
and one the responder.

Leader Election

= leader
= non-leader

, → ,
, → ,
, → ,
, → ,

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Population protocols
Stable computations
Stably computable predicates

Population protocols

A population protocol
(Angluin, Aspnes, Diamadi,
Fischer, and Peralta, PODC
2004) consists of a
collection of finite-state
agents organized in an
interaction graph.

An interaction between two
neighbors updates the state
of both agents according to
a joint transition function.

Interactions are asymmetric:
one agent is the initiator
and one the responder.

Leader Election

= leader
= non-leader

, → ,
, → ,
, → ,
, → ,

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Population protocols
Stable computations
Stably computable predicates

Population protocols

A population protocol
(Angluin, Aspnes, Diamadi,
Fischer, and Peralta, PODC
2004) consists of a
collection of finite-state
agents organized in an
interaction graph.

An interaction between two
neighbors updates the state
of both agents according to
a joint transition function.

Interactions are asymmetric:
one agent is the initiator
and one the responder.

Leader Election

= leader
= non-leader

, → ,
, → ,
, → ,
, → ,

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Population protocols
Stable computations
Stably computable predicates

Population protocols

A population protocol
(Angluin, Aspnes, Diamadi,
Fischer, and Peralta, PODC
2004) consists of a
collection of finite-state
agents organized in an
interaction graph.

An interaction between two
neighbors updates the state
of both agents according to
a joint transition function.

Interactions are asymmetric:
one agent is the initiator
and one the responder.

Leader Election

= leader
= non-leader

, → ,
, → ,
, → ,
, → ,

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Population protocols
Stable computations
Stably computable predicates

Population protocols

A population protocol
(Angluin, Aspnes, Diamadi,
Fischer, and Peralta, PODC
2004) consists of a
collection of finite-state
agents organized in an
interaction graph.

An interaction between two
neighbors updates the state
of both agents according to
a joint transition function.

Interactions are asymmetric:
one agent is the initiator
and one the responder.

Leader Election

= leader
= non-leader

, → ,
, → ,
, → ,
, → ,

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Population protocols
Stable computations
Stably computable predicates

Population protocols

A population protocol
(Angluin, Aspnes, Diamadi,
Fischer, and Peralta, PODC
2004) consists of a
collection of finite-state
agents organized in an
interaction graph.

An interaction between two
neighbors updates the state
of both agents according to
a joint transition function.

Interactions are asymmetric:
one agent is the initiator
and one the responder.

Leader Election

= leader
= non-leader

, → ,
, → ,
, → ,
, → ,

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Population protocols
Stable computations
Stably computable predicates

Population protocols

A population protocol
(Angluin, Aspnes, Diamadi,
Fischer, and Peralta, PODC
2004) consists of a
collection of finite-state
agents organized in an
interaction graph.

An interaction between two
neighbors updates the state
of both agents according to
a joint transition function.

Interactions are asymmetric:
one agent is the initiator
and one the responder.

Leader Election

= leader
= non-leader

, → ,
, → ,
, → ,
, → ,

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Population protocols
Stable computations
Stably computable predicates

Population protocols

A population protocol
(Angluin, Aspnes, Diamadi,
Fischer, and Peralta, PODC
2004) consists of a
collection of finite-state
agents organized in an
interaction graph.

An interaction between two
neighbors updates the state
of both agents according to
a joint transition function.

Interactions are asymmetric:
one agent is the initiator
and one the responder.

Leader Election

= leader
= non-leader

, → ,
, → ,
, → ,
, → ,

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Population protocols
Stable computations
Stably computable predicates

Population protocols

A population protocol
(Angluin, Aspnes, Diamadi,
Fischer, and Peralta, PODC
2004) consists of a
collection of finite-state
agents organized in an
interaction graph.

An interaction between two
neighbors updates the state
of both agents according to
a joint transition function.

Interactions are asymmetric:
one agent is the initiator
and one the responder.

Leader Election

= leader
= non-leader

, → ,
, → ,
, → ,
, → ,

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Population protocols
Stable computations
Stably computable predicates

Population protocols

A population protocol
(Angluin, Aspnes, Diamadi,
Fischer, and Peralta, PODC
2004) consists of a
collection of finite-state
agents organized in an
interaction graph.

An interaction between two
neighbors updates the state
of both agents according to
a joint transition function.

Interactions are asymmetric:
one agent is the initiator
and one the responder.

Leader Election

= leader
= non-leader

, → ,
, → ,
, → ,
, → ,

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Population protocols
Stable computations
Stably computable predicates

Stable computations

Input map converts inputs
(at each agent) to initial
states.

Output map extracts
outputs from states.

A stable computation
converges to the same
output at all agents.

Fairness condition enforces
that any reachable state is
eventually reached.

Parity

In:
x → x∗

Out:
x → x

x∗ → x

0∗, 0∗ → 0, 0∗
0∗, 1∗ → 1, 1∗
1∗, 0∗ → 1, 1∗
1∗, 1∗ → 0, 0∗
x , y∗ → y∗, y
x∗, y → x , x∗

0*

1*

0*

1*

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Population protocols
Stable computations
Stably computable predicates

Stable computations

Input map converts inputs
(at each agent) to initial
states.

Output map extracts
outputs from states.

A stable computation
converges to the same
output at all agents.

Fairness condition enforces
that any reachable state is
eventually reached.

Parity

In:
x → x∗

Out:
x → x

x∗ → x

0∗, 0∗ → 0, 0∗
0∗, 1∗ → 1, 1∗
1∗, 0∗ → 1, 1∗
1∗, 1∗ → 0, 0∗
x , y∗ → y∗, y
x∗, y → x , x∗

0*

1*

0*

1*

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Population protocols
Stable computations
Stably computable predicates

Stable computations

Input map converts inputs
(at each agent) to initial
states.

Output map extracts
outputs from states.

A stable computation
converges to the same
output at all agents.

Fairness condition enforces
that any reachable state is
eventually reached.

