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Summary. In a shared-memory distributed system, n

independent asynchronous processes communicate by read-

ing and writing to shared variables. An algorithm is
adaptive (to total contention) if its step complexity de-
pends only on the actual number, &, of active processes
in the execution; this number is unknown in advance
and may change in different executions of the algorithm.
Adaptive algorithms are inherently wait-free, providing
fault-tolerance in the presence of an arbitrary number of
crash failures and different processes’ speed.

A wait-free adaptive collect algorithm with O(k) step
complexity is presented, together with its applications
in wait-free adaptive algorithms for atomic snapshots,
immediate snapshots and renaming.

Key words: asynchronous shared-memory systems —
contention-sensitive complexity — wait-free algorithms
— read/write registers — atomic snapshots — immediate
snapshots — renaming

1 Introduction

An asynchronous shared-memory system consists of n
asynchronous processes, each with a distinct identifier,
communicating by reading and writing to shared vari-
ables. Wait-free algorithms [25] guarantee that a process
completes its operation within a finite number of its own
steps regardless of the behavior of other processes.

In a wait-free algorithm, processes typically collect
up-to-date information from each other by reading from

an array indexed with process’ identifiers. Since distributed

algorithms are designed to accommodate a large number
of processes, this scheme is an over-kill when few pro-
cesses participate in the algorithm: many entries are read
although they contain irrelevant information about pro-
cesses not wishing to coordinate. An adaptive algorithm
alleviates this concern as its step complexity expression
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1s bounded by a function of the number of processes that
participate in the algorithm (the active processes).

This paper presents an algorithm for collecting up-
to-date information whose step complexity adjusts to the
number of active processes. We also present several ap-
plications of this algorithm, demonstrating a modular
way to obtain adaptive algorithms for other problems.

Our adaptive wait-free collect algorithm (presented
in Section 3) has O(k) step complexity, where k is the
number of active processes. Clearly, any algorithm that
requires f(k) stores and collects (for some function f)
can be made adaptive by substituting our collect algo-
rithm. More sophisticated usage of the collect algorithm
is required in order to obtain adaptive wait-free algo-
rithms for atomic snapshots and immediate snapshots.
Adaptive atomic snapshots and immediate snapshots, in
turn, imply adaptive renaming algorithms.

Atomic snapshots [1] provide instantaneous global
views of the shared memory; they are widely accepted
as a tool for simplifying the design of wait-free algo-
rithms. Our atomic snapshots algorithm (Section 4) is
based on [15] and it has O(klog k) step complexity.

Immediate snapshots [19] extend atomic snapshots,
and guarantee that no process obtains a view that is
strictlybetween an update of process p; and the following
view p; obtains; they were used for renaming [19] and to
study wait-free solvable tasks [16,18,29]. Our immediate
snapshots algorithm (Section 5) is based on [7,17] and it
has O(k3) step complexity.

In the M -renaming problem [10], each process starts
with a distinct name in some range and is required to
choose a distinct name in a smaller range of size M. In
the more general long-lived M-renaming problem [28],
processes repeatedly acquire and release names. Adap-
tive versions of well-known wait-free (2k — 1)-renaming
algorithms are easily obtained with adaptive atomic snap-
shots and immediate snapshots (see [24]). This includes
a one-shot algorithm with O(k?) step complexity [19],
which is presented in Section 6.

In another paper [13], we present efficient adaptive
wait-free algorithms for lattice agreement (one-shot atomic
snapshots) and (6k — 1)-renaming; these algorithms do



not use a collect procedure and their step complexity
is O(klogk). Afek and Merritt [4] use them to obtain
an adaptive wait-free (2k — 1)-renaming algorithm, with
O(k?) step complexity.

Several papers [9,27,28] study algorithms whose step
complexity depends only on n, and not on the range of
process’ identifiers. These algorithms provide a weaker
guarantee than adaptive algorithms, whose step com-
plexity adjusts to the actual number of active processes,
which can be much lower than the upper bound, n. An-
derson and Moir [9] present an adaptive renaming algo-
rithm that uses the (stronger) test&set memory access
operation.

The algorithms presented in this paper adapt to the
total contention—if a process ever performs a step, then
it influences the step complexity of the algorithm through-
out the execution. More useful are algorithms that adapt
to the current contention, that is, whose step complex-
ity depends only on the number of currently active pro-
cesses. Our collect algorithm is a building block in a
long-lived renaming algorithm [2,12], whose step com-
plexity adapts to the current contention. The long-lived
renaming algorithm, in turn, 1s used in a collect algo-
rithm [5] with O(k®) step complexity, where k is the
current contention. This collect algorithm is used to ex-
tend our immediate snapshot algorithm to be long-lived
and adapt to current contention [6] (with O(k*) step
complexity). Afek, Dauber and Touitou [3] introduce im-
plementations of long-lived objects whose step complex-
ity 18 linear in the current contention; however, they use
strong load-linked and store-conditional operations.

