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An Adaptive Collect Algorithm with ApplicationsHagit Attiya?1, Arie Fouren1, Eli Gafni21 Department of Computer Science, The Technion, Haifa 32000, Israel. hagit@cs.technion.ac.il,leonf@cs.technion.ac.il.2 Computer Science Department, UCLA. eli@cs.ucla.edu.The date of receipt and acceptance will be inserted by the editorSummary. In a shared-memory distributed system, nindependent asynchronous processes communicate by read-ing and writing to shared variables. An algorithm isadaptive (to total contention) if its step complexity de-pends only on the actual number, k, of active processesin the execution; this number is unknown in advanceand may change in di�erent executions of the algorithm.Adaptive algorithms are inherently wait-free, providingfault-tolerance in the presence of an arbitrary number ofcrash failures and di�erent processes' speed.A wait-free adaptive collect algorithmwith O(k) stepcomplexity is presented, together with its applicationsin wait-free adaptive algorithms for atomic snapshots,immediate snapshots and renaming.Key words: asynchronous shared-memory systems {contention-sensitive complexity { wait-free algorithms{ read/write registers { atomic snapshots { immediatesnapshots { renaming1 IntroductionAn asynchronous shared-memory system consists of nasynchronous processes, each with a distinct identi�er,communicating by reading and writing to shared vari-ables.Wait-free algorithms [25] guarantee that a processcompletes its operation within a �nite number of its ownsteps regardless of the behavior of other processes.In a wait-free algorithm, processes typically collectup-to-date information from each other by reading froman array indexed with process' identi�ers. Since distributedalgorithms are designed to accommodate a large numberof processes, this scheme is an over-kill when few pro-cesses participate in the algorithm:many entries are readalthough they contain irrelevant information about pro-cesses not wishing to coordinate. An adaptive algorithmalleviates this concern as its step complexity expression? Work supported by the fund for the promotion of researchin the Technion.

is bounded by a function of the number of processes thatparticipate in the algorithm (the active processes).This paper presents an algorithm for collecting up-to-date informationwhose step complexity adjusts to thenumber of active processes. We also present several ap-plications of this algorithm, demonstrating a modularway to obtain adaptive algorithms for other problems.Our adaptive wait-free collect algorithm (presentedin Section 3) has O(k) step complexity, where k is thenumber of active processes. Clearly, any algorithm thatrequires f(k) stores and collects (for some function f)can be made adaptive by substituting our collect algo-rithm. More sophisticated usage of the collect algorithmis required in order to obtain adaptive wait-free algo-rithms for atomic snapshots and immediate snapshots.Adaptive atomic snapshots and immediate snapshots, inturn, imply adaptive renaming algorithms.Atomic snapshots [1] provide instantaneous globalviews of the shared memory; they are widely acceptedas a tool for simplifying the design of wait-free algo-rithms. Our atomic snapshots algorithm (Section 4) isbased on [15] and it has O(k log k) step complexity.Immediate snapshots [19] extend atomic snapshots,and guarantee that no process obtains a view that isstrictly between an update of process pj and the followingview pj obtains; they were used for renaming [19] and tostudy wait-free solvable tasks [16,18,29]. Our immediatesnapshots algorithm (Section 5) is based on [7,17] and ithas O(k3) step complexity.In the M -renaming problem [10], each process startswith a distinct name in some range and is required tochoose a distinct name in a smaller range of size M . Inthe more general long-lived M -renaming problem [28],processes repeatedly acquire and release names. Adap-tive versions of well-known wait-free (2k � 1)-renamingalgorithms are easily obtained with adaptive atomic snap-shots and immediate snapshots (see [24]). This includesa one-shot algorithm with O(k3) step complexity [19],which is presented in Section 6.In another paper [13], we present e�cient adaptivewait-free algorithms for lattice agreement (one-shot atomicsnapshots) and (6k � 1)-renaming; these algorithms do



2 Attiya, Fouren and Gafni: Adaptive Collectnot use a collect procedure and their step complexityis O(k log k). Afek and Merritt [4] use them to obtainan adaptive wait-free (2k� 1)-renaming algorithm, withO(k2) step complexity.Several papers [9,27,28] study algorithms whose stepcomplexity depends only on n, and not on the range ofprocess' identi�ers. These algorithms provide a weakerguarantee than adaptive algorithms, whose step com-plexity adjusts to the actual number of active processes,which can be much lower than the upper bound, n. An-derson and Moir [9] present an adaptive renaming algo-rithm that uses the (stronger) test&set memory accessoperation.The algorithms presented in this paper adapt to thetotal contention|if a process ever performs a step, thenit inuences the step complexity of the algorithm through-out the execution. More useful are algorithms that adaptto the current contention, that is, whose step complex-ity depends only on the number of currently active pro-cesses. Our collect algorithm is a building block in along-lived renaming algorithm [2,12], whose step com-plexity adapts to the current contention. The long-livedrenaming algorithm, in turn, is used in a collect algo-rithm [5] with O(k3) step complexity, where k is thecurrent contention. This collect algorithm is used to ex-tend our immediate snapshot algorithm to be long-livedand adapt to current contention [6] (with O(k4) stepcomplexity). Afek, Dauber and Touitou [3] introduce im-plementations of long-lived objects whose step complex-ity is linear in the current contention; however, they usestrong load-linked and store-conditional operations.Lamport [26] suggests a mutual exclusion algorithmthat requires a constant number of steps when a sin-gle process wishes to enter the critical section, usingreads and writes; when several processes compete for thecritical section, the complexity depends on the range ofnames. Choy and Singh [21] present mutual exclusion al-gorithms, using reads and writes, which are adaptive inan amortized sense; in the worst case, the step complex-ity of their algorithms depends on n. (Alur and Tauben-feld [8] show that this is inherent.)2 PreliminariesWe consider n processes, p1; : : : ; pn; each process pi ismodeled as a (possibly in�nite) state machine, with aunique name idi 2 f0; : : : ; N � 1g. Processes communi-cate by read and write operations on shared variables; aread(R) operation does not change the state of R andreturns the current state of R; a write(v, R) operationchanges the state of R to v. Registers are multi-writermulti-reader, allowing read and write operations by allprocesses.An event is a computation step by a single process; inan event, a process determines the operation to performaccording to its local state, and determines its next localstate according to the value returned by the operation.An execution � is a (�nite or in�nite) sequence ofevents �0; �1; �2; : : :. For every r = 0; 1; : : :, if pi is theprocess performing the event �r, then it applies a read

