Solution of Problem Set 5

November 27, 2005

Question 1(13.11):

The modified algorithm is still correct. Note that process ¢ which executes
an update(w); operation first performs an embedded-snap, and then performs
a single write to x(i), and then output ack;. Assume process j which executes
a snap operation has seen three different tags in x(i), denoted as 11, Ts, T3,
and S, Sy, S3 are associated embedded-snap respectively. S3 must start after
snap begins, because tag T;,T» are seen. At the same time, S35 must end
before snap finishes, because T3 is seen and T3 can be seen if and only if S3
is finished and process ¢ performs write operation. Therefore, S3 is totally
contained in snap, and then it can be used as snap’s return value. It is
possible that the ack of the third update occurs after smap finished, but it
doesn’t affect the algorithm’s correctness.

To see this, assume « is an execution of the above algorithm. Let o/
be the same execution as a except moving all the late acks within the cor-
responding snaps while after the preceeding write operations. This is still
a possible fair execution, because acks are processes’ outputs and don’t af-
fect the execution. Also, an atomic assignment of serialization points for o’
is also an atomic assignment for « since every operation interval in o is a
subinterval of its corresponding interval in o. Using the similar technique of
Theorem 13.13(Lynch p426), we can show that o’ is atomic. Then we can
use the same serialization to show that « is atomic.

S1, 92 cannot be used as snap’s return value because they may happen
before snap starts.

Question 2(13.18):



It is impossible to solve the agreement problem with 1-failure termini-
ation using snapshot atomic objects. The atomic snapshot objects can be
implemented with single/writer multi/reader shared registers. Fisher-Lynch-
Patterson prove that it is impossible to solve consensus with failures using
single/writer multi/reader shared registers. Therefore, we cannot solve con-
sensus with any failure using snapshot objects.

Question 3(Fetch-and-permute objects and consensus)

The lower bound is at least K — 1. The following is the algorithm to solve
consensus among k — 1 processes with stopping failures. The FAP object is
initialized to the permutation 123--- k. Let m; be the permutation swapping
the ith element with kth element, and let r; be a single/write multi/reader
shared register for which process i is its only writer. Then for process i:

1. Write 7’s initial value to r;;

2. S=FAP(m);

3. If S=123---k, decide on 7’s initial value;

4. Otherwise, decide on r; where j is the position of the element £ in S.

The algorithm is correct because only the process ¢ which first performs the
permutation to the FAP object can read S = 123---k and decide on its
own value; other successive processes can know which process makes the first
permutation by examing the element k’s position because this position will
never be changed.

The upper bound I know is k! for there are only k! distinguishable states
of the FAP object.