Parity

In:
x → x∗

Out:
x → x

x∗ → x

0∗, 0∗ → 0, 0∗
0∗, 1∗ → 1, 1∗
1∗, 0∗ → 1, 1∗
1∗, 1∗ → 0, 0∗
x , y∗ → y∗, y
x∗, y → x , x∗

1
1*

0*

1*

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Population protocols
Stable computations
Stably computable predicates

Stable computations

Input map converts inputs
(at each agent) to initial
states.

Output map extracts
outputs from states.

A stable computation
converges to the same
output at all agents.

Fairness condition enforces
that any reachable state is
eventually reached.

Parity

In:
x → x∗

Out:
x → x

x∗ → x

0∗, 0∗ → 0, 0∗
0∗, 1∗ → 1, 1∗
1∗, 0∗ → 1, 1∗
1∗, 1∗ → 0, 0∗
x , y∗ → y∗, y
x∗, y → x , x∗

1
1*

0*

1*

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Population protocols
Stable computations
Stably computable predicates

Stable computations

Input map converts inputs
(at each agent) to initial
states.

Output map extracts
outputs from states.

A stable computation
converges to the same
output at all agents.

Fairness condition enforces
that any reachable state is
eventually reached.

Parity

In:
x → x∗

Out:
x → x

x∗ → x

0∗, 0∗ → 0, 0∗
0∗, 1∗ → 1, 1∗
1∗, 0∗ → 1, 1∗
1∗, 1∗ → 0, 0∗
x , y∗ → y∗, y
x∗, y → x , x∗

1

1

1*

1*

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Population protocols
Stable computations
Stably computable predicates

Stable computations

Input map converts inputs
(at each agent) to initial
states.

Output map extracts
outputs from states.

A stable computation
converges to the same
output at all agents.

Fairness condition enforces
that any reachable state is
eventually reached.

Parity

In:
x → x∗

Out:
x → x

x∗ → x

0∗, 0∗ → 0, 0∗
0∗, 1∗ → 1, 1∗
1∗, 0∗ → 1, 1∗
1∗, 1∗ → 0, 0∗
x , y∗ → y∗, y
x∗, y → x , x∗

1

1

1*

1*

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Population protocols
Stable computations
Stably computable predicates

Stable computations

Input map converts inputs
(at each agent) to initial
states.

Output map extracts
outputs from states.

A stable computation
converges to the same
output at all agents.

Fairness condition enforces
that any reachable state is
eventually reached.

Parity

In:
x → x∗

Out:
x → x

x∗ → x

0∗, 0∗ → 0, 0∗
0∗, 1∗ → 1, 1∗
1∗, 0∗ → 1, 1∗
1∗, 1∗ → 0, 0∗
x , y∗ → y∗, y
x∗, y → x , x∗

1
1*

1*

1

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Population protocols
Stable computations
Stably computable predicates

Stable computations

Input map converts inputs
(at each agent) to initial
states.

Output map extracts
outputs from states.

A stable computation
converges to the same
output at all agents.

Fairness condition enforces
that any reachable state is
eventually reached.

Parity

In:
x → x∗

Out:
x → x

x∗ → x

0∗, 0∗ → 0, 0∗
0∗, 1∗ → 1, 1∗
1∗, 0∗ → 1, 1∗
1∗, 1∗ → 0, 0∗
x , y∗ → y∗, y
x∗, y → x , x∗

1
1*

1*

1

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Population protocols
Stable computations
Stably computable predicates

Stable computations

Input map converts inputs
(at each agent) to initial
states.

Output map extracts
outputs from states.

A stable computation
converges to the same
output at all agents.

Fairness condition enforces
that any reachable state is
eventually reached.

Parity

In:
x → x∗

Out:
x → x

x∗ → x

0∗, 0∗ → 0, 0∗
0∗, 1∗ → 1, 1∗
1∗, 0∗ → 1, 1∗
1∗, 1∗ → 0, 0∗
x , y∗ → y∗, y
x∗, y → x , x∗

1
1*

1*

1

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Population protocols
Stable computations
Stably computable predicates

Stable computations

Input map converts inputs
(at each agent) to initial
states.

Output map extracts
outputs from states.

A stable computation
converges to the same
output at all agents.

Fairness condition enforces
that any reachable state is
eventually reached.

Parity

In:
x → x∗

Out:
x → x

x∗ → x

0∗, 0∗ → 0, 0∗
0∗, 1∗ → 1, 1∗
1∗, 0∗ → 1, 1∗
1∗, 1∗ → 0, 0∗
x , y∗ → y∗, y
x∗, y → x , x∗

1
1*

1*

1

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Population protocols
Stable computations
Stably computable predicates

Stable computations

Input map converts inputs
(at each agent) to initial
states.

Output map extracts
outputs from states.

A stable computation
converges to the same
output at all agents.

Fairness condition enforces
that any reachable state is
eventually reached.

Parity

In:
x → x∗

Out:
x → x

x∗ → x

0∗, 0∗ → 0, 0∗
0∗, 1∗ → 1, 1∗
1∗, 0∗ → 1, 1∗
1∗, 1∗ → 0, 0∗
x , y∗ → y∗, y
x∗, y → x , x∗

1
0*

0

1

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Population protocols
Stable computations
Stably computable predicates

Stable computations

Input map converts inputs
(at each agent) to initial
states.

Output map extracts
outputs from states.

A stable computation
converges to the same
output at all agents.

Fairness condition enforces
that any reachable state is
eventually reached.

Parity

In:
x → x∗

Out:
x → x

x∗ → x

0∗, 0∗ → 0, 0∗
0∗, 1∗ → 1, 1∗
1∗, 0∗ → 1, 1∗
1∗, 1∗ → 0, 0∗
x , y∗ → y∗, y
x∗, y → x , x∗

1
0*

0

1

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Population protocols
Stable computations
Stably computable predicates

Stable computations

Input map converts inputs
(at each agent) to initial
states.

Output map extracts
outputs from states.

A stable computation
converges to the same
output at all agents.

Fairness condition enforces
that any reachable state is
eventually reached.