or a write operation to a single register and changes itsstate according to its transition function. There are noconstraints on the interleaving of events by di�erent pro-cesses, reecting the assumption that processes are asyn-chronous and there is no bound on their relative speeds.A process is active in an execution � if it takes a stepin �. Let k(�) be the number of active processes in �.An algorithm speci�es procedures to be invoked whena process performs an operation. The interval of an oper-ation opi by process pi is the execution segment betweenthe �rst event and the last event of pi in opi. If the lastevent of pi in opi is before the �rst event of process pj inan operation opj, then opi precedes opj and opj followsopi.For an execution segment �, let step(�; pi) be thenumber of read/write operations performed by processpi in �.Algorithm A is adaptive (to total contention) if thereis a function f : N 7! N such that the following holdsfor every execution � of A: if process pi has an opera-tion interval � in �, then step(�; pi) � f(k(�)). Namely,the step complexity of an operation depends only on thenumber of active processes in �.A wait-free algorithm guarantees that every processcompletes its computation in a �nite number of steps,regardless of the behavior of other processes. Since k(�)is bounded (it is at most n), f(k(�)) is also bounded;hence, an adaptive algorithm must be wait-free.A view V is a set of process-value pairs, fhpi1 ; vi1i; : : :g,without repetitions of processes. V (idj) refers to vj , ifhpj; vji 2 V , and to ? otherwise.A solution for the collect problem provides algorithmsfor two operations|store and collect. A store(val) oper-ation of pi declares val as the latest value for pi, and acollect operation returns the latest values stored by ac-tive processes. Formally, a collect operation cop returnsa view V such that the following holds for every processpj: if V (pj) = ?, then no store operation of pj precedescop; if V (pj) = v 6= ? then v is the value of a store op-eration sop of pj that does not follow cop, and there isno other store operation sop0 of pj that follows sop andprecedes cop. That is, cop does not read from the futureor miss a preceding store operation.Moreover, if a collect operation op follows anothercollect operation cop0, then cop should return a view thatis more up-to-date. To capture this notion, we de�ne apartial order on views: V1 � V2, if for every process pisuch that hpi; v1i i 2 V1, we have hpi; v2i i 2 V2, and v2i iswritten in a store operation of pi that follows or is equalto a store operation of pi that writes v1i . We require thatif cop precedes cop0, then V1 � V2.The collect problem is easily solved using an array in-dexed with processes' names: A process stores its mostrecent value to the entry indexed with its name; to col-lect, a process reads the entire array. (This can be usedas an alternative de�nition, cf. [5].) In this scheme, acollect requires O(N ) steps.



Attiya, Fouren and Gafni: Adaptive Collect 3� 1left right� `� 1� ` � 1 ` processesstopFig. 1. A splitter.
... rightd = 0 leftd = 1 rightd = 2 stopd = 3Fig. 2. An execution of register in a complete binary tree ofsplitters.3 Adaptive CollectWe present an adaptive wait-free algorithm for store andcollect, with O(k) step complexity. The algorithm usesthe splitter suggested by Moir and Anderson [28]: A pro-cess entering a splitter exits with either stop, left orright. It is guaranteed that if a single process enters thesplitter, then it obtains stop, and if two or more pro-cesses enter the splitter, then there are two processesthat obtain di�erent values. (See Figure 1) Thus the setof processes is \split" into smaller subsets, according tothe values obtained.The collect algorithm uses a complete binary tree ofdepth n � 1, with splitters in the vertices. In its �rststore, a process acquires a vertex v; from this point on,the process stores its up-to-date values in v:val.A process acquires a vertex in the tree using proce-dure register; in register, the process starts at the rootand moves down the tree according to the values ob-tained in the splitters along the path: If it receives left,it moves to the left child; if it receives right, it moves tothe right child. A process marks each vertex it accessesby raising a ag associated with the vertex; a vertex ismarked, if its ag is raised. The process acquires a vertexv when it obtains stop at the splitter associated with v;then it writes its id into v:id. (See Figure 2.)To perform a collect, a process traverses the part ofthe tree containing marked vertices, in DFS order, andcollects the values written in the marked vertices.A simple implementation of a splitter [28] is basedon Lamport's mutual exclusion algorithm [26], and usestwo shared variables, X and Y . Initially, X = ? andY = false. A process executing the splitter �rst writesits id into X and then reads Y . If Y = true, then theprocess returns right. Otherwise, the process sets Y =true and checks X. If X still contains its id, then the