Lamport [26] suggests a mutual exclusion algorithm
that requires a constant number of steps when a sin-
gle process wishes to enter the critical section, using
reads and writes; when several processes compete for the
critical section, the complexity depends on the range of
names. Choy and Singh [21] present mutual exclusion al-
gorithms, using reads and writes, which are adaptive in
an amortized sense; in the worst case, the step complex-
ity of their algorithms depends on n. (Alur and Tauben-
feld [8] show that this is inherent.)

2 Preliminaries

We consider n processes, pi,...,Pn; each process p; is
modeled as a (possibly infinite) state machine, with a
unique name id; € {0,..., N — 1}. Processes communi-
cate by read and write operations on shared variables; a
read(R) operation does not change the state of R and
returns the current state of R; a write(v, R) operation
changes the state of R to v. Registers are mulli-writer
multi-reader, allowing read and write operations by all
processes.

An event is a computation step by a single process; in
an event, a process determines the operation to perform
according to its local state, and determines its next local
state according to the value returned by the operation.

An execution « is a (finite or infinite) sequence of
events ¢g, ¢1, d2,.... For every r = 0,1,.. . if p; 1s the
process performing the event ¢,, then it applies a read
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or a write operation to a single register and changes its
state according to its transition function. There are no
constraints on the interleaving of events by different pro-
cesses, reflecting the assumption that processes are asyn-
chronous and there is no bound on their relative speeds.

A process is active in an execution « if it takes a step
in a. Let k(«) be the number of active processes in a.

An algorithm specifies procedures to be invoked when
a process performs an operation. The interval of an oper-
ation op; by process p; is the execution segment between
the first event and the last event of p; in op;. If the last
event of p; in op; is before the first event of process p; in
an operation op;, then op; precedes op; and op; follows

op;.

For an execution segment 3, let step(3,p;) be the
number of read/write operations performed by process
pi in .

Algorithm A is adaptive (to total contention) if there
is a function f : N — N such that the following holds
for every execution « of A: if process p; has an opera-
tion interval 3 in «, then step(8,p;) < f(k(«)). Namely,
the step complexity of an operation depends only on the
number of active processes in «.

A wait-free algorithm guarantees that every process
completes its computation in a finite number of steps,
regardless of the behavior of other processes. Since k(«)
is bounded (it is at most n), f(k(«)) is also bounded;
hence, an adaptive algorithm must be wait-free.

A view V is aset of process-value pairs, {{(p;,, vs,), ...}
without repetitions of processes. V' (id;) refers to v;, if
(p;j,v;) €V, and to — otherwise.

A solution for the collect problem provides algorithms
for two operations—store and collect. A store(wval) oper-
ation of p; declares val as the latest value for p;, and a
collect operation returns the latest values stored by ac-
tive processes. Formally, a collect operation cop returns
a view V such that the following holds for every process
p;: if V(p;) = —, then no store operation of p; precedes
cop; if V(p;) = v # — then v is the value of a store op-
eration sop of p; that does not follow cop, and there is
no other store operation sop’ of p; that follows sop and
precedes cop. That is, cop does not read from the future
or miss a preceding store operation.

Moreover, if a collect operation op follows another
collect operation cop’, then cop should return a view that
is more up-to-date. To capture this notion, we define a
partial order on views: Vi < Vi, if for every process p;
such that (p;,v}) € Vi, we have (p;,v}) € Va, and v is
written in a store operation of p; that follows or is equal
to a store operation of p; that writes v}. We require that
if cop precedes cop’, then V; < V5.

The collect problem is easily solved using an array in-
dexed with processes’ names: A process stores its most
recent value to the entry indexed with its name; to col-
lect, a process reads the entire array. (This can be used
as an alternative definition, cf. [5].) In this scheme, a
collect requires O(N) steps.
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Fig. 2. An execution of register in a complete binary tree of
splitters.

3 Adaptive Collect

We present an adaptive wait-free algorithm for store and
collect, with O(k) step complexity. The algorithm uses
the splitter suggested by Moir and Anderson [28]: A pro-
cess entering a splitter exits with either stop, left or
right. It is guaranteed that if a single process enters the
splitter, then 1t obtains stop, and if two or more pro-
cesses enter the splitter, then there are two processes
that obtain different values. (See Figure 1) Thus the set
of processes is “split” into smaller subsets, according to
the values obtained.

The collect algorithm uses a complete binary tree of
depth n — 1, with splitters in the vertices. In its first
store, a process acquires a vertex v; from this point on,
the process stores its up-to-date values in v.val.

A process acquires a vertex in the tree using proce-
dure register; in register, the process starts at the root
and moves down the tree according to the values ob-
tained in the splitters along the path: If it receives left,
it moves to the left child; if it receives right, it moves to
the right child. A process marks each vertex it accesses
by raising a flag associated with the vertex; a vertex is
marked, if its flag 1s raised. The process acquires a vertex
v when 1t obtains stop at the splitter associated with v;
then it writes its id into v.id. (See Figure 2.)

To perform a collect, a process traverses the part of
the tree containing marked vertices, in DFS order, and
collects the values written in the marked vertices.