Parity

In:
x → x∗

Out:
x → x

x∗ → x

0∗, 0∗ → 0, 0∗
0∗, 1∗ → 1, 1∗
1∗, 0∗ → 1, 1∗
1∗, 1∗ → 0, 0∗
x , y∗ → y∗, y
x∗, y → x , x∗

1

0

0

0*

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Population protocols
Stable computations
Stably computable predicates

Stable computations

Input map converts inputs
(at each agent) to initial
states.

Output map extracts
outputs from states.

A stable computation
converges to the same
output at all agents.

Fairness condition enforces
that any reachable state is
eventually reached.

Parity

In:
x → x∗

Out:
x → x

x∗ → x

0∗, 0∗ → 0, 0∗
0∗, 1∗ → 1, 1∗
1∗, 0∗ → 1, 1∗
1∗, 1∗ → 0, 0∗
x , y∗ → y∗, y
x∗, y → x , x∗

1

0

0

0*

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Population protocols
Stable computations
Stably computable predicates

Stable computations

Input map converts inputs
(at each agent) to initial
states.

Output map extracts
outputs from states.

A stable computation
converges to the same
output at all agents.

Fairness condition enforces
that any reachable state is
eventually reached.

Parity

In:
x → x∗

Out:
x → x

x∗ → x

0∗, 0∗ → 0, 0∗
0∗, 1∗ → 1, 1∗
1∗, 0∗ → 1, 1∗
1∗, 1∗ → 0, 0∗
x , y∗ → y∗, y
x∗, y → x , x∗

0*

0

0

0

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Population protocols
Stable computations
Stably computable predicates

Presburger predicates

Trick: represent numbers by tokens scattered across the
population.

Population protocols on connected graphs can stably
compute all of first-order Presburger arithmetic on counts
of input tokens, including

Addition.
Subtraction.
Multiplication by a constant k.
Remainder mod k.
>, <, and =.
∧, ∨, ¬, ∀x , and ∃x , applied to above.

Example: “Are there at least twice as many cold sensors as
hot sensors?”

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Population protocols
Stable computations
Stably computable predicates

Presburger predicates (continued)

Computable for fixed inputs (Angluin et al., PODC 2004)

Computable if inputs converge after some finite time (Angluin,
Aspnes, Chan, Fischer, Jiang, and Peralta, DCOSS 2005).

Computable with one-way communication (Angluin, Aspnes,
Eisenstat, Ruppert, OPODIS 2005).

Computable if a small number of agents fail (Delporte-Gallet,
Fauconnier, Guerraoui, Ruppert, DCOSS 2006).

Nothing else is computable on a complete interaction
graph, i.e. if any agent can interact with any other (Angluin,
Aspnes, Eisenstat, PODC 2006).

Example: can’t compute “Is the number of cold sensors the
square of the number of hot sensors?”

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Presburger predicates and semilinear sets
Stable configurations
Extensions
Monoid covers
The full result

What population protocols can’t do

Complete interaction graph gives the weakest model.

Conjectured in PODC 2004 paper that this model can only
compute the Presburger predicates.

Proved in PODC 2006 paper.

We’ll describe a simplified version of this result now, then
switch to what we can do in stronger models.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Presburger predicates and semilinear sets
Stable configurations
Extensions
Monoid covers
The full result

Presburger predicates in disguise

Other ways to define a Presburger predicate:

Take a regular language L and forget about the order of
symbols in each word.

Resulting Parikh map of a regular set is
Presburger-definable.
All Presburger-definable sets can be constructed this way.
Cute fact: going to context-free languages doesn’t change
anything.

Take a finite union of linear sets of the form

{~b + k1~x1 + k2~x2 + · · ·+ km~xm}.

Resulting semilinear set is Presburger-definable.
All Presburger-definable sets can be constructed this way.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Presburger predicates and semilinear sets
Stable configurations
Extensions
Monoid covers
The full result

Example

(1,0)

(0,2)

A semilinear set S , equal to the union of

{(1, 0) + k1(1, 0) + k2(2, 1)} (dark circles), and

{(0, 2) + k3(2, 0)} (shaded circles).

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Presburger predicates and semilinear sets
Stable configurations
Extensions
Monoid covers
The full result

Plan

Want to show that every predicate stably computed by a
population protocol is a finite union of sets of the form

{~b + k1~x1 + k2~x2 + · · ·+ km~xm}.

But the proof is too big to fit in the next eight slides.

So instead we’ll prove a weaker Pumping Lemma: Every
predicate stably computed by a population protocol is a finite
union of monoids: sets of the form

{~b + k1~x1 + k2~x2 + . . . },

where the number of terms may be infinite!

This is the first step in the real proof, which then shows that
finitely many terms are enough using large doses of algebra
and geometry.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Presburger predicates and semilinear sets
Stable configurations
Extensions
Monoid covers
The full result

Higman’s Lemma

Higman’s Lemma:

Any infinite sequence a1, a2, . . . in Nd has elements ai , aj with
ai ≤ aj and i < j .

Corollaries:

Every subset of Nd has finitely many minimal elements.
(Dickson’s Lemma.)
Every infinite subset of Nd contains an infinite ascending
sequence a1 < a2 < a3

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Presburger predicates and semilinear sets
Stable configurations
Extensions
Monoid covers
The full result

Output-stable configurations are semilinear

Recall a configuration is
output-stable if you can’t
generate a token with a different
output.

If x can generate a 1, so can any
configuration y ≥ x .

Non-stable configurations are
closed upwards ⇒ are union of
cones over finitely many minimal
points (by Dickson’s Lemma).

Non-stable configurations are
semilinear ⇒ so are stable
configurations.

Can generate a 1 token

Cannot generate a 1 token (output−stable)

Minimal points

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Presburger predicates and semilinear sets
Stable configurations
Extensions
Monoid covers
The full result

Truncation

From preceding slide, x is
output-stable iff x 6≥ bi for some
finite list of bi .

Let k > max bi (j) and define the
truncation
τk(x(j)) = min(k, x(j)).

We can detect from τk(x) if x ≥ bi

or not.