process returns stop; if X does not contain its id, thenthe process returns left. The following lemma, from [28],states the main properties of the splitter.Lemma 1. If ` processes access a speci�c splitter, thenthe following conditions hold:(1) at most one process obtains stop in this splitter,(2) at most ` � 1 processes obtain left in this splitter,and(3) at most ` � 1 processes obtain right in this splitter.The code for collect and store, as well as for the split-ter, appears in Algorithm 1. In the algorithm, the fol-lowing shared variables are associated with each vertexv in the tree:mark: Indicates whether some process accessed v;initially false.id: Holds the identi�er of the process that stopsin v; initially ?.value: Holds an updated value of the process thatstops in v; initially ?.X: Holds a process' identi�er, for the splitterassociated with v; initially ?.Y: Holds a Boolean value, for the splitter asso-ciated with v; initially false.left-child: Pointer to the left child of v.right-child: Pointer to the right child of v.To prove the correctness and complexity of the algo-rithm, �x an execution � of the algorithm and let k bethe number of processes that call store at least once in�.Lemma 2. If the depth of a vertex v is d, 0 � d � k,then at most k � d processes access v.Proof. The proof is by induction on d, the depth of v. Inthe base case, d = 0, the lemma trivially holds since atmost k processes are active.For the induction step, suppose that the lemmaholdsfor vertices at depth d, 0 � d < k, and consider somevertex v with depth d+1. Let u be v's parent in the tree.The depth of u is d, and by the inductive hypothesis, atmost k � d processes access u. If v is the left child of u,then Property (2) of the splitter (Lemma 1) implies thatat most k � d� 1 of the processes obtain left at u andaccess v. If v is the right child of u, then Property (3) ofthe splitter (Lemma 1) implies that at most k� d� 1 ofthe processes obtain right at u and access v. utBy Lemma 2 and the algorithm, when a process per-forms register, it stops in a vertex with depth less than orequal to k�1. By Property (1) of the splitter (Lemma 1),at most one process stops in each vertex. Therefore, wehave the following lemma:Lemma 3. Each process writes its id in a vertex withdepth � k � 1 and no other process writes its id in thesame vertex.Since each splitter requires a constant number of op-erations, Lemma 3 implies that the step complexity of



4 Attiya, Fouren and Gafni: Adaptive CollectAlg. 1 store and collect: code for process pi.shared variables:CollectTree : complete binary tree of splittersof depth n� 1local variables: // persistent across invocations of storedescriptor : vertex, initially ?void procedure store(val) // update value1. if ( descriptor == ? ) then // �rst timedescriptor = register()2. descriptor.value = valvertex procedure register() // acquire a vertex1. v = CollectTree.root2. repeat3. v:mark = true4. move = splitter(v) // returns stop, left, or right5. if ( move == left ) then v = v.left-child6. if ( move == right ) then v = v.right-child7. until ( move == stop )8. v:id = idi // write your identi�er9. return v // location descriptorview procedure collect()// collect updated values of active processes1. return( DFS(;, CollectTree.root) )view procedure DFS(V : view; v : vertex)// DFS traversal of the marked part of the tree1. if ( v.mark ) then2. if ( v.value 6= ? ) then V = V [ fhv:id; v:valueig3. V = V [DFS(V; v:left-child)4. V = V [DFS(V; v:right-child)5. return(V )fleft; right; stopg procedure splitter(v : vertex)// from Moir and Anderson [28]1. v.X = idi // write your identi�er2. if ( v.Y ) then return(right)3. v.Y = true4. if ( v.X == idi ) then return(stop) // check identi�er5. else return(left)register is O(k). This implies that the �rst invocation ofstore requires O(k) steps; clearly, all later invocations ofstore require only O(1) steps. In addition, this lemmaimplies that the location descriptors returned by registerare unique.If a vertex v is marked, then some process pi setsv:mark to true; this process also marks all the verticeson the path from the root to v before marking v. Sinceno process resets mark variables to false, this impliesthe next lemma:Lemma 4. All vertices on the path from the root to amarked vertex v are marked.Assume that cop is a collect of process pi. If someprocess pj completes its �rst store before pi starts cop,then pj writes idj into v:id, for some vertex v, before pistarts cop. By Lemma 4, all vertices on the path from theroot to v are marked, and therefore, pi visits v during