A simple implementation of a splitter [28] is based
on Lamport’s mutual exclusion algorithm [26], and uses
two shared variables, X and Y. Initially, X = — and
Y = false. A process executing the splitter first writes
its id into X and then reads Y. If Y = true, then the
process returns right. Otherwise, the process sets Y =
true and checks X. If X still contains its id, then the

process returns stop; if X does not contain its id, then
the process returns left. The following lemma, from [28],
states the main properties of the splitter.

Lemma 1. If £ processes access a specific splitter, then
the following conditions hold:

(1) at most one process obtains stop in this splitter,
(2) at most £ — 1 processes obtain left in this splitter,
and

(3) at most £ — 1 processes obtain right in this splitter.

The code for collect and store, as well as for the split-
ter, appears in Algorithm 1. In the algorithm, the fol-
lowing shared variables are associated with each vertex
v in the tree:

mark: Indicates whether some process accessed v;
initially false.
ud: Holds the identifier of the process that stops

in v; initially —.

value: Holds an updated value of the process that
stops 1n v; initially —.

X: Holds a process’ identifier, for the splitter
associated with v; initially —.

Y Holds a Boolean value, for the splitter asso-
ciated with v; initially false.

left-child:  Pointer to the left child of w.

right-child: Pointer to the right child of v.

To prove the correctness and complexity of the algo-
rithm, fix an execution « of the algorithm and let & be
the number of processes that call store at least once in
a.

Lemma 2. If the depth of a vertex v isd, 0 < d < k,
then at most k — d processes access v.

Proof. The proof is by induction on d, the depth of v. In
the base case, d = 0, the lemma trivially holds since at
most k processes are active.

For the induction step, suppose that the lemma holds
for vertices at depth d, 0 < d < k, and consider some
vertex v with depth d+ 1. Let u be v’s parent in the tree.
The depth of u is d, and by the inductive hypothesis, at
most k — d processes access u. If v is the left child of u,
then Property (2) of the splitter (Lemma 1) implies that
at most k — d — 1 of the processes obtain left at v and
access v. If v is the right child of u, then Property (3) of
the splitter (Lemma 1) implies that at most k—d— 1 of
the processes obtain right at u and access v. O

By Lemma 2 and the algorithm, when a process per-
forms register, it stops in a vertex with depth less than or
equal to k—1. By Property (1) of the splitter (Lemma 1),
at most one process stops in each vertex. Therefore, we
have the following lemma:

Lemma 3. Fach process writes its id in a verter with
depth < k — 1 and no other process wriles ils id in the
same verter.

Since each splitter requires a constant number of op-
erations, Lemma 3 implies that the step complexity of



Alg. 1 store and collect: code for process p;.

shared variables:
CollectTree : complete binary tree of splitters
of depth n — 1
local variables: // persistent across invocations of store
descriptor : vertex, initially —

// update value
// first time

void procedure store(val)

1. if ( descriptor == — ) then
descriptor = register()

2. descriptor.value = val

vertex procedure register() // acquire a vertex

1. v = CollectTree.root

2. repeat

3 v.mark = true

4. move = splitter(v) // returns stop, left, or right
5. if ( move == left ) then v = v.left-child

6 if ( move == right ) then v = v.right-child

7. until ( move == stop )

8. wvid = id; // write your identifier
9. return v // location descriptor

view procedure collect()
// collect updated values of active processes

1. return( DFS(®, CollectTree.root) )

view procedure DFS(V : view; v : vertex)

// DFS traversal of the marked part of the tree
1. if ( v.mark ) then
2. if (v.value # — ) then V =V U {{v.id, v.value)}
3.V =V UDFS(V, v.left-child)
4 V = V UDFS(V, v.right-child)
5. return(V)

{left, right, stop} procedure splitter(v : vertex)

// from Moir and Anderson [28]
v.X = id; // write your identifier
if (©v.Y) then return(right)
v.Y = true
if (v.X == id; ) then return(stop) // check identifier

else return(left)

Gt WY =

register is O(k). This implies that the first invocation of
store requires O(k) steps; clearly, all later invocations of
store require only O(1) steps. In addition, this lemma
implies that the location descriptors returned by register
are unique.

If a vertex v is marked, then some process p; sets
v.mark to true; this process also marks all the vertices
on the path from the root to v before marking v. Since
no process resets mark variables to false, this implies
the next lemma:

Lemma 4. All vertices on the path from the root to a
marked verter v are marked.

Assume that cop is a collect of process p;. If some
process p; completes its first store before p; starts cop,
then p; writes «d; into v.id, for some vertex v, before p;
starts cop. By Lemma 4, all vertices on the path from the
root to v are marked, and therefore, p; visits v during
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the DFS traversal in cop. The algorithm implies that p;
reads p;’s most up-to-date value from v.value. Clearly, p;
cannot read a value written by a store of p; that follows
cop. Moreover, since values are updated with a single
operation, a later collect returns a more up-to-date view.
This implies that Algorithm 1 solves the collect problem.

