
Solutions # 3

8.12 (a)⇒(b) According to the definitions of traces and fair traces, fairtraces(A) ⊆ traces(A),
therefore (b) holds.

(b)⇒(c) For any finite trace β that belongs to traces(A), according to Theorem 8.7, there
exists a fair trace β′ ∈ fairtraces(A) that starts with β, thus β′ ∈ traces(P ) because
of (b). By definition of Safety Property, traces(P ) is prefix-closed, which implies that
β ∈ traces(P ), i.e. (c) holds.

(c)⇒(a) For any infinite trace β of A, we can have such a infinite sequence of traces β1, β2, . . .
of A, where βi is a prefix of βi+1 for any i, and β is the limit of this sequence. According
to the limit-close property of traces(P ), β ∈ traces(P ), which means that (a) holds.

14.2 To the contrary, we suppose that there exists some trace β in fairtraces(B)−fairtraces(A).
Let β = απα′. Without loss of generality, we assume that there exists some fair trace of A
has the prefix α and for each β′ ∈ fairtraces(A) in form of απ′α′′, it holds that π 6= π′, that
is, as the common prefix of β and β′, the length of α is ‘maximal’.

Case.1 If π = sendi,j(m), then according to the assumption, β′ = απ′α′′ is a fair trace of A
for some π′ and α′′, where π′ can never be sendi,j(m). However, this is contra to the
fact that A is a well defined I/O automaton, because sendi,j(m) is an input action and
as an I/O automaton, A should be input-enabled.

Case.2 If π = receivei,j(m), according to the semantics of B, for all those fair traces γ of B
which starts with α, π should be the first receive action after α. Since fairtraces(A) ⊆
fairtraces(B), this assertion also holds for fair traces of A, that is, for all those β′ =
απ′α′′ ∈ fairtraces(A), π′ along with actions in α′′ before receivei,j(m) have to all be
send actions. However, send is an input action, which means A has no control over it
and thus the above situation cannot be guaranteed, which leads to a contradiction.

In conclusion, fairtraces(B)−fairtraces(A) is empty, thus plus fairtraces(A) ⊆ fairtraces(B),
we have fairtraces(A) = fairtraces(B).

Remark: One thing worth to point out is that, in this problem, the only things that we can
take as facts are:

(a) Both A and B are well-defined automata.

(b) B is a universal reliable FIFO channel.

(c) ext(sig(A)) = ext(sig(B)).

(d) fairtraces(A) ⊆ fairtraces(B).

1



It is not correct to take it for granted that A is necessary to satisfy the FIFO axioms or have
some FIFO semantics, although one can eventually deduce it from the above facts.

15.3 (a) AsynchHS i automaton:
Signature:
Input:

receive(v, c)i−1,i, v a UID, c an integer
receive(v, c)i+1,i, v a UID, c an integer

Output:
send(v, c)i,i+1, v a UID, c an integer
send(v, c)i,i−1, v a UID, c an integer
leaderi

Internal:
advance-phasei

States:
u, a UID, initially i’s UID
phase, an integer, initially 0
init+, init− ∈ {0, 1}, initially 1
send+, send−, FIFO queues, initially empty
status ∈ {unknown, chosen, reported}, initially unknown

Transitions:
advance-phasei

Precondition:
init+ = init− = 1

Effect:
add (u, 2phase) to send+ and send−

init+ := init− := 0
phase := phase + 1

send(v, c)i,i+1

Precondition:
(v, c) is first on send+

Effect:
remove first element from send+

send(v, c)i,i−1

Precondition:
(v, c) is first on send−

Effect:
remove first element from send−

2



receive(v, c)i−1,i

Effect:
case

c > 1: if v > u then add (v, c− 1) to send+

if v = u then status := chosen
c = 1: if v > u then add (v, 0) to send−

if v = u then status := chosen
c < 1: if v 6= u then add (v, c) to send+

if v = u then init+ := 0
endcase

receive(v, c)i+1,i

Effect:
case

c > 1: if v > u then add (v, c− 1) to send−
if v = u then status := chosen

c = 1: if v > u then add (v, 0) to send+

if v = u then status := chosen
c < 1: if v 6= u then add (v, c) to send−

if v = u then init− := 0
endcase

leaderi

Precondition:
status = chosen

Effect:
status := reported

Tasks:
{send(v, c)i,i+1, send(v, c)i,i−1 : v a UID, c an integer}
{advance-phasei}
{leaderi}

(b) Let imax denote the index of the process with the maximum UID, and let umax denote
its UID. It is sufficient to show:

i. No process other than imax ever performs a leader output.
ii. Process imax eventually performs a leader output.

By induction, we can easily show the following facts: for c ≥ 1

i. if i 6= imax and j ∈ [imax, i), then (ui, c) does not appear in send+ of j;
ii. if i 6= imax and j ∈ (i, imax], then (ui, c) does not appear in send− of j;

which directly imply that, if i 6= imax and c ≥ 1, then (ui, c) never appear in either
send+ or send− of ui. Therefore, we can make such statement that if i 6= imax then
statusi = unknown. Therefore no process other than imax ever performs a leader output.
Again, by induction, we can show that, for every process, eventually (umax, c) ap-
pears in both send+ and send− for some c ≥ 1, which guarantees the occurrence of

3



receive(umax, c)imax−1,imax and receive(umax, c)imax+1,imax for some c ≥ 1. Therefore,
process imax eventually performs a leader output.
In conclusion, AsynchHS solves the leader-election problem.

(c) By the similar arguments as in Lemma 15.4, we have the upper bound on time complex-
ity:

O((d + l)
dlog ne∑

i=1

2i) = O((d + l)n)

Remark: Some knowledge about queuing models may help.

(d) Instead of analyzing the time bound for process directly, we can think about the “life
time” of messages. Note that the total number of steps that a UID might be delivered
is up to

dlog ne∑
i=1

2i = O(n)

and since the upper bound of arbitrary message delivery is d, the upper bound on the
time complexity is O(dn), which is also tight because we can easily construct an execution
that simulates the synchronous case and approaches this upper bound.

4