the DFS traversal in cop. The algorithm implies that pireads pj 's most up-to-date value from v:value. Clearly, picannot read a value written by a store of pj that followscop. Moreover, since values are updated with a singleoperation, a later collect returns a more up-to-date view.This implies that Algorithm 1 solves the collect problem.Theorem 1. Assume a collect operation cop returns aview V . Then the following holds for every process pj:(1) if V (pj) = ?, then no store operation of pj precedescop;(2) if V (pj) = v 6= ?, then v is the value of a storeoperation sop of pj that does not follow cop, and there isno other store operation sop0 of pj that follows sop andprecedes cop;(3) if cop precedes a collect operation cop0 that returns aview V 0, then V � V 0.The step complexity of collect is linear in the num-ber of vertices in the marked tree that are traversed byprocedure DFS. We prove that this number is at most2k�1. (This holds despite the fact that the depth of themarked tree can be k, which in general implies only abound of 2k on the number of marked vertices.)Consider a collect operation, and let � be the shortest�nite execution pre�x that contains its execution inter-val. Let S = v0; v1; : : : ; vl be the vertices of the markedtree after �, appearing in an in-order; i.e., for everymarked vertex, v, the vertices of the left sub-tree of vappear before v in S and the vertices of the right sub-tree of v appear after v in S.A vertex v 2 S is grey if there is a process that ac-cesses the left child of v in � (that is, writes true in thevariable mark of v.left-child) and there is a process thataccesses the right child of v in � (that is, writes true inthe variablemark of v.right-child). A marked vertex thatis not grey is black. For any black vertex v, (a) there isa process that sets v:mark to true, and (b) one of thechildren of v (e.g., v:right-child) is not accessed by anyprocess in �. By Lemma 1(2), not all the processes ac-cessing v return left. Therefore, at least one process thataccesses v either returns stop in v, or fault-stops in v.Lemma 5. There is a black vertex between every pair ofgrey vertices in S.Proof. Suppose, by way of contradiction, that there aretwo consecutive grey vertices vi and vi+1 in S. We �rstprove that one of them is an ancestor of the other inthe marked tree. Let x be the lowest common ancestorof vi and vi+1 in the marked tree; by Lemma 4, x ismarked. If x 6= vi and x 6= vi+1, then vi belongs to theleft subtree of x, and vi+1 belongs to the right subtreeof x (see Figure 3(a)). Since S is an in-order traversalof the marked subtree, x appears between vi and vi+1in S, contradicting the assumption that vi and vi+1 areconsecutive in S.Suppose that vi is an ancestor of vi+1. Since vi ap-pears before vi+1 in the in-order sequence S, vi+1 belongsto the right subtree of vi. Since vi+1 appears immediatelyafter vi in S, the left child of vi+1 is unmarked, contra-dicting the fact that vi+1 is grey. (See Figure 3(b).)



Attiya, Fouren and Gafni: Adaptive Collect 5vi+1vi x(a) vi+1all processesno process x = vi(b)Fig. 3. Illustrations for the proof of Lemma 5.A similar argument can be applied if vi+1 is an an-cestor of vi. Since vi appears before vi+1 in the in-ordersequence S, vi belongs to the left subtree of vi+1. Sincevi appears immediately before vi+1 in S, the right childof vi is unmarked, contradicting the fact that vi is grey.ut If the �rst vertex in S, v0, is grey, then the left sub-tree of v0 must contain marked vertices. Therefore, somevertex precedes v0 in S, which is a contradiction. A sim-ilar argument shows that the last vertex in S is black,implying the next lemma:Lemma 6. The �rst and the last vertices in S are black.With each black vertex we can associate a distinctactive process that accesses the vertex and does not gobelow it in �; thus, there are at most k black vertices.Therefore, the number of grey vertices is at most k�1, byLemma 5 and Lemma 6. Hence, the marked tree containsat most 2k � 1 vertices. Thus, procedure DFS visits atmost 2k�1 vertices, each requiring a constant number ofoperations, implying that the step complexity of collectis O(k).Theorem 2. Algorithm 1 solves the collect problem, withO(k) step complexity.4 Adaptive Atomic SnapshotsThe atomic snapshot problem [1] extends the collectproblem by requiring views to look instantaneous. In-stead of separate update and store operations, we pro-vide a combined upscan operation, which updates a newvalue and atomically collects a view. The returned viewsshould satisfy the following conditions (cf. [14]):Validity: If an upscan operation op returns a view V ,and precedes an upscan operation op0, then V doesnot include the value written by op0.1Self-inclusion: The view returned by the `th upscan op-eration of pj includes the `th value written by pj .Comparability: If V1 and V2 are the views returned bytwo upscan operations, then either V1 � V2 or V2 �V1.An e�cient adaptive atomic snapshot algorithm,withO(k log k) step complexity, can be derived from the algo-rithm solving the problem for n processes withO(n logn)steps [15]. This transformation is not trivial since in the1 Typically, this condition trivially holds and we do notprove it below.