Theorem 1. Assume a collect operation cop returns a
view V. Then the following holds for every process p;:
(1) if V(p;) = —, then no store operation of p; precedes
cop;

(2) if V(p;) = v # —, then v is the value of a store
operation sop of p; that does not follow cop, and there ts
no other store operation sop’ of p; that follows sop and
precedes cop;

(3) if cop precedes a collect operation cop’ that returns a
view V', then V < V',

The step complexity of collect is linear in the num-
ber of vertices in the marked tree that are traversed by
procedure DFS. We prove that this number is at most
2k — 1. (This holds despite the fact that the depth of the
marked tree can be k, which in general implies only a
bound of 2% on the number of marked vertices.)

Consider a collect operation, and let « be the shortest
finite execution prefix that contains its execution inter-
val. Let S = vy, v1,...,v; be the vertices of the marked
tree after «, appearing in an in-order; i.e., for every
marked vertex, v, the vertices of the left sub-tree of v
appear before v in S and the vertices of the right sub-
tree of v appear after v in S.

A vertex v € S 18 grey if there is a process that ac-
cesses the left child of v in « (that is, writes true in the
variable mark of v.left-child) and there is a process that
accesses the right child of v in « (that is, writes true in
the variable mark of v.right-child). A marked vertex that
is not grey is black. For any black vertex v, (a) there is
a process that sets v.mark to true, and (b) one of the
children of v (e.g., v.right-child) is not accessed by any
process in «. By Lemma 1(2), not all the processes ac-
cessing v return left. Therefore, at least one process that
accesses v either returns stop in v, or fault-stops in v.

Lemma 5. There is a black vertex between every pair of
grey vertices in S.

Proof. Suppose, by way of contradiction, that there are
two consecutive grey vertices v; and v;41 in S. We first
prove that one of them is an ancestor of the other in
the marked tree. Let x be the lowest common ancestor
of v; and w;41 in the marked tree; by Lemma 4, z is
marked. If # # v; and & # v;41, then v; belongs to the
left subtree of z, and v;41 belongs to the right subtree
of # (see Figure 3(a)). Since S is an in-order traversal
of the marked subtree, x appears between v; and v;41
in S, contradicting the assumption that v; and v; 41 are
consecutive in S.

Suppose that v; is an ancestor of v;y1. Since v; ap-
pears before v; 41 in the in-order sequence S, v; 41 belongs
to the right subtree of v;. Since v; 1 appears immediately
after v; in S, the left child of v;41 is unmarked, contra-
dicting the fact that v;41 is grey. (See Figure 3(b).)



Attiya, Fouren and Gafni: Adaptive Collect

no process all processes

v Vit1
(a) (b)

Fig. 3. llustrations for the proof of Lemma 5.

A similar argument can be applied if v;41 is an an-
cestor of v;. Since v; appears before v;41 in the in-order
sequence S, v; belongs to the left subtree of v;y1. Since
v; appears immediately before v;11 in S, the right child
of v; i1s unmarked, contradicting the fact that v; is grey.
|

If the first vertex in S, vy, 1s grey, then the left sub-
tree of vy must contain marked vertices. Therefore, some
vertex precedes vy in S, which is a contradiction. A sim-
ilar argument shows that the last vertex in S is black,
implying the next lemma:

Lemma 6. The first and the last vertices in S are black.

With each black vertex we can associate a distinct
active process that accesses the vertex and does not go
below it in «a; thus, there are at most k& black vertices.
Therefore, the number of grey vertices is at most k—1, by
Lemmab and Lemma 6. Hence, the marked tree contains
at most 2k — 1 vertices. Thus, procedure DFS visits at
most 2k —1 vertices, each requiring a constant number of
operations, implying that the step complexity of collect

is O(k).

Theorem 2. Algorithm 1 solves the collect problem, with
O(k) step complerity.

4 Adaptive Atomic Snapshots

The atomic snapshot problem [1] extends the collect
problem by requiring views to look instantaneous. In-
stead of separate update and store operations, we pro-
vide a combined upscan operation, which updates a new
value and atomically collects a view. The returned views
should satisfy the following conditions (cf. [14]):

Validity: If an upscan operation op returns a view V,
and precedes an upscan operation op’, then V does
not include the value written by op’.!

Self-inclusion: The view returned by the ¢th upscan op-
eration of p; includes the fth value written by p;.
Comparability: If 1} and V% are the views returned by
two upscan operations, then either V3 < V5 or V5 <

Vi.

An efficient adaptive atomic snapshot algorithm, with
O(k log k) step complexity, can be derived from the algo-
rithm solving the problem for n processes with O(n logn)
steps [15]. This transformation is not trivial since in the

! Typically, this condition trivially holds and we do not
prove it below.

Alg. 2 The classifier procedure (from [15]): code for p;

procedure classifier(M : integer; I;: view)
returns {left, right} and a view

1:  store(1;)

2: {Ri,...,Rn} = collect

3. if |U{Ri,...,Rn}| > M then
4: {R1,...,Ra} = collect

return(right, U{R,, ..
5: else return(left,l;)

- Ra})

non-adaptive algorithm, processes descend down a bi-
nary tree of depth O(logn) (see below); thus, the num-
ber of stores and collect depends on n. We describe the
one-shot algorithm; it can be made long-lived using tech-
niques of [14,15,22].