⇒ x is output-stable iff its
truncation is.

Can generate a 1 token

Cannot generate a 1 token (output−stable)

Minimal points

k

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Presburger predicates and semilinear sets
Stable configurations
Extensions
Monoid covers
The full result

Extensions

Want to recognize when adding more tokens to an input
doesn’t change its behavior.

Define the set X (c) of extensions of c by

X (c) = {x | ∃d : c + x → d and τk(d) = τk(c)}.

Intuition is that x is in X (c) if c can be “pumped” by x .

Not hard to show that extensions are composable: if x , y are
in X (c), then so is x + y . (This shows {c + X (c)} is a
monoid.)

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Presburger predicates and semilinear sets
Stable configurations
Extensions
Monoid covers
The full result

Monoid covers

Now we will hunt for a finite monoid cover of some stably
computable Y using extensions. The method is to build up a
family of sets x + X (c) where x is an input and c is an
output-stable configuration reachable from that input.

Order Y so that yi ≤ yj implies i < j . Let B0 = ∅. Compute
Bi as follows:

If yi ∈ x + X (c) for some (x , c) ∈ Bi−1, let Bi = Bi−1.
Otherwise, construct Bi by adding to Bi−1 the pairs

(yi , s(yi)), and
(yi , s(c + yi − x)) for all (x , c) ∈ Bi−1 with x ≤ yi ,

where s(z) is any stable configuration reachable from z .

Finally, let B =
⋃

Bi .

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Presburger predicates and semilinear sets
Stable configurations
Extensions
Monoid covers
The full result

B covers Y

Definition of Bi

Bi = Bi−1 if yi ∈ x + X (c), (x , c) ∈ Bi−1; else

Bi = Bi−1 plus

(yi , s(yi)), and
(yi , s(c + yi − x)) for all (x , c) ∈ Bi−1 with x ≤ yi ,

1 {x + X (c)} for (x , c) ∈ B covers Y . (We add yi to Bi if it
doesn’t.)

2 {x + X (c)} doesn’t contain anything outside Y . (Proof:
z ∈ x + X (c) implies z → z ′ ∈ c + X (c) and so z converges
to same output as c by definition of X (c).)

3 If we can show B is finite, we are done.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Presburger predicates and semilinear sets
Stable configurations
Extensions
Monoid covers
The full result

B is finite

Definition of Bi

Bi = Bi−1 if yi ∈ x + X (c), (x , c) ∈ Bi−1; else

Bi = Bi−1 plus

(yi , s(yi)), and
(yi , s(c + yi − x)) for all (x , c) ∈ Bi−1 with x ≤ yi ,

1 Suppose B is infinite.
2 Use Higman’s Lemma to get an increasing sequence

z1 < z2 < . . . such that (zi , ci) ∈ B for some ci .
3 Use Higman’s Lemma again to get an infinite subsequence

(zij , cij) where both z and c components are increasing.
4 Eventually, truncated τk(ci(j+1)

) = τk(cij).
5 But then zi(j+1)

− zij is in X (cij), so zi(j+1)
can’t be in B.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Presburger predicates and semilinear sets
Stable configurations
Extensions
Monoid covers
The full result

A pumping lemma

We just showed that any stably computable set has a finite
cover by monoids:

{~b + k1~x1 + k2~x2 + . . . },

Corollary: Any infinite stably computable set S can be
pumped: there is some ~b and ~x such that ~b + k~x is in S for
all k ∈ N.

Sadly, this is not enough to exclude some non-semilinear sets
like {(x , y) | x < y

√
2}.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Presburger predicates and semilinear sets
Stable configurations
Extensions
Monoid covers
The full result

The full result

Stably computable sets are semilinear, i.e. finite unions of sets
of the form

{~b + k1~x1 + k2~x2 + · · ·+ km~xm}.

This excludes pretty much anything that requires
multiplication, irrational constants, or nested loops to define.

Proof: see PODC 2006 paper.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Presburger predicates and semilinear sets
Stable configurations
Extensions
Monoid covers
The full result

Hooray! We’re done!

Question: If we have an exact characterization of what
population protocols can do, aren’t we done?

Answer: No.

Bounded-degree interaction graph gives all of LINSPACE
(Angluin et al., DCOSS 2005).
Random scheduling in a complete graph gives all of
LOGSPACE with exponential slowdown using simple
techniques (Angluin et al., PODC 2004), or polylogarithmic
slowdown using more sophisticated techniques (Angluin et al.,
DISC 2006).

Rest of talk: bounded-degree graphs, then random scheduling.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Presburger predicates and semilinear sets
Stable configurations
Extensions
Monoid covers
The full result

Hooray! We’re done!

Question: If we have an exact characterization of what
population protocols can do, aren’t we done?

Answer: No.

Bounded-degree interaction graph gives all of LINSPACE
(Angluin et al., DCOSS 2005).
Random scheduling in a complete graph gives all of
LOGSPACE with exponential slowdown using simple
techniques (Angluin et al., PODC 2004), or polylogarithmic
slowdown using more sophisticated techniques (Angluin et al.,
DISC 2006).

Rest of talk: bounded-degree graphs, then random scheduling.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Presburger predicates and semilinear sets
Stable configurations
Extensions
Monoid covers
The full result

Hooray! We’re done!

Question: If we have an exact characterization of what
population protocols can do, aren’t we done?

Answer: No.

Bounded-degree interaction graph gives all of LINSPACE
(Angluin et al., DCOSS 2005).
Random scheduling in a complete graph gives all of
LOGSPACE with exponential slowdown using simple
techniques (Angluin et al., PODC 2004), or polylogarithmic
slowdown using more sophisticated techniques (Angluin et al.,
DISC 2006).

Rest of talk: bounded-degree graphs, then random scheduling.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Leaders and followers

Generate a single wandering
leader token as in parity
protocol.

Leader deploys followers to
mark out subgraphs.

When two leaders collide,
survivor cleans up extra
followers.

Computing degrees

Leader () obtains lower bound on
degree by placing followers () on
adjacent nodes.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Leaders and followers

Generate a single wandering
leader token as in parity
protocol.

