
CS202 Final Exam
December 20th, 2007

Write your answers in the blue book(s). Justify your answers. Work
alone. Do not use any notes or books.

There are six problems on this exam, each worth 20 points, for a total
of 120 points. You have approximately three hours to complete this exam.

1 A coin-flipping problem (20 points)

A particularly thick and lopsided coin comes up heads with probability pH ,
tails with probability pT , and lands on its side with probability pS = 1 −
(pH + pT ). Suppose you flip the coin repeatedly. What is the probability
that it comes up heads twice in a row at least once before the first time it
comes up tails?

Solution

Let p be the probability of the event W that the coin comes up heads twice
before coming up tails. Consider the following mutually-exclusive events for
the first one or two coin-flips:

Event A Pr[A] Pr[W |A]
HH p2

H 1
HT pHpT 0
HS pHpS p
T pT 0
S pS p

Summing over all cases gives

p = p2
H + pHpSp + pSp,

which we can solve for p to get

p =
p2

H

1− pHpS − pS
=

p2
H

pH + pT − pHpS
=

p2
H

pT + pH(pH + pT )
=

p2
H

pT + pHpT + p2
H

.

(Any of these is an acceptable answer.)

2 An ordered group (20 points)

Let G be a group and ≤ a partial order on the elements of G such that for
all x, y in G, x ≤ xy. How many elements does G have?
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Solution

The group G has exactly one element.
First observe that G has at least one element, because it contains an

identity element e.
Now let x and y be any two elements of G. We can show x ≤ y, because

y = x(x−1y). Similarly, y ≤ x = y(y−1x). But then x = y by antisymmetry.
It follows that all elements of G are equal, i.e., that G has at most one
element.

3 Weighty vectors (20 points)

Let the weight w(x) of an n× 1 column vector x be the number of nonzero
elements of x. Call an n × n matrix A near-diagonal if it has at most one
nonzero off-diagonal element; i.e., if there is at most one pair of indices i, j
such that i 6= j and Aij 6= 0.

Given n, what is the smallest value k such that there exists an n × 1
column vector x with w(x) = 1 and a sequence of k n × n near-diagonal
matrices A1, A2, . . . Ak such that w(A1A2 · · ·Akx) = n?

Solution

Let’s look at the effect of multiplying a vector of known weight by just one
near-diagonal matrix. We will show: (a) for any near-diagonal A and any x,
w(Ax) ≤ w(x)+1, and (b) for any n×1 column vector x with 0 < w(x) < n,
there exists a near-diagonal matrix A with w(Ax) ≥ w(x) + 1.

To prove (a), observe that (Ax)i =
∑n

j=1 Aijxj . For (Ax)i to be nonzero,
there must be some index j such that Aijxj is nonzero. This can occur in
two ways: j = i, and Aii and xi are both nonzero, or j 6= i, and Aij and xj

are both nonzero. The first case can occur for at most w(x) different values
of i (because there are only w(x) nonzero entries xi). The second can occur
for at most one value of i (because there is at most one nonzero entry Aij

with i 6= j). It follows that Ax has at most w(x) + 1 nonzero entries, i.e.,
that w(Ax) ≤ w(x) + 1.

To prove (b), choose k and m such that xk = 0 and xm 6= 0, and let A
be the matrix with Aii = 1 for all i, Akm = 1, and all other entries equal to
zero. Now consider (Ax)i. If i 6= k, then (Ax)i =

∑n
j=1 Aijxj = Aiixi = xi.

If i = k, then (Ai)k =
∑n

j=1 Aijxj = Akkxk + Akmxm = xm 6= 0, since we
chose k so that ak = 0 and chose m so that am 6= 0. So (Ax)i is nonzero if
either xi is nonzero or i = k, giving w(Ax) ≥ w(x) + 1.
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Now proceed by induction:
For any k, if A1 . . . Ak are near-diagonal matrices, then w(A1 · · ·Akx) ≤

w(x)+k. Proof: The base case of k = 0 is trivial. For larger k, w(A1 · · ·Akx) =
w(A1(A2 · · ·Akx)) ≤ w(A2 · · ·Akx) + 1 ≤ w(x) + (k − 1) + 1 = w(x) + k.

