
CS 365: Design and Analysis of Algorithms. Instructor: Jim Aspnes

Midterm Exam

Instructions

Please put your name at the top of every page (1 point).

Please write your answers on the exam if possible. More paper is available
if you need it.

Work alone. Do not use any notes or books. You have approximately 75
minutes to complete this exam. There are four problems on this exam, for a
total of 100 possible points (including the point for putting your name at the
top of every page).

Unless otherwise specified, you should justify your answers and give running
times for all algorithms. Running times should be given in asymptotic notation.
When describing an algorithm, you should feel free to use as a subroutine any
algorithm found in Levitin or the lectures; you do not need to write down
the details of such an algorithm or re-prove its properties. Similarly, standard
mathematical facts can be stated and used without proof.

1

http://zoo.cs.yale.edu/classes/cs365/�
http://www.cs.yale.edu/~aspnes/index.html�


1. Asymptotic notation (20 points)

Prove or disprove: 3n = O(2n).

Solution:

Here’s a disproof. From the definition of O(2n) we have that 3n is only in O(2n)
if there exists some n0 and c such that 3n ≤ c2n for all n > n0. Fix some c.
We will find an n for which 3n > c2n. Let n = 2 lg c; then 3n = 32 lg c = c2 lg 3,
where 2 lg 3 = 3.16992 . . . , but c2n = c · c2 = c3 < c3.1. It follows that if n
exceeds max (n0, 2 lg c), that 3n > c2n, which proves that 3n is not O(n2).

Another disproof uses limits: limn→∞ 3n

2n = limn→∞(3/2)n which diverges.
So again 3n is not in O(2n).

2



2. Some recurrences (6 points each)

Below are some recurrences. Give the solution (in big Θ form) for each. In each
case you should assume that T (n) is bounded by a constant for small values of
n.

1. T (n) = 3T (n/2) + 1. Solution: T (n) = Θ(nlg 3) by Master Theorem.

2. T (n) = 3T (n/2) + n. Solution: T (n) = Θ(nlg 3) by Master Theorem.

3. T (n) = 3T (n/2) + 3n. Solution: T (n) = Θ(3n) by Master Theorem.

4. T (n) = 3T (n − 1) + 1. Solution: T (n) = Θ(3n). Proof: First we will
show that T (n) =

∑n−1
i=0 3i +3nT (0). This equation holds when n = 0; for

larger n, we have T (n) = 3T (n − 1) + 1 = 3(
∑n−1

i=0 3i + 3n−1T (0)) + 1 =
1+

∑n
i=1 3i +3nT (0) =

∑n
i=0 3i +3nT (0). Since the second term is Θ(n),

we have T (n) = Ω(3n). To show that it is in O(n), bound the summation
by

∑n
i=0 3i =

∑n
j=0 3n−j ≤ 3n

∑∞
j=0 3−j = 3n/(1− 1/3) = Θ(3n).

3



3. Graph 2-colorability (25 points)

Give an algorithm for determining if a graph is two-colorable, i.e. if it is possible
to color every vertex red or blue so that no two vertices of the same color have
an edge between them. Your algorithm should run in time O(V + E), where
V is the number of vertices and E is the number of edges in the graph. You
should assume that the graph is undirected and that the input is presented in
adjacency-list form.

Solution:

The key insight is that for any graph that is 2-colorable, choosing a color for
one node in a connected component fixes the colors of all other nodes in the
component: any node that is an odd distance away gets the opposite color, while
any node that is an even distance away gets the same color. So we do not need
to consider all possible colorings, and it is enough to color all nodes using DFS
or BFS.

Here is one possible algorithm based on DFS. We assume we have an array
mark with indexes spanning V , initialized to none.

ColorDFS(G, v, color):
mark[v] = color
for each neighbor u of v in G:

if mark[u] = color:
return false

else if mark[u] = none:
if ColorDFS(G, u, opposite(color)) = false

return false
// else
return true

IsTwoColorable(G):
for each vertex v of G:

if mark[v] = none:
if ColorDFS(G, v, red) = false:

return false
// else
return true

The running time of this procedure is O(V + E) as in standard depth-first
search.

4



4. Finding a missing number (30 points)

An array of n elements contains all but one of the integers from 1 to n + 1.

1. Give the best algorithm you can for determining which number is missing
if the array is sorted, and analyze its asymptotic worst-case running time.

2. Give the best algorithm you can for determining which number is missing
if the array is not sorted, and analyze its asymptotic worst-case running
time.

Solution:

1. If the array is sorted, we can use binary search. We are looking for the
smallest index i for which A[i] = i+1; this will be our missing number. If
A[n/2] = n/2+1, i is less than or equal to n/2, and we can recurse on the
first half of A; otherwise it is greater than n/2, and we can recurse on the
second half of A. In either case we get the recurrence T (n) = T (n/2)+Θ(1)
which gives a worst-case running time of Θ(log n).

2. If the array is not sorted, then in the worst case we will have to look at
every location in the array (otherwise what we think is the missing element
could be in the location we didn’t look in). So the best we can hope to do
is get an O(n) algorithm. One such algorithm creates an auxiliary array
B with indices 1 to n + 1, initializes all locations to 0, scans through A
setting B[A[i]] = 1 for each i from 1 to n, and finally scans through B
looking for a zero. Each of these three steps takes O(n) time, so we have
an O(n) algorithm for this case.

CS 365 home page: http://zoo.cs.yale.edu/classes/cs365/

Sat 28 Feb 2004 01:49:19 EST midterm.solutions.tyx Copyright c© 1998–2004 by

Jim Aspnes

5

http://zoo.cs.yale.edu/classes/cs365/�
http://www.cs.yale.edu/~aspnes/index.html�

