
Solution of Problem Set 2

October 7, 2005

Question 1(5.13):

(a) If the on-line adversary is able to know the key k at the very beginning
before any process sends out messages, he can always fail the RandomAttack

algorithm. What he needs to do is just to let through all messages before the
round k, block all messages to exactly one process i and let through others
in the round k, and then block all messages after the round k. Then process
i will disagree with other processes. So ǫ is always 1.

If the on-line adversary is unable to know the key k until the end of
the first round, then he has to make a guess about his strategy for the first
round. If he lets through all the messages in the first round, and the key k
happens to be 1, the RandomAttack algorithm will succeed. Otherwise, he
may block some messages. When n = 2 or r ≤ 2, the adversary can always
fail the algorithm by blocking all the messages sent to exactly one process
while letting through others in the first round. When n ≥ 3 and r ≥ 3, in
the round 3 any process’s level can at most reach 2, so the maximum level
in the network can only reach r − 1 at the end of the round r. If the key k
happens to be r, the RandomAttack algorithm will succeed. From the above,
we conclude that when n ≥ 3 and r ≥ 3, ǫ = r−1

r
.

(b) Thanks to Lev and Nikhil’s algorithm which may provide an upper
bound to ǫ. I believe it does work, so ǫ is not necessary to be 1 as many
believe. The algorithm only takes one round, at the end of which each process
i does the following:

1. If inputi = 0, output 0;

2. else, if any 0 message is received, output 0;

1



3. else, if receive 1 messages from all the other nodes, output 1;

4. else, if some messages are missing, flip a coin to decide output.

It is easy to verify the validity of the algorithm. For any adversary, if he
lets through all the messages, the algorithm will succeed; otherwise, there is
still a small successful probability of at least 1/2n coming from flipping a coin
in each process which is independent of any adversary’s effect. Therefore, ǫ
is less than 1 − 1/2n, so is the lower bound.

Question 2(6.34):

According to Theorem 6.29, n > 3f and conn(G) > 2f .
(a) The connectivity of a ring is 2, so Byzantine agreement algorithms

can not tolerate any faulty process in a ring.
(b) The connectivity of a three-dimentional cube is 3 for the degree of

any corner process is 3 and n ≥ 8. Hence, Byzantine agreement algorithms
can tolerate at most 1 faulty process in a three-dimentional cube.

(c) The connectivity of a complete bipartite graph with m nodes in each
of its two components is m. Therefore, Byzantine agreement algorithms can
tolerate ⌊m−1

2
⌋.

Question 3(6.45):

(a) Starting with exec(ρ0), now we want to change process 1 from 0 to
1 without being noticed by any other process, so we must remove all the
messages that process 1 sends in every round, i.e. make process 1 stop
running at the very beginning. Let Tk, k = 1, . . . , f indicate the number
of executions in order to make process i stop after the end of round f − k.
Notice that in order to make consecutive executions indistinguishable to some
nonfaulty process, we can only add or remove one message each step. For
the final round f , i.e. k = 1, it is easy to see that we only need to directly
remove all the messages process 1 sends one by one, i.e. T1 = n−1, in which
n is the number of process. For k > 1, in order to remove the message m
process 1 sends to another process i, i > 1, we must make process i stop after
the end of round f − k + 1(which may be called killing witness), otherwise,
process i can tell others about this missing message. Then recover process
i after removing m for the constraint of maximum faulty processes. The

2



total cost to make process i stop and then restart is 2Tk−1 according to our
definition. So, the cost of removing all the messages process 1 sends in the
round f − k +1 is (n− 1)(2Tk−1 +1). Plus the cost of making process 1 stop
after the round f − k + 1, we can obtain Tk = (n − 1)(2Tk−1 + 1) + Tk−1,
indicated as the following:

T1 = n − 1

T2 = (n − 1) + (2n − 1)T1

· · ·

Tk = (n − 1) + (2n − 1)Tk−1

Finally we can get that

Tk =
(2n − 1)k − 1

2
.

So the cost of making process 1 stop at the very beginning is Tf = (2n−1)f
−1

2
.

Counting that changing the input of process 1 costs one execution and restor-
ing all deleted messages that process 1 should send in nonfaulty condition
costs another Tf , the total cost of changing process 1’s input should be 2Tf+1.
There are n such processes, so the length of the final chain should be

L = n(2Tf + 1) = n(2n − 1)f .

Actually, the above calculation is only approximate, and the actually length
is smaller when f ≥ 3. Note that for k ≥ 3, when we want to remove the
message process 1 sends to process i, we must make process i stop after the
end of round f − k + 1. Also, we want this process i’s stopping won’t be
noticed by other processes, so we have to continue to kill other witnesses,
as implied in the above inductions. However, process 1 has already stopped
after the end of round f − k + 1, so we don’t need to kill it again. Hence,
the induction equation should like that

Tk = (n−1)+2(n−1)(Tk−1−2Tk−2)+Tk−1 = (n−1)+(2n−1)Tk−1−4(n−1)Tk−2.

If you are insterested, you can try to calculate the above equation. :D
(b) If we use Byzantine faults, we can let processes directly tell a lie, i.e.

a process can send a faulty message with value opposite to its input. Then in
order to change a process’s input, we don’t need to make it stop at the very
beginning(recall that in order to do that, we have to delete all its messages

3



and restore the messages again!), but just revert the values of its messages
one by one. For example, if n = 3 and f = 1, we still start the chain with
exec(ρ0), and want to change process 1’s input from 0 to 1. Let process 1 lie to
process 2 that its value is 1. This execution is indistinguishable to process 3.
Then let process 1 lie to process 3, and this execution is indistinguishable to
process 2. Now, we can change process 1’s input directly to 1, and process 1
becomes nonfaulty. Finally, we will end up with exec(ρ3), where all processes
have input value 1 and there are no failures. So we have the needed chain,
which gives a contradiction.

When f > 1, we can get the similar chain and induction equations as (a):

T1 = n − 1

T2 = n − 1 + (n − 1)T1 + T1 = n − 1 + nT1

· · ·

Tk = n − 1 + (n − 1)Tk−1 + Tk−1 = n − 1 + nTk−1

So we obtain Tf = nf−1, and the total length of the chain is n(Tf +1) = nf+1.
So we reduce the length almost by a factor 2f .

4


