Problem Set 2 Solutions

1 Problem 1.6.26

Suppose A # B and neither A nor B are empty. We must prove that A x B #
B x A. Since A # B, either we can find an element z that is in A but not
B, or vice versa. The two cases are similar, so without loss of generality, let
us assume that = is in A but not B. Also, since B is not empty, there is some
element y € B. Then (z,y) is in A x B by definition, but is not in B x A since
x ¢ B. Therefore A x B # B x A.

2 Problem 1.6.28

a.

This is a real number whose cube is -1. This is true, since z = —1is a
solution.

There is an integer such that the number obtained by adding 1 to it is
greater than the integer. This is true — in fact, every integer satisfies this
statement.

For every integer, the number obtained by subtracting 1 is again an inte-
ger. This is true.

. The square of every integer is an integer. This is true.

Problem 1.7.14

. Suppose that £ € AU B. Then either x € A or x € B. In either case,

certainly x € AUBUC.

. Suppose z € ANBNC. Then z is in all three of these sets. In particular,

it is in both A and B and therefore in A N B as desired.

. Suppose z € (A — B) — C. Then z is in A — B but not in C. Since

x € A — B, we know that x € A. Since we have established that x € A
but = ¢ C, we have proved that z € A — C.

. To show that the set given on the left-hand side is empty, it suffices to

assume that x is some element in that set and derive a contradiction,



thereby showing that no z exists. So suppose that z € (A—C)N(C — B).
Then z € A — C and ¢ € C — B. The first of these statements implies
that « ¢ C, while the second implies that 2 € C. This is impossible, so
our proof by contradiction is complete.

. To establish the equality, we need to prove inclusion in both directions. To
prove that (B—A)U(C—A) C (BUC)—A, suppose that z € (B—A)U(C' —
A). Then either z € (B — A) or z € (C — A). Without loss of generality,
assume the former (the proof in the latter case is exactly parallel.) Then
z € B and z ¢ A. From the first of these assertions, it follows that
x € BUC. thus we can conclude that x € (BUC) — A, as desired. For the
converse, that is, to show that (BUC)— A C (B— A)U(C — A), suppose
that z € (BUC) — A. This means that z € (BUC) and = ¢ A. The
first of these assertions tells us that either € B or x € C. Thus either
x€B—AorxzeC— A. In either case, z € (B— A)U (C — A).

Problem 1.8.16
. f(n)=n+17

- f(n) = [n/2].

. Welet f(n) = n—1 for even values of n and f(n) = n+1 for odd values of
n. Note this is one function, even though its definition used two formulas,
depending on the parity of n.

. f(n) =17

Problem 1.8.36

. We need to prove two things. First suppose z € f~1(S UT). This means
that f(z) € SUT. Therefore either f(x) € S or f(x) € T. In the
first case x € f~1(S) and in the second case x € f~1(T). In either case
then, z € f~1(S)U f~Y(T). Thus we have show that f~1(SUT) C
fYS)U fYT). Conversely, suppose that z € f~1(S)U f1(T). Then
either z € f1(S) or z € f1(T), so either f(z) € S or f(z) € T. Thus
we know that f(z) € SUT, so by definition z € f~1(S UT). This shows
that f~1(S)U f~1(T) C f~1(SUT) as desired.

. This is simlar to part (a). We have x € f~1(SNT) if and only if f(z) €
SNT,if and only if f(z) € S and f(x) € T, if and only if z € f~(S) and
xz € f~YT), if and only if z € f~1(S)n f~1(T).



