Problem Set 2 Solutions

1 Problem 1.6.26

Suppose $A \neq B$ and neither A nor B are empty. We must prove that $A \times B \neq B \times A$. Since $A \neq B$, either we can find an element x that is in A but not B, or vice versa. The two cases are similar, so without loss of generality, let us assume that x is in A but not B. Also, since B is not empty, there is some element $y \in B$. Then (x, y) is in $A \times B$ by definition, but is not in $B \times A$ since $x \notin B$. Therefore $A \times B \neq B \times A$.

2 Problem 1.6.28

- a. This is a real number whose cube is -1. This is true, since x = -1 is a solution.
- b. There is an integer such that the number obtained by adding 1 to it is greater than the integer. This is true in fact, every integer satisfies this statement.
- c. For every integer, the number obtained by subtracting 1 is again an integer. This is true.
- d. The square of every integer is an integer. This is true.

3 Problem 1.7.14

- a. Suppose that $x \in A \cup B$. Then either $x \in A$ or $x \in B$. In either case, certainly $x \in A \cup B \cup C$.
- b. Suppose $x \in A \cap B \cap C$. Then x is in all three of these sets. In particular, it is in both A and B and therefore in $A \cap B$ as desired.
- c. Suppose $x \in (A B) C$. Then x is in A B but not in C. Since $x \in A B$, we know that $x \in A$. Since we have established that $x \in A$ but $x \notin C$, we have proved that $x \in A C$.
- d. To show that the set given on the left-hand side is empty, it suffices to assume that x is some element in that set and derive a contradiction,

thereby showing that no x exists. So suppose that $x \in (A-C) \cap (C-B)$. Then $x \in A-C$ and $x \in C-B$. The first of these statements implies that $x \notin C$, while the second implies that $x \in C$. This is impossible, so our proof by contradiction is complete.

e. To establish the equality, we need to prove inclusion in both directions. To prove that $(B-A)\cup (C-A)\subseteq (B\cup C)-A$, suppose that $x\in (B-A)\cup (C-A)$. Then either $x\in (B-A)$ or $x\in (C-A)$. Without loss of generality, assume the former (the proof in the latter case is exactly parallel.) Then $x\in B$ and $x\notin A$. From the first of these assertions, it follows that $x\in B\cup C$. thus we can conclude that $x\in (B\cup C)-A$, as desired. For the converse, that is, to show that $(B\cup C)-A\subseteq (B-A)\cup (C-A)$, suppose that $x\in (B\cup C)-A$. This means that $x\in (B\cup C)$ and $x\notin A$. The first of these assertions tells us that either $x\in B$ or $x\in C$. Thus either $x\in B-A$ or $x\in C-A$. In either case, $x\in (B-A)\cup (C-A)$.

4 Problem 1.8.16

- a. f(n) = n + 17
- b. $f(n) = \lceil n/2 \rceil$.
- c. We let f(n) = n-1 for even values of n and f(n) = n+1 for odd values of n. Note this is one function, even though its definition used two formulas, depending on the parity of n.
- d. f(n) = 17

5 Problem 1.8.36

- a. We need to prove two things. First suppose $x \in f^{-1}(S \cup T)$. This means that $f(x) \in S \cup T$. Therefore either $f(x) \in S$ or $f(x) \in T$. In the first case $x \in f^{-1}(S)$ and in the second case $x \in f^{-1}(T)$. In either case then, $x \in f^{-1}(S) \cup f^{-1}(T)$. Thus we have show that $f^{-1}(S \cup T) \subseteq f^{-1}(S) \cup f^{-1}(T)$. Conversely, suppose that $x \in f^{-1}(S) \cup f^{-1}(T)$. Then either $x \in f^{-1}(S)$ or $x \in f^{-1}(T)$, so either $f(x) \in S$ or $f(x) \in T$. Thus we know that $f(x) \in S \cup T$, so by definition $x \in f^{-1}(S \cup T)$. This shows that $f^{-1}(S) \cup f^{-1}(T) \subseteq f^{-1}(S \cup T)$ as desired.
- b. This is similar to part (a). We have $x \in f^{-1}(S \cap T)$ if and only if $f(x) \in S \cap T$, if and only if $f(x) \in S$ and $f(x) \in T$, if and only if $x \in f^{-1}(S)$ and $x \in f^{-1}(T)$, if and only if $x \in f^{-1}(S) \cap f^{-1}(T)$.