Alg. 2 The classi�er procedure (from [15]): code for piprocedure classi�er(M : integer; Ii: view)returns fleft; rightg and a view1: store(Ii)2: fR1; : : : ;Rng = collect3: if j [ fR1; : : : ;Rngj > M then4: fR1; : : : ;Rng = collectreturn(right, [fR1; : : : ;Rng)5: else return(left,Ii)non-adaptive algorithm, processes descend down a bi-nary tree of depth O(logn) (see below); thus, the num-ber of stores and collect depends on n. We describe theone-shot algorithm; it can be made long-lived using tech-niques of [14,15,22].The non-adaptive algorithm uses a complete binarytree of depth logn, whose vertices are labeled as a searchtree, in which all values are stored in the leaves: Theleaves are labeled 1; 2; : : : from left to right; the label ofan inner vertex is equal to the label of the right-mostleaf in its left subtree (Figure 4). A simple classi�er pro-cedure (Algorithm 2) is associated with each vertex; theprocedure takes a threshold value and an input viewas parameters; it returns a side (left or right) and aview. Procedure classi�er separates operations so thatless knowledgeable operations proceed to the left, andmore knowledgeable operations proceed to the right (seeLemma 7).An upscan operation traverses the tree downwardsfrom the root. In each inner vertex v, the operation callsclassi�er with Label(v) as the threshold parameter andthe view it obtained in the previous vertex (in the root,the view contains only the operation's value); the op-eration continues left or right, according to the side re-turned by classi�er. The operation terminates at a leafand returns the view obtained in the last inner vertex(without performing classi�er in the leaf). The followingsimple lemma [15, Lemma 3.1] states the properties ofclassi�er.Lemma 7. Assume classi�er is called with threshold pa-rameter M , and that process pi obtains the view Oi fromclassi�er. Then the following holds:(1) j [ fOj j pj returns leftgj �M , and(2) if pi returns right, then jOij > M and Oi contains[fOj j pj returns leftg.The adaptive algorithm uses an unbalanced binarytree, constructed from logn complete binary trees of ex-ponentially growing sizes (1; 2; 22; : : : leaves), connectedby a single path (Figure 4). As in the non-adaptive algo-rithm, leaves are labeled 1; 2; : : : from left to right and aninner vertex is labeled with the label of the right-mostleaf in its left subtree.First, note that views returned by two operations,opi and opj, returning Vi and Vj from di�erent leavesare comparable. Let v be the minimal common ances-tor of these leaves; v is an inner vertex. Clearly, opiand opj calls classi�er at v, and one of them (say, opi)returns left, while the other (say, opj) returns right.



6 Attiya, Fouren and Gafni: Adaptive Collect642 1421 3 5 71 6 7 8 1 2 32 3 7 76655443 5 Fig. 4. Trees for lattice agreement: Non-adaptive(left) and adaptive (right).The algorithm implies that Vi is contained in [fOl jpl returns left and Ol in vg, and that Vj contains theview pj returns from classi�er in v. By Lemma 7(2), Vjcontains Vi.Next, consider two operations, opi and opj , returningVi and Vj from the same leaf v; denoteM = Label(v). Letu be the last vertex (on the path from the root to v) inwhich opi and opj go right2; v is the left-most leaf in theright subtree of u and by construction, Label(u) = M�1.By Lemma 7(2), jVij; jVjj > M�1. Let w be the last ver-tex in which opi and opj go left; v is the right-most leafin the left subtree of w and hence, Label(w) = Label(v) =M . As mentioned above, the algorithm implies that Viand Vj are contained in[fOl j pl returns left and Ol in vg.By Lemma 7(1), this union contains at most Label(w)values. Thus, jVi [ Vj j �M , so Vi = Vj .This allows to prove that the snapshot algorithm iscorrect, along the lines of [15]. An operation accesses atmost O(log k) vertices on its way to a leaf. Since classi�erin each vertex requires O(k) steps, the algorithm requiresO(k log k) steps.5 Adaptive Immediate SnapshotsThe immediate snapshot problem [19] provides a com-bined im-upscan operation, updating a new value and re-turning a view. In addition to the validity, self-inclusion,and comparabilityproperties of the atomic snapshot prob-lem, returned views should satisfy the next condition:Immediacy: If the view returned by some im-upscan op-eration, V1, includes the value written in the `thim-upscan of pj that returns the view V2, then V2 �V1.5.1 Overview of the AlgorithmFor ease of exposition, a view is represented by a set ofcounters, holding the number of updates performed byprocesses. Each process owns an unbounded array of val-ues.3 In an im-upscan operation, a process writes the newvalue into its array and increments a counter holding thenumber of values it has written; then it obtains a view2 If u does not exist, then M = 1 and a simpler version ofthe following argument can be applied.3 This array can be bounded, see [7].

