Question 1(13.11):

The modified algorithm is still correct. Note that process i which executes an $update(w)$ operation first performs an $embedded-snap$, and then performs a single $write$ to $x(i)$, and then output ack_i. Assume process j which executes a $snap$ operation has seen three different tags in $x(i)$, denoted as T_1, T_2, T_3, and S_1, S_2, S_3 are associated $embedded-snap$ respectively. S_3 must start after $snap$ begins, because tag T_1, T_2 are seen. At the same time, S_3 must end before $snap$ finishes, because T_3 is seen and T_3 can be seen if and only if S_3 is finished and process i performs $write$ operation. Therefore, S_3 is totally contained in $snap$, and then it can be used as $snap$’s return value. It is possible that the ack of the third $update$ occurs after $snap$ finished, but it doesn’t affect the algorithm’s correctness.

To see this, assume α is an execution of the above algorithm. Let α' be the same execution as α except moving all the late $acks$ within the corresponding $snaps$ while after the preceding $write$ operations. This is still a possible fair execution, because $acks$ are processes’ outputs and don’t affect the execution. Also, an atomic assignment of serialization points for α' is also an atomic assignment for α since every operation interval in α' is a subinterval of its corresponding interval in α. Using the similar technique of Theorem 13.13(Lynch p426), we can show that α' is atomic. Then we can use the same serialization to show that α is atomic.

S_1, S_2 cannot be used as $snap$’s return value because they may happen before $snap$ starts.

Question 2(13.18):
It is impossible to solve the agreement problem with 1-failure termination using snapshot atomic objects. The atomic snapshot objects can be implemented with single/writer multi/reader shared registers. Fisher-Lynch-Patterson prove that it is impossible to solve consensus with failures using single/writer multi/reader shared registers. Therefore, we cannot solve consensus with any failure using snapshot objects.

Question 3 (Fetch-and-permute objects and consensus)

The lower bound is at least $k - 1$. The following is the algorithm to solve consensus among $k - 1$ processes with stopping failures. The FAP object is initialized to the permutation $123 \cdots k$. Let π_i be the permutation swapping the ith element with kth element, and let r_i be a single/write multi/reader shared register for which process i is its only writer. Then for process i:

1. Write i’s initial value to r_i;
2. $S = FAP(\pi_i)$;
3. If $S = 123 \cdots k$, decide on i’s initial value;
4. Otherwise, decide on r_j where j is the position of the element k in S.

The algorithm is correct because only the process i which first performs the permutation to the FAP object can read $S = 123 \cdots k$ and decide on its own value; other successive processes can know which process makes the first permutation by examining the element k’s position because this position will never be changed.

The upper bound I know is $k!$ for there are only $k!$ distinguishable states of the FAP object.