Leader deploys followers to
mark out subgraphs.

When two leaders collide,
survivor cleans up extra
followers.

Computing degrees

Leader () obtains lower bound on
degree by placing followers () on
adjacent nodes.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Leaders and followers

Generate a single wandering
leader token as in parity
protocol.

Leader deploys followers to
mark out subgraphs.

When two leaders collide,
survivor cleans up extra
followers.

Computing degrees

Leader () obtains lower bound on
degree by placing followers () on
adjacent nodes.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Leaders and followers

Generate a single wandering
leader token as in parity
protocol.

Leader deploys followers to
mark out subgraphs.

When two leaders collide,
survivor cleans up extra
followers.

Computing degrees

Leader () obtains lower bound on
degree by placing followers () on
adjacent nodes.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Leaders and followers

Generate a single wandering
leader token as in parity
protocol.

Leader deploys followers to
mark out subgraphs.

When two leaders collide,
survivor cleans up extra
followers.

Computing degrees

Leader () obtains lower bound on
degree by placing followers () on
adjacent nodes.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Leaders and followers

Generate a single wandering
leader token as in parity
protocol.

Leader deploys followers to
mark out subgraphs.

When two leaders collide,
survivor cleans up extra
followers.

Computing degrees

Leader () obtains lower bound on
degree by placing followers () on
adjacent nodes.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Leaders and followers

Generate a single wandering
leader token as in parity
protocol.

Leader deploys followers to
mark out subgraphs.

When two leaders collide,
survivor cleans up extra
followers.

Computing degrees

Leader () obtains lower bound on
degree by placing followers () on
adjacent nodes.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Leaders and followers

Generate a single wandering
leader token as in parity
protocol.

Leader deploys followers to
mark out subgraphs.

When two leaders collide,
survivor cleans up extra
followers.

Computing degrees

Leader () obtains lower bound on
degree by placing followers () on
adjacent nodes.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Leaders and followers

Generate a single wandering
leader token as in parity
protocol.

Leader deploys followers to
mark out subgraphs.

When two leaders collide,
survivor cleans up extra
followers.

Computing degrees

Leader () obtains lower bound on
degree by placing followers () on
adjacent nodes.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Leaders and followers

Generate a single wandering
leader token as in parity
protocol.

Leader deploys followers to
mark out subgraphs.

When two leaders collide,
survivor cleans up extra
followers.

Computing degrees

Leader () moves to new node and
repeats the experiment.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Leaders and followers

Generate a single wandering
leader token as in parity
protocol.

Leader deploys followers to
mark out subgraphs.

When two leaders collide,
survivor cleans up extra
followers.

Computing degrees

Leader () moves to new node and
repeats the experiment.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Leaders and followers

Generate a single wandering
leader token as in parity
protocol.

Leader deploys followers to
mark out subgraphs.

When two leaders collide,
survivor cleans up extra
followers.

Computing degrees

Leader () moves to new node and
repeats the experiment.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Leaders and followers

Generate a single wandering
leader token as in parity
protocol.

Leader deploys followers to
mark out subgraphs.

When two leaders collide,
survivor cleans up extra
followers.

Computing degrees

Leader () moves to new node and
repeats the experiment.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Leaders and followers

Generate a single wandering
leader token as in parity
protocol.

Leader deploys followers to
mark out subgraphs.

When two leaders collide,
survivor cleans up extra
followers.

Computing degrees

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Leaders and followers

Generate a single wandering
leader token as in parity
protocol.

Leader deploys followers to
mark out subgraphs.

When two leaders collide,
survivor cleans up extra
followers.

Computing degrees

With two leaders, one consumes
the other and then cleans up all
followers.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Leaders and followers

Generate a single wandering
leader token as in parity
protocol.

Leader deploys followers to
mark out subgraphs.

When two leaders collide,
survivor cleans up extra
followers.

Computing degrees

With two leaders, one consumes
the other and then cleans up all
followers.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Leaders and followers

Generate a single wandering
leader token as in parity
protocol.

Leader deploys followers to
mark out subgraphs.

When two leaders collide,
survivor cleans up extra
followers.

Computing degrees

With two leaders, one consumes
the other and then cleans up all
followers.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Leaders and followers

Generate a single wandering
leader token as in parity
protocol.

Leader deploys followers to
mark out subgraphs.

When two leaders collide,
survivor cleans up extra
followers.

Computing degrees

With two leaders, one consumes
the other and then cleans up all
followers.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Leaders and followers

Generate a single wandering
leader token as in parity
protocol.

Leader deploys followers to
mark out subgraphs.

When two leaders collide,
survivor cleans up extra
followers.

Computing degrees

With two leaders, one consumes
the other and then cleans up all
followers.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Leaders and followers

Generate a single wandering
leader token as in parity
protocol.

Leader deploys followers to
mark out subgraphs.

When two leaders collide,
survivor cleans up extra
followers.

Computing degrees

With two leaders, one consumes
the other and then cleans up all
followers.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Leaders and followers

Generate a single wandering
leader token as in parity
protocol.

Leader deploys followers to
mark out subgraphs.

When two leaders collide,
survivor cleans up extra
followers.

Computing degrees

With two leaders, one consumes
the other and then cleans up all
followers.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Leaders and followers

Generate a single wandering
leader token as in parity
protocol.

Leader deploys followers to
mark out subgraphs.

When two leaders collide,
survivor cleans up extra
followers.

Computing degrees

With two leaders, one consumes
the other and then cleans up all
followers.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Distance-2 colorings

In bounded-degree graphs,
we can color the nodes so
that all neighbors of any
given node have different
colors, giving a distance-2
coloring.

Colors act as local
identifiers, allowing a node
to point to particular
neighbors.

Distance-2 coloring

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Distance-2 colorings

In bounded-degree graphs,
we can color the nodes so
that all neighbors of any
given node have different
colors, giving a distance-2
coloring.

Colors act as local
identifiers, allowing a node
to point to particular
neighbors.