of the counters (which can be used to retrieve the valuesfrom the arrays). The sum of counters in a view V , de-notedPV , is the total number of updates preceding V ;clearly, for views satisfying the comparability propertyPV1 �PV2 if and only if V1 � V2.The overall structure of our algorithm follows thenon-adaptive immediate snapshot algorithm [7,17]. Pro-cess pi �rst �nds an atomic snapshot view V containingits new value. V is written in a oor whose number si isequal toPV ; clearly, all views written in the same oorare equal. (The number of oors is in�nite, sincePV isunbounded for a long-lived algorithm.) Then, pi partici-pates in a distinct copy of one-shot immediate snapshotin each oor below si, with its new value as input, untilit sees its previous value in the view written in one ofthese oors. When this happens, pi returns the maximalvalues from the view written in this oor and the viewit obtained in the one-shot immediate snapshot of thisoor.To bound the number of oors process pi accesses, ittakes as V the smallest atomic snapshot view containingits new value among the snapshots obtained by otherprocesses. That is, si is the smallest oor where a viewcontaining pi's new value is written. This is used below(Lemma 11) to show that pi accesses at most k oors.To allow pi to �nd the smallest view containing its newvalue, each process pj maintains an array which holds,for every process pl, the �rst view pj observes with themost recent value of pl; pj updates this view wheneverit sees a new value for pl. To �nd V and calculate itsstart oor, pi reads the appropriate entries of the activeprocesses' arrays and picks the minimal view containingits last value.Since the view written in oor si contains pi's newvalue, processes returning from oors � si see this (or alater) value of pi. Since pi returns from some oor � < sicontaining its previous value, processes returning fromoors < � see previous values of pi. Since pi performsthe one-shot immediate snapshot algorithm with its lastvalue as input in each oor between si and �, the viewsreturned from these oors include this value. The one-shot immediate snapshot in oor � guarantees that viewsreturned from oor � satisfy the immediacy property.The one-shot immediate snapshot algorithm used ineach oor [19] relies on the number of participants: pro-cesses start at level n, and descend through levels untilsome condition is met. We notice that processes need notstart at the same level: they only have to start at (pos-



Attiya, Fouren and Gafni: Adaptive Collect 7sibly di�erent) levels that are larger than the number ofprocesses participating in the one-shot immediate snap-shot algorithm (see Section 5.4). Below, we show how aprocess picks its start level for oor f to be larger thanor equal to kf , the number of processes participating inoor f . The step complexity of the one-shot algorithmused in each oor depends on the start level, which issmaller than or equal to k + 1, making the algorithmadaptive.5.2 Details of the AlgorithmAlgorithm 3 uses an in�nite number of oors. A copyof the adaptive one-shot immediate snapshot algorithm(Algorithm 4, presented below), denoted os-im-upscanf ,is associated with every oor f , as well as the followingdata structures:1. view[f ], a view; initially contains the empty view, ?.2. ag[f ][1 : : :N ] an array of bits, one for each process;initially, all bits are false.Each process pi maintains an array Ai[0; : : : ; N � 1]of views; Ai[idj] holds the �rst view containing the lastvalue of pj, among the views observed by pi.After obtaining a view V 0, pi checks, for each processpj 2 V 0, whether pj incremented its counter since pi'sprevious im-upscan operation. If it did, then pi writes V 0(containing the new counter of pj) into Ai[idj ]. To �ndits start oor, pi chooses the minimal view V containingits new counter, among the views stored for it by otherprocesses. To keep the step complexity of the algorithmadaptive, pi reads Aj[idi] only for processes pj 2 V 0.Then pi writes V in its start oor, whose number isPV .Process pi continues the algorithm one oor below itsstart oor. In each oor f , if pi reads a non-? view fromview[f ] then pi sets ag[f ][i] to true. Then, pi obtains aview W fi from os-im-upscanf . If view[f ] does not containthe last value of pi and the ag of one of the processesin W fi is true, then pi returns a view containing themaximal counters from W fi and view[f ]; otherwise, piaccesses oor f � 1.Clearly, processes appearing in pi's initial view, Vi,may access oors below pi's start oor. In addition, pro-cesses may descend from higher oors. These processes\register" in the oor before participating in the one-shot immediate snapshot associated with it. To allowregistration, a distinct copy of store and collect (Algo-rithm 1), denoted storef and collectf , is associated witheach oor f . A process registers before accessing oorf , using storef . Process pi collects a set Ui of processesregistered in its start oor, si, using collectsi . jVi[Uij+1is the start level parameter of pi for os-im-upscan in alloors it accesses. Since Vi and Ui contain only activeprocesses, jVi [ Uij+ 1 � k + 1.Note that di�erent invocations of im-upscan by pro-cess pi do not call the same copy of os-im-upscan. Ifan operation op1 of pi starts in oor f , then op1 callsos-im-upscan only in oors < f , and the view written inoor f contains the value of op1. A later operation op2

of pi reads this value (or a later one) from a oor � f ;therefore op2 returns from a oor � f and does not callos-im-upscan in oors < f .5.3 Proof of Correctness and Complexity AnalysisOur key lemma proves that only processes in Vi[Ui mayaccess oors 1; : : : ; si � 1; that is, start-leveli is largerthan or equal to the number of processes in the oors piaccesses.Lemma 8. If pi starts at oor si, and pj accesses a oorf < si, then pj 2 Ui [ Vi.Proof. If pj 2 Vi, then the lemma clearly holds. Oth-erwise, the atomic snapshots properties imply that pjaccesses oor si, before it accesses oor f .If pj completes storesi before pi starts collectsi , thenpj 2 Ui, and the lemma follows.Otherwise, pj reads Vi 6= ? from view[si] since itreads after completing storesi(idj), and pi writes Vi intoview[si] before starting collectsi . Since pj 62 Vi, it followsthat pj evaluates the condition in Line 15 to true, andreturns from oor si, which is a contradiction. utIf pi returns Vi and pj returns Vj from the same oorf , then they read the same value from view[f ]. W fi andW fj are views returned by os-im-upscanf and hence, theyare comparable. Thus, Vi and Vj are comparable. Thecomparability property is proved by showing that viewsreturned from di�erent oors are comparable; the prooffollows [17, Lemma 3.3.2].Lemma 9. If pi returns Vi from oor fi and pj returnsVj from oor fj < fi, then Vj � Vi.Proof. Since views written in the oors are ordered bycontainment, view[fj] � view[fi].We show thatW fjj (pk) �Vi(pk), for any process pk.The lemma trivially holds if W fjj (pk) = ?. Other-wise, hpk; li 2 W fjj , for some l; thus, pk participates inos-im-upscanfj (on oor fj) during its l'th immediatesnapshot, which starts at oor sk. The lemma clearlyholds if sk < fi, since hpk; li 2 view[sk] � view[fi] � Vi.If sk � fi, then pk accesses oor fi, evaluates thecondition in Line 15 to false, and goes to a lower oor.If pk reads a non-? value from view[fi] that includeshpk; li, then hpk; li 2 view[fi] � Vi, since pi reads thesame non-? value from view[fi].Otherwise, pk reads false from ag[fi][x], for everyprocess px 2W fik . Clearly, pi reads true from ag[fi][y],for some process py 2 W fii . However, py writes true toag[fi][y] before calling os-im-upscan, and pk must readtrue from ag[fi][y] if py 2 W fik . Thus, py =2 W fik , andby the comparability property, W fik � W fii . The self-inclusion property of os-im-upscan implies that hpk; li 2W fii . ut