The non-adaptive algorithm uses a complete binary
tree of depth log n, whose vertices are labeled as a search
tree, in which all values are stored in the leaves: The
leaves are labeled 1,2, ... from left to right; the label of
an inner vertex is equal to the label of the right-most
leaf in its left subtree (Figure 4). A simple classifier pro-
cedure (Algorithm 2) is associated with each vertex; the
procedure takes a threshold value and an input view
as parameters; it returns a side (left or right) and a
view. Procedure classifier separates operations so that
less knowledgeable operations proceed to the left, and
more knowledgeable operations proceed to the right (see
Lemma 7).

An upscan operation traverses the tree downwards
from the root. In each inner vertex v, the operation calls
classifier with Label(v) as the threshold parameter and
the view it obtained in the previous vertex (in the root,
the view contains only the operation’s value); the op-
eration continues left or right, according to the side re-
turned by classifier. The operation terminates at a leaf
and returns the view obtained in the last inner vertex
(without performing classifier in the leaf). The following
simple lemma [15, Lemma 3.1] states the properties of
classifier.

Lemma 7. Assume classifier is called with threshold pa-
rameter M, and that process p; obtains the view O; from
classifier. Then the following holds:

(1) |U{0; | p; returns left}| < M, and

(2) if p; returns right, then |0;| > M and O; contains
U{O; | p; returns left}.

The adaptive algorithm uses an unbalanced binary
tree, constructed from logn complete binary trees of ex-
ponentially growing sizes (1,2,22, ... leaves), connected
by a single path (Figure 4). As in the non-adaptive algo-
rithm, leaves are labeled 1,2, ... from left to right and an
inner vertex is labeled with the label of the right-most
leaf in 1ts left subtree.

First, note that views returned by two operations,
op; and op;, returning V; and V; from different leaves
are comparable. Let v be the minimal common ances-
tor of these leaves; v is an inner vertex. Clearly, op;
and op; calls classifier at v, and one of them (say, op;)
returns left, while the other (say, opj) returns right.



The algorithm implies that V; is contained in U{O; |
pi returns left and O; in v}, and that V; contains the
view p; returns from classifier in v. By Lemma 7(2), V;
contains V;.

Next, consider two operations, op; and op;, returning
V; and V; from the same leaf v; denote M = Label(v). Let
u be the last vertex (on the path from the root to v) in
which op; and op; go right?; v is the left-most leaf in the
right subtree of u and by construction, Label(u) = M —1.
By Lemma 7(2), |V;], |V;| > M —1. Let w be the last ver-
tex in which op; and op; go left; v is the right-most leaf
in the left subtree of w and hence, Label(w) = Label(v) =
M. As mentioned above, the algorithm implies that V;

and Vj; are contained in U{O; | p; returns left and O; in v}.

By Lemma 7(1), this union contains at most Label(w)
values. Thus, |[V; UV;| < M, s0 Vi =Vj.

This allows to prove that the snapshot algorithm is
correct, along the lines of [15]. An operation accesses at
most O(log k) vertices on its way to a leaf. Since classifier
in each vertex requires O(k) steps, the algorithm requires

O(klog k) steps.

5 Adaptive Immediate Snapshots

The immediate snapshot problem [19] provides a com-
bined im-upscan operation, updating a new value and re-
turning a view. In addition to the validity, self-inclusion,
and comparability properties of the atomic snapshot prob-
lem, returned views should satisfy the next condition:

Immediacy: If the view returned by some im-upscan op-
eration, V1, includes the value written in the fth
im-upscan of p; that returns the view V5, then V5 <
Vi.

5.1 Overview of the Algorithm

For ease of exposition, a view is represented by a set of
counters, holding the number of updates performed by
processes. Each process owns an unbounded array of val-
ues.? In an im-upscan operation, a process writes the new
value into its array and increments a counter holding the
number of values it has written; then it obtains a view

2 If u does not exist, then M = 1 and a simpler version of
the following argument can be applied.
® This array can be bounded, see [7].
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Fig. 4. Trees for lattice agreement: Non-adaptive
(left) and adaptive (right).

of the counters (which can be used to retrieve the values
from the arrays). The sum of counters in a view V, de-
noted YV is the total number of updates preceding V;
clearly, for views satisfying the comparability property
SV <Y Vyif and only if V) < Va.

The overall structure of our algorithm follows the
non-adaptive immediate snapshot algorithm [7,17]. Pro-
cess p; first finds an atomic snapshot view V' containing
its new value. V 1s written in a floor whose number s; is
equal to Y V; clearly, all views written in the same floor
are equal. (The number of floors is infinite, since >~V is
unbounded for a long-lived algorithm.) Then, p; partici-
pates in a distinct copy of one-shot immediate snapshot
in each floor below s;, with its new value as input, until
it sees its previous value in the view written in one of
these floors. When this happens, p; returns the maximal
values from the view written in this floor and the view
it obtained in the one-shot immediate snapshot of this
floor.