Distance-2 coloring

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Distance-2 colorings

In bounded-degree graphs,
we can color the nodes so
that all neighbors of any
given node have different
colors, giving a distance-2
coloring.

Colors act as local
identifiers, allowing a node
to point to particular
neighbors.

Distance-2 coloring

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Distance-2 coloring

Main problem is to detect
duplicate colors among
neighbors.

Each node records how
many times it has interacted
with each neighbor (mod 2).

On a mismatch, both nodes
pick a new color
nondeterministically.a

aCan be reduced to a deterministic
protocol by exploiting nondeterministic
scheduling—see OPODIS 2005 paper.

Detecting duplicates

0

0

0

(Numbers are mod-2 interaction
counts, indexed by neighbor
color.)

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Distance-2 coloring

Main problem is to detect
duplicate colors among
neighbors.

Each node records how
many times it has interacted
with each neighbor (mod 2).

On a mismatch, both nodes
pick a new color
nondeterministically.a

aCan be reduced to a deterministic
protocol by exploiting nondeterministic
scheduling—see OPODIS 2005 paper.

Detecting duplicates

0

0

0

(Numbers are mod-2 interaction
counts, indexed by neighbor
color.)

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Distance-2 coloring

Main problem is to detect
duplicate colors among
neighbors.

Each node records how
many times it has interacted
with each neighbor (mod 2).

On a mismatch, both nodes
pick a new color
nondeterministically.a

aCan be reduced to a deterministic
protocol by exploiting nondeterministic
scheduling—see OPODIS 2005 paper.

Detecting duplicates

1

1

0

(Numbers are mod-2 interaction
counts, indexed by neighbor
color.)

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Distance-2 coloring

Main problem is to detect
duplicate colors among
neighbors.

Each node records how
many times it has interacted
with each neighbor (mod 2).

On a mismatch, both nodes
pick a new color
nondeterministically.a

aCan be reduced to a deterministic
protocol by exploiting nondeterministic
scheduling—see OPODIS 2005 paper.

Detecting duplicates

1

1

0

(Numbers are mod-2 interaction
counts, indexed by neighbor
color.)

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Distance-2 coloring

Main problem is to detect
duplicate colors among
neighbors.

Each node records how
many times it has interacted
with each neighbor (mod 2).

On a mismatch, both nodes
pick a new color
nondeterministically.a

aCan be reduced to a deterministic
protocol by exploiting nondeterministic
scheduling—see OPODIS 2005 paper.

Detecting duplicates

0

0

0

(Numbers are mod-2 interaction
counts, indexed by neighbor
color.)

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Distance-2 coloring

Main problem is to detect
duplicate colors among
neighbors.

Each node records how
many times it has interacted
with each neighbor (mod 2).

On a mismatch, both nodes
pick a new color
nondeterministically.a

aCan be reduced to a deterministic
protocol by exploiting nondeterministic
scheduling—see OPODIS 2005 paper.

Detecting duplicates

0

0

0

(Numbers are mod-2 interaction
counts, indexed by neighbor
color.)

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Distance-2 coloring

Main problem is to detect
duplicate colors among
neighbors.

Each node records how
many times it has interacted
with each neighbor (mod 2).

On a mismatch, both nodes
pick a new color
nondeterministically.a

aCan be reduced to a deterministic
protocol by exploiting nondeterministic
scheduling—see OPODIS 2005 paper.

Detecting duplicates

1

0

1

(Numbers are mod-2 interaction
counts, indexed by neighbor
color.)

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Distance-2 coloring

Main problem is to detect
duplicate colors among
neighbors.

Each node records how
many times it has interacted
with each neighbor (mod 2).

On a mismatch, both nodes
pick a new color
nondeterministically.a

aCan be reduced to a deterministic
protocol by exploiting nondeterministic
scheduling—see OPODIS 2005 paper.

Detecting duplicates

1

0

1

(Numbers are mod-2 interaction
counts, indexed by neighbor
color.)

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Distance-2 coloring

Main problem is to detect
duplicate colors among
neighbors.

Each node records how
many times it has interacted
with each neighbor (mod 2).

On a mismatch, both nodes
pick a new color
nondeterministically.a

aCan be reduced to a deterministic
protocol by exploiting nondeterministic
scheduling—see OPODIS 2005 paper.

Detecting duplicates

1

0

1

(Numbers are mod-2 interaction
counts, indexed by neighbor
color.)

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Spanning trees

Can build a spanning tree
starting at some unique
root.

Assumes we already have a
distance-2 coloring.

Solution: build tree in
parallel with coloring, reset
tree builder whenever a node
changes color.

Spanning tree

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Spanning trees

Can build a spanning tree
starting at some unique
root.

Assumes we already have a
distance-2 coloring.

Solution: build tree in
parallel with coloring, reset
tree builder whenever a node
changes color.

Spanning tree

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Spanning trees

Can build a spanning tree
starting at some unique
root.

Assumes we already have a
distance-2 coloring.

Solution: build tree in
parallel with coloring, reset
tree builder whenever a node
changes color.

Spanning tree

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Spanning trees

Can build a spanning tree
starting at some unique
root.

Assumes we already have a
distance-2 coloring.

Solution: build tree in
parallel with coloring, reset
tree builder whenever a node
changes color.

Spanning tree

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Spanning trees

Can build a spanning tree
starting at some unique
root.

Assumes we already have a
distance-2 coloring.

Solution: build tree in
parallel with coloring, reset
tree builder whenever a node
changes color.

Spanning tree

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Spanning trees

Can build a spanning tree
starting at some unique
root.

Assumes we already have a
distance-2 coloring.

Solution: build tree in
parallel with coloring, reset
tree builder whenever a node
changes color.

Spanning tree

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Spanning trees

Can build a spanning tree
starting at some unique
root.

Assumes we already have a
distance-2 coloring.

Solution: build tree in
parallel with coloring, reset
tree builder whenever a node
changes color.

Spanning tree

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Spanning trees

Can build a spanning tree
starting at some unique
root.

Assumes we already have a
distance-2 coloring.

