
CS202 Final Exam
December 15th, 2004

Write your answers in the blue book(s). Justify your answers. Work
alone. Do not use any notes or books.

There are seven problems on this exam, each worth 20 points, for a total
of 140 points. You have approximately three hours to complete this exam.

1 A multiplicative game (20 points)

Consider the following game: A player starts with a score of 0. On each
turn, the player rolls two dice, each of which is equally likely to come up
1, 2, 3, 4, 5, or 6. They then take the product xy of the two numbers on
the dice. If the product is greater than 20, the game ends. Otherwise, they
add the product to their score and take a new turn. The player’s score at
the end of the game is thus the sum of the products of the dice for all turns
before the first turn on which they get a product greater than 20.

1. What is the probability that the player’s score at the end of the game
is zero?

2. What is the expectation of the player’s score at the end of the game?

Solution

1. The only way to get a score of zero is to lose on the first roll. There
are 36 equally probable outcomes for the first roll, and of these the
six outcomes (4,6), (5,5), (5,6), (6,4), (6,5), and (6,6) yield a product
greater than 20. So the probability of getting zero is 6/36 = 1/6.

2. To compute the total expected score, let us first compute the expected
score for a single turn. This is

1
36

6∑
i=1

6∑
j=1

ij[ij ≤ 20].

where [ij ≤ 20] is the indicator random variable for the event that
ij ≤ 20.

I don’t know of a really clean way to evaluate the sum, but we can
expand it as
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(
3∑

i=1

i

) 6∑
j=1

j

+ 4
5∑

j=1

j + 5
4∑

j=1

j + 6
3∑

j=1

j

= 6 · 21 + 4 · 15 + 5 · 10 + 6 · 6
= 126 + 60 + 50 + 36
= 272.

So the expected score per turn is 272/36 = 68/9.

Now we need to calculate the expected total score; call this value S.
Assuming we continue after the first turn, the expected total score for
the second and subsequent turns is also S, since the structure of the
tail of the game is identical to the game as a whole. So we have

S = 68/9 + (5/6)S,

which we can solve to get S = (6 · 68)/9 = 136/3.

2 An equivalence in space (20 points)

Let V be a k-dimensional vector space over the real numbers R with a
standard basis ~xi. Recall that any vector ~z in V can be represented uniquely
as
∑k

i=1 zi~xi. Let f : V → R be defined by f(~z) =
∑k

i=1 |zi|, where the zi

are the coefficients of ~z in the standard representation. Define a relation
∼ on V × V by ~z1 ∼ ~z2 if and only if f(~z1) = f(~z2). Show that ∼ is an
equivalence relation, i.e., that it is reflexive, symmetric, and transitive.

Solution

Both the structure of the vector space and the definition of f are irrelevant;
the only fact we need is that ~z1 ∼ ~z2 if and only if f(~z1) = f(~z2). Thus for
all ~z, ~z ∼ ~z since f(~z) = f(~z (reflexivity); for all ~y and ~z, if ~y ∼ ~z, then
f(~y) = f(~z) implies f(~z) = f(~y) implies ~z ∼ ~y (symmetry); and for all ~x, ~y,
and ~z, if ~x ∼ ~y and ~y ∼ ~z, then f(~x) = f(~y) and f(~y) = f(~z), so f(~x) = f(~z)
and ~x ∼ ~z (transitivity).
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3 A very big fraction (20 points)

Use the fact that p = 224036583 − 1 is prime to show that

9224036582 − 9
224036583 − 1

is an integer.

Solution

Let’s save ourselves a lot of writing by letting x = 24036583, so that p =
2x − 1 and the fraction becomes

92x−1 − 9
p

.

To show that this is an integer, we need to show that p divides the
denominator, i.e., that

92x−1 − 9 = 0 (mod p).

We’d like to attack this with Fermat’s Little Theorem, so we need to get
the exponent to look something like p− 1 = 2x − 2. Observe that 9 = 32, so

92x−1
= (32)2

x−1
= 32x

= 32x−2 · 32 = 3p−1 · 32.