To bound the number of floors process p; accesses, it
takes as V' the smallest atomic snapshot view containing
its new value among the snapshots obtained by other
processes. That is, s; is the smallest floor where a view
containing p;’s new value i1s written. This is used below
(Lemma 11) to show that p; accesses at most k floors.
To allow p; to find the smallest view containing its new
value, each process p; maintains an array which holds,
for every process p;, the first view p; observes with the
most recent value of p;; p; updates this view whenever
it sees a new value for p;. To find V' and calculate its
start floor, p; reads the appropriate entries of the active
processes’ arrays and picks the minimal view containing
its last value.

Since the view written in floor s; contains p;’s new
value, processes returning from floors > s; see this (or a
later) value of p;. Since p; returns from some floor ff< s;
containing its previous value, processes returning from
floors < ff see previous values of p;. Since p; performs
the one-shot immediate snapshot algorithm with its last
value as input in each floor between s; and ff, the views
returned from these floors include this value. The one-
shot immediate snapshot in floor ff guarantees that views
returned from floor ff satisfy the immediacy property.

The one-shot immediate snapshot algorithm used in
each floor [19] relies on the number of participants: pro-
cesses start at level n, and descend through levels until
some condition is met. We notice that processes need not
start at the same level: they only have to start at (pos-
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sibly different) levels that are larger than the number of
processes participating in the one-shot immediate snap-
shot algorithm (see Section 5.4). Below, we show how a
process picks its start level for floor f to be larger than
or equal to k¢, the number of processes participating in
floor f. The step complexity of the one-shot algorithm
used in each floor depends on the start level, which 1s
smaller than or equal to k& 4+ 1, making the algorithm
adaptive.

5.2 Details of the Algorithm

Algorithm 3 uses an infinite number of floors. A copy
of the adaptive one-shot immediate snapshot algorithm
(Algorithm 4, presented below), denoted os-im-upscany,
is associated with every floor f, as well as the following
data structures:

1. view[f], a view; initially contains the empty view, —.
2. flag[f][1...N] an array of bits, one for each process;
initially, all bits are false.

Each process p; maintains an array A;[0,..., N — 1]
of views; A;[id;] holds the first view containing the last
value of p;, among the views observed by p;.

After obtaining a view V', p; checks, for each process
p; € V', whether p; incremented its counter since p;’s
previous im-upscan operation. If it did, then p; writes V'
(containing the new counter of p;) into A;[id;]. To find
its start floor, p; chooses the minimal view V' containing
its new counter, among the views stored for it by other
processes. To keep the step complexity of the algorithm
adaptive, p; reads A;[id;] only for processes p; € V.
Then p; writes V in its start floor, whose numberis > V.

Process p; continues the algorithm one floor below its
start floor. In each floor f, if p; reads a non-— view from
view[f] then p; sets flag[f][i] to true. Then, p; obtains a

view VVif from os-im-upscany. If view[f] does not contain
the last value of p; and the flag of one of the processes

in VVif is true, then p; returns a view containing the

maximal counters from VVif and view[f]; otherwise, p;
accesses floor f — 1.

Clearly, processes appearing in p;’s initial view, V;,
may access floors below p;’s start floor. In addition, pro-
cesses may descend from higher floors. These processes
“register” in the floor before participating in the one-
shot immediate snapshot associated with it. To allow
registration, a distinct copy of store and collect (Algo-
rithm 1), denoted store; and collecty, is associated with
each floor f. A process registers before accessing floor
f, using stores. Process p; collects a set U; of processes
registered in its start floor, s;, using collects,. |[V;UU;|+1
is the start level parameter of p; for os-im-upscan in all
floors 1t accesses. Since V; and U; contain only active
processes, [V;UU;|+1<k+1.

Note that different invocations of im-upscan by pro-
cess p; do not call the same copy of os-im-upscan. If
an operation op; of p; starts in floor f, then op; calls
os-im-upscan only in floors < f, and the view written in
floor f contains the value of op;. A later operation ops

of p; reads this value (or a later one) from a floor > f;
therefore opy returns from a floor > f and does not call
os-im-upscan in floors < f.

5.8 Proof of Correctness and Complexity Analysis

Our key lemma proves that only processes in V; UU; may
access floors 1,...,s; — 1; that is, start-level; is larger
than or equal to the number of processes in the floors p;
accesses.

Lemma 8. If p; starts at floor s;, and p; accesses a floor
f<s;, thenp; € U; UV,

Proof. If p; € V;, then the lemma clearly holds. Oth-
erwise, the atomic snapshots properties imply that p;
accesses floor s;, before it accesses floor f.

If p; completes store,, before p; starts collect;,, then
p; € Us, and the lemma follows.

Otherwise, p; reads V; # — from wiew[s;] since it
reads after completing store,, (id;), and p; writes V; into
view[s;] before starting collect,,. Since p; ¢ V;, it follows
that p; evaluates the condition in Line 15 to true, and
returns from floor s;, which is a contradiction. O

If p; returns V; and p; returns V; from the same floor
/, then they read the same value from view[f]. W and

2
ij are views returned by os-im-upscan; and hence, they
are comparable. Thus, V; and V; are comparable. The
comparability property is proved by showing that views
returned from different floors are comparable; the proof
follows [17, Lemma 3.3.2].