8 Attiya, Fouren and Gafni: Adaptive CollectAlg. 3 Adaptive long-lived immediate snapshot: code for process pi.local variables:V 0, V , U , W : viewAi[0; : : : ;N ] : array of views, initially ? // persistentf , start-level : integerview im-upscan(count : integer)1. V 0 = upscan(count) // increment your counter and get a view2. for all idj 2 V 0 do // update views for other processes3. if V 0(idj) > Ai[idj ](idj) then // pj updated its counter after the previous scan by pi4. Ai[idj] = V 0 // update the view containing the last counter of pj5. V = minfAj[idi] j idj 2 V 0 and Aj[idi](idi) = countg // minimal view stored for pi, which contains pi's new counter6. f =PV // calculate start oor7. view[f ] = V // write your initial view8. U = collectf () // collect id's of the processes registered in the start oor9. start-level = jU [ V j+ 1 // estimate the number of participants in lower oors10. while ( true ) do // descend through the oors f � 1; f � 2; : : :11. f = f � 112. storef (hidi; counti) // register in oor f13. ag[f ][i] = (view[f ] 6= ?)14. W = os-im-upscanf (count, start-level)15. if ( count> view[f ](idi) and for some hidj; cji 2W , ag[f ][j] == true ) then16. return(join(W; view[f ])) // maximal counters appearing in W or view[f ]view procedure join(V1, V2 : view)1. return(fhidj; cji j idj 2 V1 [ V2 and cj == maxfV1(idj); V2(idj)gg)If process pi returns Vi fromoor f in its lth im-upscan,then hpi; li 2 W fi � Vi, since os-im-upscan returns asnapshot. This proves the self-inclusion property.The proof of the immediacy property follows [17,Lemma 3.3.6].Lemma 10 (Immediacy). The returned views satisfythe immediacy property.Proof. Assume that Vj , a view returned by pj from oorfj , includes the l-th value written by pi. Let Vi be theview returned by the l-th im-upscan operation of pi fromoor fi. We show that Vi � Vj .Assume that pi returns from a oor above fj (thatis, fi > fj). Then hidi; li 62 view[fj ] (by the conditionin Line 15) and hidi; li 62 W fjj (since hidi; li does notparticipate in os-im-upscanfj ). Therefore, hidi; li 62 Vj,which is a contradiction.If pi returns from a oor below fj (that is, fi < fj),then by Lemma 9, Vi � Vj .If pi returns from oor fj , then hidi; li 62 view[fj], im-plying that hidi; li 2 W fjj . By the immediacy property ofos-im-upscan in oor fj , pi gets a viewW fji � W fjj . Sincepi and pj read the same (non-?) view from view[fj ],Vi � Vj . utThe next lemma completes the complexity analysisby bounding the number of oors a process accesses; itsproof is similar to [17, Lemma 3.3.3].Lemma 11. In im-upscanli, process pi descends throughat most k oors.

Proof. Process pi starts in oor PV , where V is theminimal atomic snapshot view containing pi's new value,which is stored for pi by other processes (Line 5 of im-upscan).Since k processes are active, at most k� 1 views are un-written between V and the next (smallest) written viewwith pi's previous value. Thus, pi accesses at most koors. utSince os-im-upscan in each oor requires O(k2) steps(see below), we have the next theorem:Theorem 3. Algorithm 3 solves the immediate snapshotproblem, with O(k3) step complexity.5.4 One-shot Immediate Snapshot AlgorithmThe one-shot immediate snapshot algorithm presentedin this section follows Borowsky and Gafni [19]. In Algo-rithm 4, a process descends through levels, checking thelevels of other processes, until the number of processesin the levels below is larger than the level. In our algo-rithm, processes may start at di�erent levels; however, asproved above, every process starts os-im-upscan on oorf at a level larger than kf , the number of the processesaccessing oor f .The set of processes descending to level `, by perform-ing store(h�; �; `i) after store(h�; �; `+ 1i), is denoted D`.At most ` processes descend to level ` [17, Lemma 3.1.1].Lemma 12. jD`j � `, for every level `, 1 � ` � n.Proof. Assume, by way of contradiction, that ` + 1 (ormore) processes descend to level `. Let pj be the pro-cess in D` whose store(h�; `+ 1i) is the latest to com-