Solution: build tree in
parallel with coloring, reset
tree builder whenever a node
changes color.

Spanning tree

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Spanning trees

Can build a spanning tree
starting at some unique
root.

Assumes we already have a
distance-2 coloring.

Solution: build tree in
parallel with coloring, reset
tree builder whenever a node
changes color.

Spanning tree

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Spanning trees

Can build a spanning tree
starting at some unique
root.

Assumes we already have a
distance-2 coloring.

Solution: build tree in
parallel with coloring, reset
tree builder whenever a node
changes color.

Spanning tree

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Spanning trees

Can build a spanning tree
starting at some unique
root.

Assumes we already have a
distance-2 coloring.

Solution: build tree in
parallel with coloring, reset
tree builder whenever a node
changes color.

Spanning tree

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Spanning trees

Can build a spanning tree
starting at some unique
root.

Assumes we already have a
distance-2 coloring.

Solution: build tree in
parallel with coloring, reset
tree builder whenever a node
changes color.

Spanning tree

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Spanning trees

Can build a spanning tree
starting at some unique
root.

Assumes we already have a
distance-2 coloring.

Solution: build tree in
parallel with coloring, reset
tree builder whenever a node
changes color.

Spanning tree

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Spanning trees

Can build a spanning tree
starting at some unique
root.

Assumes we already have a
distance-2 coloring.

Solution: build tree in
parallel with coloring, reset
tree builder whenever a node
changes color.

Spanning tree

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Spanning trees

Can build a spanning tree
starting at some unique
root.

Assumes we already have a
distance-2 coloring.

Solution: build tree in
parallel with coloring, reset
tree builder whenever a node
changes color.

Spanning tree

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Distributed computation

Unroll DFS traversal of spanning tree to get a linear-size
Turing machine tape (Itkis and Levin, FOCS 1994).

⇒ bounded-degree graph can compute all of LINSPACE.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Leaders and followers
Distance-2 colorings
Building a tree
Distributed computation

Is it practical?

Algorithms have poor performance even if we assume
non-adversarial interaction pattern.

Wandering leaders may require Θ(N3) cover time to visit all
nodes.

Unique leader/colorizer/walker agents are bottlenecks.

More work is needed to get efficient algorithms and good
programming tools.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Randomized population protocols
Basic structure
Phase clock
More advanced operations
Results

Computation by epidemic

Last part:

Back to complete interaction graph.

But assume random scheduling.

Goal: efficient computation in a test tube.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Randomized population protocols
Basic structure
Phase clock
More advanced operations
Results

Randomized population protocols

Assume next pair of agents to interact is chosen uniformly
(i.e. with probability 1

N(N−1)).

This gives the randomized population protocol model from
(Angluin et al., PODC 2004).

It also is the uniform-rate case of the standard model for
well-mixed chemical systems (e.g. (Gillespie 1977)).

Expected time is obtained by dividing expected interactions
by N—each agent interacts at a fixed rate regardless of size of
the population.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Randomized population protocols
Basic structure
Phase clock
More advanced operations
Results

A test-tube computer

Register values (up to O(N)) are stored
as tokens distributed across the
population.

A unique leader agent acts as the
(finite-state) CPU.

We want to support the usual operations
of addition, subtraction, comparison,
multiplication, division, etc.

We want to do them all in polylogarithmic
time (O(N logO(1) N) interactions).

We’ll accept a small (O(N−Θ(1)))
probability of error.

A

A

A
A

A

B

B

B

B

B

B

B

B

B

C

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Randomized population protocols
Basic structure
Phase clock
More advanced operations
Results

Epidemics

Key fact: An epidemic starting from one infected agent
spreads to all agents in Θ(log N) time with high probability.

This gives us a broadcast primitive.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Randomized population protocols
Basic structure
Phase clock
More advanced operations
Results

Instruction cycle

Leader propagates a new opcode via
epidemic.

Followers carry out chosen operation:

A← 0: Erase your A token upon receipt
of opcode.
A← A + B: Make a new A token for
each B token.
A

?
= 0: Start a counter-epidemic if you

have an A.
A > B, A← A− B, etc.: more
complicated.

Leader collects response (if any) from
counter-epidemic, updates its state, and
starts a new cycle.

A

A

A
A

A

B

B

B

B

B

B

B

B

B

C

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Randomized population protocols
Basic structure
Phase clock
More advanced operations
Results

Instruction cycle

Leader propagates a new opcode via
epidemic.

Followers carry out chosen operation:

A← 0: Erase your A token upon receipt
of opcode.
A← A + B: Make a new A token for
each B token.
A

?
= 0: Start a counter-epidemic if you

have an A.
A > B, A← A− B, etc.: more
complicated.

Leader collects response (if any) from
counter-epidemic, updates its state, and
starts a new cycle.

A

A

A
A

A

B

B

B

B

B

B

B

B

B

C

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Randomized population protocols
Basic structure
Phase clock
More advanced operations
Results

Instruction cycle

Leader propagates a new opcode via
epidemic.

Followers carry out chosen operation:

A← 0: Erase your A token upon receipt
of opcode.
A← A + B: Make a new A token for
each B token.
A

?
= 0: Start a counter-epidemic if you

have an A.
A > B, A← A− B, etc.: more
complicated.

Leader collects response (if any) from
counter-epidemic, updates its state, and
starts a new cycle.

A

A

A
A

A

B

B

B

B

B

B

B

B

B

C

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Randomized population protocols
Basic structure
Phase clock
More advanced operations
Results

What’s missing?

Problem: How does the leader know when to start the next
instruction cycle?

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Randomized population protocols
Basic structure
Phase clock
More advanced operations
Results

Bounding the time for epidemics

0
200
400
600
800

1000

0 8000 16000

In
fe

ct
ed

ag
en

ts

Interactions

Average interactions to
infect next victim is N(N−1)

i(N−i) .

For i > N/2, this is Θ(N/i),
the waiting time for coupon
collector.

⇒ Known coupon collector
concentration results
(Kamath et al., 1995)
bound i > N/2 case:
Θ(N log N) w.h.p.