Lemma 9. If p; returns V; from floor f; and p; returns

V; from floor f; < f;, then V; < V;.

Proof. Since views written in the floors are ordered by
containment, view|f;] < view(f;]. We show that ijj (pr) <
Vi(pk), for any process py.

The lemma trivially holds if ijj (pr) = —. Other-

wise, (pg,l) € ij, for some [; thus, p; participates in
os-im-upscany, (on floor f;) during its I’th immediate
snapshot, which starts at floor s;. The lemma clearly
holds if s; < fi, since (pg, 1) € vieu[s] < view[f;] < V;.

If s > fi, then p, accesses floor f;, evaluates the
condition in Line 15 to false, and goes to a lower floor.
If py reads a non-— value from wview(f;] that includes
(pi, 1), then (py,l) € view[f;] < Vj, since p; reads the
same non-— value from vieu[f;].

Otherwise, p reads false from flag[f;][z], for every
process p, € Wlf’. Clearly, p; reads true from flag[fi][y],
for some process p, € VVZ»f’. However, p, writes true to
flag[ fi][y] before calling os-im-upscan, and p; must read
true from flag[fi][y] if py € Wlf’. Thus, p, ¢ Wlf’, and

by the comparability property, Wlf’ C VVZ»f’. The self-
inclusion property of os-im-upscan implies that (py,{) €

wh. o
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Alg. 3 Adaptive long-lived immediate snapshot: code for process p;.

local variables:
VIV, U, W : view
A;[0, ..., N]: array of views, initially —
f, start-level : integer

view im-upscan(count : integer)

V' = upscan(count)

for all id; € V' do

if V'(id;) > Ailid;](id;) then

Ailid,] = V'

V = min{A,[id] | id; € V' and A;[id;](id;) = count}

f=yv

view[f] =V

U = collecty()

9. start-level=|UUV|+1

10. while ( true ) do

1. f=f-1

12. store ({id;, count))

13 fad fli] = (vieu(r] # —)

14. W = os-im-upscan(count, start-level)

e B i o

// persistent

// increment your counter and get a view

// update views for other processes

// p; updated its counter after the previous scan by p;
// update the view containing the last counter of p;

// minimal view stored for p;, which contains p;’s new counter

// calculate start floor

// write your initial view

// collect id’s of the processes registered in the start floor
// estimate the number of participants in lower floors

// descend through the floors f —1,f—2,...

// register in floor f

15. if ( count > view[f](id;) and for some (id;,c;) € W, flag[f][7] == true ) then

16. return(join(W, view[f]))

view procedure join(Vy, Va2 : view)

// maximal counters appearing in W or vieu[f]

1. return({{id;, c;) | id; € V1 UV and ¢; == max{V1(id;), V2(id;)}})

If process p; returns V; from floor f in its [th im-upscan,
then (p;,l) € VVif < V;, since os-im-upscan returns a
snapshot. This proves the self-inclusion property.

The proof of the immediacy property follows [17,
Lemma 3.3.6].

Lemma 10 (Immediacy). The returned views satisfy
the immediacy property.

Proof. Assume that V;, a view returned by p; from floor
fj, includes the I-th value written by p;. Let V; be the
view returned by the [-th im-upscan operation of p; from
floor f;. We show that V; < V.

Assume that p; returns from a floor above f; (that
is, fi > f;). Then (id;,l) € vieu[f;] (by the condition
in Line 15) and (id;,l) ¢ ijj (since (id;,l) does not
participate in os-im-upscany,). Therefore, (id;,l) ¢ V;,
which is a contradiction.

If p; returns from a floor below f; (that is, fi < f;),
then by Lemma 9, V; < V;.

If p; returns from floor f;, then (id;, ) ¢ view(f;], im-
plying that (id;,[) € ij. By the immediacy property of
os-im-upscan in floor f;, p; gets a view VVZ»fj = ij. Since
pi and p; read the same (non-—) view from view(f;],
Vi<V, O

The next lemma completes the complexity analysis
by bounding the number of floors a process accesses; its
proof is similar to [17, Lemma 3.3.3].

Lemma 11. In im-upscant, process p; descends through
at most k floors.

Proof. Process p; starts in floor YV, where V is the
minimal atomic snapshot view containing p;’s new value,

which is stored for p; by other processes (Line 5 of im-upscan).

Since k processes are active, at most k — 1 views are un-
written between V' and the next (smallest) written view
with p;’s previous value. Thus, p; accesses at most k
floors. O

Since os-im-upscan in each floor requires O(k?) steps
(see below), we have the next theorem:

Theorem 3. Algorithm 3 solves the immediate snapshot
problem, with O(k3) step complexity.

5.4 One-shot Immediate Snapshot Algorithm

The one-shot immediate snapshot algorithm presented
in this section follows Borowsky and Gafni [19]. In Algo-
rithm 4, a process descends through levels, checking the
levels of other processes, until the number of processes
in the levels below is larger than the level. In our algo-
rithm, processes may start at different levels; however, as
proved above, every process starts os-im-upscan on floor
f at a level larger than k;, the number of the processes
accessing floor f.