Attiya, Fouren and Gafni: Adaptive Collect 9Alg. 4 One-shot immediate snapshot (based on [19]):code for process pi.procedure os-im-upscan(count, start-level : integer)returns a view1. level = start-level2. store(hidi; count; leveli) // the start level of pi3. while ( true ) do4. level = level� 15. store(hidi; count; leveli) // pi descends one level6. V = collect()// returns a set of hid; counter; leveli triples7. W = fhidj; countj ; levelji 2 V j levelj � levelg// processes on smaller or equal levels8. if ( jW j � level ) then return(W )plete. Since processes' levels do not increase, pj's fol-lowing collect returns at least ` + 1 processes in levels1; : : : ; `+ 1, and pj does not descend to level `. utIf pi starts at a level larger than k, then it descends tolevel ` � k after descending to levels k; : : : ; ` + 1; thus,if pi 2 D`, then pi 2 Dk; : : : ; D`+1, implying the nextlemma:Lemma 13. If all process start above level k, then D1 �D2 � : : : � Dk.Let Si be the set of processes in the view pi returnsfrom some level `; Si contains only processes descendingto level ` or below. By Lemma 13, Si � D` and byLemma 12, jD`j � `. By the algorithm, ` � jSij, whichimplies the next lemma:Lemma 14. If all processes start above level k, then Si =D`.If process pi returns from level li, 1 � li � k, thenpi 2 Dli which is equal to Si (by Lemma 14); thus, thereturned views satisfy the self-inclusion property.If another process pj returns from level lj , then Lem-mas 13 and 14 imply that either Si � Sj (if li � lj) orSj � Si (if lj � li); thus, the returned views are compa-rable.If pi 2 Sj , then pi 2 Dlj , by Lemma 14. That is, pidescends to level lj and hence, li � lj . By Lemmas 13and 14, Si = Dli � Dlj = Sj , implying the immediacyproperty.When called from Algorithm 3, process pi descendsthrough at most start-leveli � k+1 levels. In each level,it performs O(k) operations (using our store and collectprocedures), implying the next theorem:Theorem 4. If all processes start above level k, Algo-rithm 4 solves the one-shot immediate snapshot problemwith O(k2) step complexity.6 Adaptive (2k � 1)-RenamingThe (one-shot) (2k � 1)-renaming problem [10] requiresprocesses to acquire distinct names in the range f0; : : : ; 2k�

2g. The algorithm of Borowsky and Gafni [19], can bemade adaptive by using our immediate snapshot algo-rithm. The BG renaming algorithm proceeds in rounds;a process takes an immediate snapshot in each round,and processes are partitioned into groups according tothe size of the returned views. The views also partitionthe name space into disjoint intervals; processes in eachgroup continue the algorithm in the associated interval.The process with the maximal id in the group gets aname in the interval; other processes proceed to the nextround. The code appears in Algorithm 5; a process startsthe algorithm by calling rename(0,true).For simplicity of presentation, 2n�1 distinct immedi-ate snapshot objects are associated with slots 0; 1; : : :2n�2. In the �rst round, starting from slot 0, adaptive im-mediate snapshot Algorithm 3 is used, since the numberof participating processes is not known. In later rounds,starting from slots 1; : : : ; 2n� 2, the size of the group isbounded by the size of the view obtained in the �rstround, therefore it su�ces to use non-adaptive Algo-rithm 4 with appropriate parameter start-level.As proved in [19], at least one process halts in eachround; therefore, the number of rounds is at most k. Inthe �rst round, Algorithm 3 requires O(k3) steps, whilein each of the later rounds, Algorithm 4 requires O(k2)steps. This implies the next theorem:Theorem 5. Algorithm 5 solves the one-shot (2k � 1)-renaming problem, with O(k3) step complexity.7 DiscussionThis paper presents an adaptive collect algorithm; thealgorithm is simple and its step complexity is linear inthe number of active processes. Many algorithms can bemade adaptive by substituting our collect algorithm. Inparticular, we show how to obtain adaptive algorithmsfor atomic snapshots, withO(k logk) step complexity, forimmediate snapshots, with O(k3) step complexity, andfor (2k�1)-renaming problem, with O(k3) step complex-ity.An adaptive long-lived (2k � 1)-renaming algorithmcan easily be derived from the `-assignment algorithmof Burns and Peterson [20], using our collect algorithm.However, the step complexity of the resulting algorithmis at least exponential in k, since the step complexity ofBurns and Peterson's algorithm is at least exponential inn [23]. A polynomial long-lived (2k � 1)-renaming algo-rithm, which adapts to the current contention, appearsin [12].Acknowledgments:We thank Yehuda Afek, Yossi Levanoni,Dan Touitou and Gideon Stupp for helpful discussions.References1. Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, andN. Shavit. Atomic snapshots of shared memory. J. ACM,40(4):873{890, Sept. 1993.
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