Symmetry bounds i > N/2
case.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Randomized population protocols
Basic structure
Phase clock
More advanced operations
Results

Phase clock

Each agent is in a phase in
the range 0 to m − 1.

An initiator in a later phase
modm recruits agents in
earlier phases.

The leader advances if it
sees an initiator in its own
phase.

Result: Leader goes all the
way around every Θ(log N)
time units.

1
1

1

0
0

0
00

0
0 0

0
0

0
0

7

77

6

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Randomized population protocols
Basic structure
Phase clock
More advanced operations
Results

Phase clock

Each agent is in a phase in
the range 0 to m − 1.

An initiator in a later phase
modm recruits agents in
earlier phases.

The leader advances if it
sees an initiator in its own
phase.

Result: Leader goes all the
way around every Θ(log N)
time units.

1
1

1

0
0

0
00

0
0 0

0
0

0
0

7

77

6

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Randomized population protocols
Basic structure
Phase clock
More advanced operations
Results

Phase clock

Each agent is in a phase in
the range 0 to m − 1.

An initiator in a later phase
modm recruits agents in
earlier phases.

The leader advances if it
sees an initiator in its own
phase.

Result: Leader goes all the
way around every Θ(log N)
time units.

1
1

1

0
0

0
00

0
0 0

0
0

0
0

7

77

0

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Randomized population protocols
Basic structure
Phase clock
More advanced operations
Results

Phase clock

Each agent is in a phase in
the range 0 to m − 1.

An initiator in a later phase
modm recruits agents in
earlier phases.

The leader advances if it
sees an initiator in its own
phase.

Result: Leader goes all the
way around every Θ(log N)
time units.

1
1

1

0
0

0
00

0
0 0

0
0

0
0

7

77

0

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Randomized population protocols
Basic structure
Phase clock
More advanced operations
Results

Phase clock

Each agent is in a phase in
the range 0 to m − 1.

An initiator in a later phase
modm recruits agents in
earlier phases.

The leader advances if it
sees an initiator in its own
phase.

Result: Leader goes all the
way around every Θ(log N)
time units.

1
1

1

0
0

0
00

0
0 0

0
0

0
0

7

77

0

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Randomized population protocols
Basic structure
Phase clock
More advanced operations
Results

Phase clock: simulation results

0
100
200
300
400
500
600
700
800
900

1000

0 50000 100000 150000 200000

Interactions

Phase clock with N = 1000 and m = 8.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Randomized population protocols
Basic structure
Phase clock
More advanced operations
Results

Phase clock: simulation results

0

5

10

15

20

0 50000 100000 150000 200000

Interactions

Zoomed view of phase 0 and phase 4.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Randomized population protocols
Basic structure
Phase clock
More advanced operations
Results

Why it works

Phases i and higher act as an epidemic wiping out phases
i − 1 and lower.

This epidemic finishes in a log N time (with high probability).

When the leader advances, it takes at least b log N time
(w.h.p.) to generate at least Nε agents in the same phase ⇒
leader advances before b log N time (a short phase) with
probability NO(ε)−1.

For a sufficiently large number of phases m, the chance of too
many short phases in a row is O(N−c).

Amazing fact: m depends on c but not N.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Randomized population protocols
Basic structure
Phase clock
More advanced operations
Results

Other operations

Operations like assignment and addition that don’t require
tokens to interact can be done in one instruction cycle
(O(log N) time).

Operations that do require interaction may take longer.

Naive A
?
> B algorithm: Have A and B tokens cancel until

only one kind is left.
This takes Ω(N2) interactions if there are few A’s and B’s.

How can we do cancellation faster?

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Randomized population protocols
Basic structure
Phase clock
More advanced operations
Results

Cancellation by amplification

Cancellation is fast if there are many tokens to cancel.

Solution: Alternate between canceling and doubling.

Invariant Ak − Bk = 2k(A0 − B0) after k rounds.

If no winner in 2 log N rounds, A0 = B0.

This gives A
?
< B in O(log2 N) time.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Randomized population protocols
Basic structure
Phase clock
More advanced operations
Results

Subtraction and division by binary search

To compute C ← A− B, do binary search for C such that
A = B + C .

This takes O(log N) rounds of binary search at O(log2 N)
time each ⇒ O(log3 N) time.

Similar approach for division gives O(log4 N) time. (This is
our most expensive operation.)

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Randomized population protocols
Basic structure
Phase clock
More advanced operations
Results

Results

For a randomized population protocol with a unique initial leader,
we have:

Register machine simulation:

Θ(log N)-bit registers.
O(log4 N) expected time per operation.
O(N−c) probability of failure.

Presburger predicate computation:

O(log4 N) expected time. (Cf. O(N) for previous protocols.)
Zero probability of failure.
Trick: Combine fast fallible protocol with slow robust one.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Randomized population protocols
Basic structure
Phase clock
More advanced operations
Results

What’s left?

What happens if we don’t have a leader to start with?

Election by fratricide takes Θ(N2) interactions.
Phase clock is irretrievably corrupted during election process.

Can we elect a leader faster?

Can we build a more robust phase clock?

Can we cut down the polylog overhead?

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Summary

What we have:

Clean model of large-scale small-scale systems.

Complete characterization of complete-graph case with
adversarial scheduling.

Powerful (but slow) Turing machine simulator for
bounded-degree case with adversarial scheduling.

Fast register-machine simulator for complete-graph case with
random scheduling and an initial leader.

January 29th, 2007 Population Protocols

Population protocols
Impossibility results

Computation on graphs
Computation by epidemic

Conclusions

Summary

What we still want:

Better algorithms and programming tools for bounded-degree
case.

Better understanding of intermediate large-degree cases.

Better performance (and assumptions) for random-scheduling
case.

January 29th, 2007 Population Protocols

	Population protocols
	Population protocols
	Stable computations
	Stably computable predicates

	Impossibility results
	Presburger predicates and semilinear sets
	Stable configurations
	Extensions
	Monoid covers
	The full result

	Computation on graphs
	Leaders and followers