Fix x with w(x) = 1. Then for any k < n, there exists a sequence of
near-diagonal matrices A1 . . . Ak such that w(A1 · · ·Akx) = k + 1. Proof:
Again the base case of k = 0 is trivial. For larger k < n, we have from the
induction hypothesis that there exists a sequence of k − 1 near-diagonal
matrices A2 . . . Ak such that w(A2 . . . Akx) = k < n. From claim (b)
above we then get that there exists a near-diagonal matrix A1 such that
w(A1(A2 . . . Akx)) = w(A2 . . . Akx) + 1 = k + 1.

Applying both these facts, setting k = n − 1 is necessary and sufficient
for w(A1 . . . Akx) = n, and so k = n− 1 is the smallest value of k for which
this works.
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4 A dialectical problem (20 points)

Let S be a set with n elements. Recall that a relation R is symmetric if
xRy implies yRx, antisymmetric if xRy and yRx implies x = y, reflexive if
xRx for all x, and irreflexive if ¬(xRx) for all x.

1. How many relations on S are symmetric, antisymmetric, and reflexive?

2. How many relations on S are symmetric, antisymmetric, and irreflex-
ive?

3. How many relations on S are symmetric and antisymmetric?

Solution

Since in all three cases we are considering symmetric antisymmetric rela-
tions, we observe first that if R is such a relation, then xRy implies yRx
which in turn implies x = y. So any such R can have xRy only if x = y.

1. Let R be symmetric, antisymmetric, and reflexive. We have already
established that xRy implies x = y. Reflexivity says x = y implies
xRy, so we have xRy iff x = y. Since this fully determines R, there is
exactly 1 such relation.

2. Now let R be symmetric, antisymmetric, and irreflexive. For x 6= y
we have ¬(xRy) (from symmetry+antisymmetry); but for x = y, we
again have ¬(xRy) (from irreflexivivity). So R is the empty relation,
and again there is exactly 1 such relation.

3. Now for each x there is no constraint on whether xRx holds or not,
but we still have ¬(xRy) for x 6= y. Since we can choose whether xRx
holds independently for each x, we have n binary choices giving 2n

possible relations.

5 A predictable pseudorandom generator (20 points)

Suppose you are given a pseudorandom number generator that generates a
sequence of values x0, x1, x2, . . . by the rule xi+1 = (axi + b) mod p, where
p is a prime and a, b, and x0 are arbitrary integers in the range 0 . . . p− 1.
Suppose further that you know the value of p but that a, b, and x0 are
secret.
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1. Prove that given any three consecutive values xi, xi+1, xi+2, it is pos-
sible to compute both a and b, provided xi 6= xi+1.

2. Prove that given only two consecutive values xi and xi+1, it is impos-
sible to determine a.

Solution

1. We have two equations in two unknowns:

axi + b = xi+1 (mod p)
axi+1 + b = xi+2 (mod p).

Subtracting the second from the first gives

a(xi − xi+1) = xi+1 − xi+2 (mod p).

If xi 6= xi+1, then we can multiply both sides by (xi − xi+1)−1 to get

a = (xi+1 − xi+2)(xi − xi+1)−1 (mod p).

Now we have a. To find b, plug our value for a into either equation
and solve for b.

2. We will show that for any observed values of xi and xi+1, there are at
least two different values for a that are consistent with our observation;
in fact, we’ll show the even stronger fact that for any value of a, xi

and xi+1 are consistent with that choice of a. Proof: Fix a, and let
b = xi+1 − axi (mod p). Then xi+1 = axi + b (mod p).

6 At the robot factory (20 points)

Each robot built by Rossum’s Combinatorial Robots consists of a head and
a body, each weighing a non-negative integer number of units. If there are
exactly 3n different ways to build a robot with total weight n, and exactly 2n

different bodies with weight n, exactly how many different heads are there
with weight n?

Solution

This is a job for generating functions!
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Let R =
∑

3nzn = 1
1−3z be the generating function for the number

of robots of each weight, and let B =
∑

2nzn = 1
1−2z be the generating

function for the number of bodies of each weight. Let H =
∑

hnzn be the
generating function for the number of heads. Then we have R = BH, or

H =
R

B
=

1− 2z

1− 3z
=

1
1− 3z

− 2z

1− 3z
.

So h0 = 30 = 1, and for n > 0, we have hn = 3n−2·3n−1 = (3−2)3n−1 =
3n−1.
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