
CS425/CS525 Final Exam
December 15th, 2005

Write your answers in the blue book(s). Justify your answers. Work
alone. Do not use any notes or books.

There are three problems on this exam, each worth 20 points, for a total
of 60 points. You have approximately three hours to complete this exam.

1 Consensus by attrition (20 points)

Suppose you are given a bounded fetch-and-subtract register that holds a
non-negative integer value and supports an operation fetch-and-subtract(k)
for each k > 0 that (a) sets the value of the register to the previous value
minus k, or zero if this result would be negative, and (b) returns the previous
value of the register.

Determine the consensus number of bounded fetch-and-subtract under
the assumptions that you can use arbitrarily many such objects, that you can
supplement them with arbitrarily many multiwriter/multireader read/write
registers, that you can initialize all registers of both types to initial values
of your choosing, and that the design of the consensus protocol can depend
on the number of processes N .

Solution

The consensus number is 2.
To implement 2-process wait-free consensus, use a single fetch-and-subtract

register initialized to 1 plus two auxiliary read/write registers to hold the
input values of the processes. Each process writes its input to its own regis-
ter, then performs a fetch-and-subtract(1) on the fetch-and-subtract register.
Whichever process gets 1 from the fetch-and-subtract returns its own input;
the other process (which gets 0) returns the winning process’s input (which
it can read from the winning process’s read/write register.)

To show that the consensus number is at most 2, observe that any
two fetch-and-subtract operations commute: starting from state x, after
fetch-and-subtract(k1) and fetch-and-subtract(k2) the value in the fetch-
and-subtract register is max(0, x − k1 − k2) regardless of the order of the
operations.

1

2 Long-distance agreement (20 points)

Consider an asynchronous message-passing model consisting of N processes
p1 . . . pN arranged in a line, so that each process i can send messages only
to processes i−1 and i+1 (if they exist). Assume that there are no failures,
that local computation takes zero time, and that every message is delivered
at most 1 time unit after it is sent no matter how many messages are sent
on the same edge.

Now suppose that we wish to solve agreement in this model, where the
agreement protocol is triggered by a local input event at one or more pro-
cesses and it terminates when every process executes a local decide event.
As with all agreement problems, we want Agreement (all processes decide
the same value), Termination (all processes eventually decide), and Validity
(the common decision value previously appeared in some input). We also
want no false starts: the first action of any process should either be an input
action or the receipt of a message.

Define the time cost of a protocol for this problem as the worst-case
time between the first input event and the last decide event. Give the best
upper and lower bounds you can on this time as function of N . Your upper
and lower bounds should be exact : using no asymptotic notation or hidden
constant factors. Ideally, they should also be equal.

Solution

Upper bound

Because there are no failures, we can appoint a leader and have it decide.
The natural choice is some process near the middle, say pb(N+1)/2c. Upon
receiving an input, either directly through an input event or indirectly from
another process, the process sends the input value along the line toward the
leader. The leader takes the first input it receives and broadcasts it back
out in both directions as the decision value. The worst case is when the
protocol is initiated at pN ; then we pay 2(N −b(N +1)/2c) time to send all
messages out and back, which is N time units when N is even and N − 1
time units when N is odd.

Lower bound

Proving an almost-matching lower bound of N − 1 time units is trivial: if
p1 is the only initiator and it starts at time t0, then by an easy induction
argument,in the worst case pi doesn’t learn of any input until time t0+(i−1),

2

and in particular pN doesn’t find out until after N − 1 time units. If pN

nonetheless decides early, its decision value will violate validity in some
executions.

But we can actually prove something stronger than this: that N time
units are indeed required when N is odd. Consider two slow executions Ξ0

and Ξ1, where (a) all messages are delivered after exactly one time unit in
each execution; (b) in Ξ0 only p1 receives an input and the input is 0; and
(c) in Ξ1 only pN receives an input and the input is 1. For each of the
executions, construct a causal ordering on events in the usual fashion: a
send is ordered before a receive, two events of the same process are ordered
by time, and other events are partially ordered by the transitive closure of
this relation.

Now consider for Ξ0 the set of all events that precede the decide(0)
event of p1 and for Ξ1 the set of all events that precede the decide(1) event
of pN . Consider further the sets of processes S0 and S1 at which these events
occur; if these two sets of processes do not overlap, then we can construct
an execution in which both sets of events occur, violating Agreement.

Because S0 and S1 overlap, we must have |S0|+ |S1| ≥ N + 1, and so at
least one of the two sets has size at least d(N +1)/2e, which is N/2+1 when
N is even. Suppose that it is S0. Then in order for any event to occur at
pN/2+1 at all some sequence of messages must travel from the initial input
to p1 to process pN/2+1 (taking N/2 time units), and the causal ordering
implies that an additional sequence of messages travels back from pN/2+1 to
p1 before p1 decides (taking and additional N/2 time units). The total time
is thus N .

3 Mutex appendages (20 points)

An append register supports standard read operations plus an append oper-
ation that appends its argument to the list of values already in the register.
An append-and-fetch register is similar to an append register, except that
it returns the value in the register after performing the append operation.
Suppose that you have an failure-free asynchronous system with anonymous
deterministic processes (i.e., deterministic processes that all run exactly the
same code). Prove or disprove each of the following statements:

1. It is possible to solve mutual exclusion using only append registers.

2. It is possible to solve mutual exclusion using only append-and-fetch
registers.

3

In either case, the solution should work for arbitrarily many processes—
solving mutual exclusion when N = 1 is not interesting. You are also not
required in either case to guarantee lockout-freedom.

Clarification given during exam

1. If it helps, you may assume that the processes know N . (It probably
doesn’t help.)

Solution

1. Disproof: With append registers only, it is not possible to solve mutual
exclusion. To prove this, construct a failure-free execution in which
the processes never break symmetry. In the initial configuration, all
processes have the same state and thus execute either the same read
operation or the same append operation; in either case we let all N
operations occur in some arbitrary order. If the operations are all
reads, all processes read the same value and move to the same new
state. If the operations are all appends, then no values are returned
and again all processes enter the same new state. (It’s also the case
that the processes can’t tell from the register’s state which of the
identical append operations went first, but we don’t actually need to
use this fact.)

Since we get a fair failure-free execution where all processes move
through the same sequence of states, if any process decides it’s in its
critical section, all do. We thus can’t solve mutual exclusion in this
model.

2. Since the processes are anonymous, any solution that depends on them
having identifiers isn’t going to work. But there is a simple solution
that requires only appending single bits to the register.

Each process trying to enter a critical section repeatedly executes an
append-and-fetch operation with argument 0; if the append-and-fetch
operation returns either a list consisting only of a single 0 or a list
whose second-to-last element is 1, the process enters its critical section.
To leave the critical section, the process does append-and-fetch(1).

4

