CS 223: Data Structures and Programming Techniques. Instructor: Jim Aspnes

Exam 1
March 2nd, 2005

Work alone. Do not use any notes or books. You have approximately 60 minutes to complete this exam.
Please write your answers on the exam. More paper is available if you need it. Please put your name at
the top of the first page.

1 Output

What output is produced by the following program?

#include <stdio.h>

int
main(int argc, char **argv)
{

int i;

int j;

for(i = 0; i < 10; i++) {
if(i % 3 != 0) continue;
for(j = i+1; j > 0; j /=2) {
printf ("%d %d\n", i, j);
if(j == 5) break;

}

}
}
Solution
01
34
32
31
67
6 3
6 1
9 10
95

2 Bugs (20 points)

The function revdup is intended to be a reversing version of strdup: given a null-terminated string "abc",
it returns a freshly-malloc’d null-terminated string "cba". The file below compiles without errors with the
command gcc -Wall -ansi -pedantic -c revdup.c. Nonetheless, it contains at least four errors that
will prevent revdup from working as advertised. Identify as many of these errors as you can and provide a
working version of this code.

#include <stdlib.h>
#include <string.h>

/* return a newly-malloc’d copy of s */

/* in reverse order */

/* or 0 if malloc fails x/
char *

revdup(const char *s)

{
char *r;
int i;
int len;
len = strlen(r);
r = malloc(len);
if(r == 0) return O;
for(i = 0; i < len; i++) {

r[i] = s[len-il;

}
return r;

}

Solution

1. strlen(r) should be strlen(s).

3. r[i] = s[len-il; should be r[i] = s[len-i-1];
4. Before returning r, there needs to be a line r[len]

Here is the revised code:

#include <stdlib.h>
#include <string.h>

/* return a newly-malloc’d copy of s */
/* in reverse order */

/* or 0 if malloc fails */

char *

revdup(const char *s)

{

char *r;
int 1i;
int len;

len = strlen(s);
r = malloc(len+1);

2. malloc(len) should be malloc(len+1) to leave room for the nul.

’\0’; to add a nul terminator to the string.

if(r == 0) return O;

for(i = 0; i < len; i++) {
r[i] = s[len-i-1];

}
r[len] = °\0’;

return r;

3 Mediocrity

Suppose that you are asked to write a function that takes a set of n distinct ints, where n is odd, and returns
an int z from the set such that exactly (n — 1)/2 of the elements of the set are less than x. Before taking
the assignment, you are allowed to specify what form the input to your function should take. Assuming
that your goals are to minimize both programmer and CPU time, which one of the following data structures
would be the worst way to organize the elements of the set and why? Assume in each case that n is also
provided as an argument to your function.

1. As the elements of a sorted singly-linked list.
2. As the elements of an unsorted array.
3. As the keys of a hash table using open addressing.

4. As the elements of a sorted array.

Solution

The worst is as the keys of a hash table. Comparing costs for each approach:

1. Requires walking through (n — 1)/2 linked list elements to find the median at cost O(n), but the
constant is small and the loop is about four lines of code.

2. Requires sorting (which takes O(nlogn) time using gsort), but then median can be read directly out
of the array. Code length is again pretty short, depending on how the sort is done, but the costs make
this the second-worst option.

3. Basically equivalent to unsorted array with the added complexity of having to process and ignore empty
hash table slots. The hash table functionality adds nothing that is useful for solving this problem.

4. Best choice: median computation is now just return al[(n-1)/2];.

So ordering by decreasing desirability we have 4 > 1 > 2 > 3.

4 Census (20 points)

Write a function census that takes two null-terminated strings as arguments and returns a count of the
number of characters in the first argument haystack that also appear at least once in the second argu-
ment needles. For example, census("badcad", "abc") should return 4 (all the characters except the two
d’s count), but census("abracadabra", "q") and census("fish", "") should both return 0. We have
provided the function header for you.

Solution

The main tricky part is to make sure the a character that appears more than once in needles doesn’t get
overcounted. We can do this with a break in the right place.

int
census (const char *haystack, const char *needles)
{

const char *hay;

const char *needle;

int count;

count = 0;

for(hay = haystack; *hay; hay++) {
for(needle = needles; *needle; needle++) {
if (*hay == *needle) {
count++;
break;

return count;

