Problem Set 1 Solutions

1 Problem 1.1.28

For parts (a) and (b) we have

p	q	r	$p \lor q$	$(p \lor q) \lor r$	$(p \lor q) \land r$
Т	T	Т	${ m T}$	${ m T}$	${ m T}$
\mathbf{T}	T	F	${ m T}$	${f T}$	\mathbf{F}
\mathbf{T}	F	T	${ m T}$	${f T}$	${ m T}$
\mathbf{T}	F	F	${ m T}$	${f T}$	\mathbf{F}
F	\mathbf{T}	Т	${ m T}$	${ m T}$	${f T}$
F	\mathbf{T}	F	${ m T}$	${ m T}$	\mathbf{F}
F	F	Т	\mathbf{F}	${ m T}$	\mathbf{F}
\mathbf{F}	F	F	\mathbf{F}	F	F

For parts (c) and (d), we have

	p	q	r	$p \wedge q$	$(p \land q) \lor r$	$(p \wedge q) \wedge r$
I	Т	Τ	Τ	T	${ m T}$	T
	Т	${ m T}$	F	${ m T}$	${f T}$	\mathbf{F}
	Т	\mathbf{F}	${ m T}$	\mathbf{F}	${f T}$	\mathbf{F}
	Т	\mathbf{F}	\mathbf{F}	\mathbf{F}	${f F}$	\mathbf{F}
	F	${ m T}$	${ m T}$	\mathbf{F}	${ m T}$	\mathbf{F}
	F	${ m T}$	\mathbf{F}	\mathbf{F}	${f F}$	\mathbf{F}
	F	F	${ m T}$	\mathbf{F}	${ m T}$	\mathbf{F}
Į	F	F	F	F	F	F

For parts (e) and (f), we have

Tot parts (c) and (1), we have								
p	q	r	$\neg r$	$p \wedge q$	$(p \land q) \lor \neg r$	$p \wedge q$	$(p \land q) \lor \neg r$	
${ m T}$	Т	Т	F	Τ	F	Т	${ m T}$	
T	T	F	T	${ m T}$	${f T}$	${ m T}$	${ m T}$	
T	F	T	F	${ m T}$	\mathbf{F}	F	\mathbf{F}	
T	F	F	T	${ m T}$	${ m T}$	F	${ m T}$	
F	\mathbf{T}	Т	F	${ m T}$	\mathbf{F}	F	\mathbf{F}	
F	\mathbf{T}	F	T	${ m T}$	${ m T}$	F	${ m T}$	
F	F	Т	F	\mathbf{F}	\mathbf{F}	F	\mathbf{F}	
F	F	F	\mathbf{T}	\mathbf{F}	\mathbf{F}	F	${ m T}$	

2 Problem 1.2.20

$$\begin{array}{ccc} (p \rightarrow q) \wedge (p \rightarrow r) & \equiv & (\neg p \vee q) \wedge (\neg p \vee r) \\ & \equiv & \neg p \vee (q \wedge r) \\ & \equiv & p \rightarrow (q \wedge r). \end{array}$$

The first equivalence follows from the logical equivalence involving implications, the second equivalence follows from the distributive law, and the third from the logical equivalence involving implications.

3 Problem 1.3.58

- a. $\forall x (P(x) \rightarrow \neg S(x))$.
- b. $\forall x (R(x) \to S(x))$.
- c. $\forall x(Q(x) \to P(x)$.
- d. $\forall x(Q(x) \rightarrow \neg R(x))$.
- e. Yes. If x is one of my poultry, then he is a duck (by part (c)), hence not willing to waltz (part (a)). Since officers are always willing to walts (part(b)), x is not an officer.

4 Problem 1.4.26

- a. This is false, since $1 + 1 \neq 1 1$.
- b. This is true, since 2+0=2-0.
- c. This is false, since there are many values of y for which $1 + y \neq 1 y$.
- d. This is false, since the equation x + 2 = x 2 has no solution.
- e. This is true, since we can take x = y = 0.
- f. This is true, since we can take y = 0 for each x.
- g. This is true, since we can take y = 0.
- h. This is false, since part (d) was false.
- i. This is certainly false.

5 Problem 1.5.12

- a This is correct, using universal instantiation and modus tollens.
- b This is not correct. After applying universal instantiation, it contains the fallacy of denying the hypothesis.
- c This is not correct. After applying universal instantiation, it contains the fallacy of affirming the conclusion.
- d This is correct using universal instantiation and modus ponens.

6 Problem 1.5.48

The number 1 has this property, since the only positive integer not exceeding 1 is 1 itself, and therefore the sum is 1. This is a constructive proof.