But 3p−1 = 1 (mod p), so we get 92x−1
= 32 = 9 (mod p), and thus

92x−1 − 9 = 0 (mod p) as desired.

4 A pair of odd vertices (20 points)

Let G be a simple undirected graph (i.e., one with no self-loops or parallel
edges), and let u be a vertex in G with odd degree. Show that there is
another vertex v 6= u in G such that (a) v also has odd degree, and (b) there
is a path from u to v in G.

Solution

Let G′ be the connected component of u in G. Then G′ is itself a graph,
and the degree of any vertex is the same in G′ as in G. Since the sum of
all the degrees of vertices in G′ must be even by the Handshaking Lemma,
there cannot be an odd number of odd-degree vertices in G′, and so there is
some v in G′ not equal to u that also has odd degree. Since G′ is connected,
there exists a path from u to v.
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5 How many magmas? (20 points)

Recall that a magma is an algebra consisting of a set of elements and one
binary operation, which is not required to satisfy any constraints whatsoever
except closure. Consider a set S of n elements. How many distinct magmas
are there that have S as their set of elements?

Solution

Since the carrier is fixed, we have to count the number of different ways of
defining the binary operation. Let’s call the operation f . For each ordered
pair of elements (x, y) ∈ S ×S, we can pick any element z ∈ S for the value
of f(x, y). This gives n choices for each of the n2 pairs, which gives nn2

magmas on S.

6 A powerful relationship (20 points)

Recall that the powerset P(S) of a set S is the set of sets {A : A ⊆ S}.
Prove that if S ⊆ T , then P(S) ⊆ P(T ).

Solution

Let A ∈ P(S); then by the definition of P(S) we have A ⊆ S. But then
A ⊆ S ⊆ T implies A ⊆ T , and so A ∈ P(T ). Since A was arbitrary,
A ∈ P(T ) holds for all A in P(S), and we have P(S) ⊆ P(T ).

7 A group of archaeologists (20 points)

Archaeologists working deep in the Upper Nile Valley have discovered a cu-
rious machine, consisting of a large box with three levers painted red, yellow,
and blue. Atop the box is a display that shows one of set of n hieroglyphs.
Each lever can be pushed up or down, and pushing a lever changes the
displayed hieroglyph to some other hieroglyph. The archaeologists have de-
termined by extensive experimentation that for each hieroglyph x, pushing
the red lever up when x is displayed always changes the display to the same
hieroglyph f(x), and pushing the red lever down always changes hieroglyph
f(x) to x. A similar property holds for the yellow and blue levers: pushing
yellow up sends x to g(x) and down sends g(x) to x; and pushing blue up
sends x to h(x) and down sends h(x) to x.
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Prove that there is a finite number k such that no matter which hiero-
glyph is displayed initially, pushing any one of the levers up k times leaves
the display with the same hieroglyph at the end.

Clarification added during exam: k > 0.

Solution

Let H be the set of hieroglyphs, and observe that the map f : H → H cor-
responding to pushing the red lever up is invertible and thus a permutation.
Similarly, the maps g and h corresponding to yellow or blue up-pushes are
also permutations, as are the inverses f−1, g−1, and h−1 corresponding to
red, yellow, or blue down-pushes. Repeated pushes of one or more levers
correspond to compositions of permutations, so the set of all permutations
obtained by sequences of zero or more pushes is the subgroup G of the
permutation group S|H| generated by f , g, and h.

Now consider the cyclic subgroup 〈f〉 of G generated by f alone. Since
G is finite, there is some index m such that fm = e. Similarly there are
indices n and p such that gn = e and hp = e. So pushing the red lever up
any multiple of k times restores the initial state, as does pushing the yellow
lever up any multiple of n times or the blue lever up any multiple of p times.
Let k = mnp. Then k is a multiple of m, n, and p, and pushing any single
lever up k times leaves the display in the same state.
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