The set of processes descending to level £, by perform-
ing store((x, *, £)) after store({x,*, £+ 1)), is denoted Dj,.
At most £ processes descend to level £ [17, Lemma 3.1.1].

Lemma 12. |D;| < £, for every level £, 1 < £ < n.

Proof. Assume, by way of contradiction, that £+ 1 (or
more) processes descend to level £. Let p; be the pro-
cess in Dy whose store({*,£+ 1)) is the latest to com-
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Alg. 4 One-shot immediate snapshot (based on [19]):
code for process p;.

procedure os-im-upscan(count, start-level : integer)
returns a view

1. level = start-level
2. store((id;, count, level)) // the start level of p;
3. while ( true ) do
4. level = level— 1
5 store((id;, count, level)) // pi descends one level
6 V' = collect()

// returns a set of (id, counter, level) triples
7. W = {{id;, count;, level;) € V | level; < level}

// processes on smaller or equal levels

8. if (|W]| > level) then return(W)

plete. Since processes’ levels do not increase, p;’s fol-
lowing collect returns at least £ 4+ 1 processes in levels
1,...,£+ 1, and p; does not descend to level £. O

If p; starts at a level larger than &, then it descends to
level £ < k after descending to levels k,... £+ 1; thus,
if p; € Dy, then p; € Dy, ..., Dyy1, implying the next
lemma:

Lemma 13. If all process start above level k, then Dy C
Dy C...C Dy.

Let S; be the set of processes in the view p; returns
from some level /; S; contains only processes descending
to level £ or below. By Lemma 13, S; C D, and by
Lemma 12, |D;| < £. By the algorithm, ¢ < |S;], which
implies the next lemma:

Lemma 14. If all processes start above level k, then S; =
Dy.

If process p; returns from level [;; 1 < I; < k, then
pi € Dy, which is equal to S; (by Lemma 14); thus, the
returned views satisfy the self-inclusion property.

If another process p; returns from level [;, then Lem-
mas 13 and 14 imply that either S; C S; (if §; < ;) or
S; C S; (if {; < {;); thus, the returned views are compa-
rable.

If p; € 55, then p; € Dy;, by Lemma 14. That is, p;
descends to level [; and hence, I; < [;. By Lemmas 13
and 14, S; = Dy, C Dy; = 5;, implying the immediacy
property.

When called from Algorithm 3, process p; descends
through at most start-level; < k41 levels. In each level,
it performs O(k) operations (using our store and collect
procedures), implying the next theorem:

Theorem 4. If all processes start above level k, Algo-
rithm 4 solves the one-shot tmmediate snapshot problem
with O(k?) step complexity.

6 Adaptive (2k — 1)-Renaming

The (one-shot) (2k — 1)-renaming problem [10] requires

processes to acquire distinct names in the range {0, ..., 2k—

2}. The algorithm of Borowsky and Gafni [19], can be
made adaptive by using our immediate snapshot algo-
rithm. The BG renaming algorithm proceeds in rounds;
a process takes an immediate snapshot in each round,
and processes are partitioned into groups according to
the size of the returned views. The views also partition
the name space into disjoint intervals; processes in each
group continue the algorithm in the associated interval.
The process with the maximal id in the group gets a
name in the interval; other processes proceed to the next
round. The code appears in Algorithm 5; a process starts
the algorithm by calling rename(0,true).

For simplicity of presentation, 2n—1 distinct immedi-
ate snapshot objects are associated with slots 0,1, ...2n—
2. In the first round, starting from slot 0, adaptive im-
mediate snapshot Algorithm 3 is used, since the number
of participating processes is not known. In later rounds,
starting from slots 1,...,2n — 2, the size of the group is
bounded by the size of the view obtained in the first
round, therefore it suffices to use non-adaptive Algo-
rithm 4 with appropriate parameter start-level.

As proved in [19], at least one process halts in each
round; therefore, the number of rounds is at most k. In
the first round, Algorithm 3 requires O(k®) steps, while
in each of the later rounds, Algorithm 4 requires O(k?)
steps. This implies the next theorem:

Theorem 5. Algorithm 5 solves the one-shot (2k — 1)-
renaming problem, with O(k®) step complexity.

7 Discussion

This paper presents an adaptive collect algorithm; the
algorithm 1s simple and its step complexity is linear in
the number of active processes. Many algorithms can be
made adaptive by substituting our collect algorithm. In
particular, we show how to obtain adaptive algorithms
for atomic snapshots, with O(k log k) step complexity, for
immediate snapshots, with O(k®) step complexity, and
for (2k —1)-renaming problem, with O(k®) step complex-
ity.
An adaptive long-lived (2k — 1)-renaming algorithm
can easily be derived from the f-assignment algorithm
of Burns and Peterson [20], using our collect algorithm.
However, the step complexity of the resulting algorithm
is at least exponential in k, since the step complexity of
Burns and Peterson’s algorithm is at least exponential in
n [23]. A polynomial long-lived (2k — 1)-renaming algo-
rithm, which adapts to the current contention, appears

in [12].
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