CS425/CS525 Final Exam

May 10th, 2010

Write your answers in the blue book(s). Justify your answers. Work
alone. Do not use any notes or books.

There are four problems on this exam, each worth 20 points, for a total
of 80 points. You have approximately three hours to complete this exam.

1 Anti-consensus (20 points)
A wait-free anti-consensus protocol satisfies the conditions:

Wait-free termination Every process decides in a bounded number of its
own steps.

Non-triviality There is at least one process that decides different values
in different executions.

Disagreement If at least two processes decide, then some processes decide
on different values.

Show that there is no deterministic wait-free anti-consensus protocol
using only atomic registers for two processes and two possible output values,
but there is one for three processes and three possible output values.

Clarification: You should assume processed have distinct identities.

Solution

No protocol for two: turn an anti-consensus protocol with outputs in {0,1}
into a consensus protocol by having one of the processes always negate its
output.

A protocol for three: Use a splitter.

Alternatively, have the first two processes always output 0 and 1 (satisfy-
ing disagreement), have the second process write to some register, and have
the third process output 0 if it doesn’t see the second process’s write and 1
otherwise (satisfying non-triviality). The existence of this protocol suggests
that non-triviality should probably be stronger: every process may output
different values in different executions. (But that is not how the question
was written.)



2 Odd or even (20 points)

Suppose you have a protocol for a synchronous message-passing ring that is
anonymous (all processes run the same code) and uniform (this code is the
same for rings of different sizes). Suppose also that the processes are given
inputs marking some, but not all, of them as leaders. Give an algorithm
for determining if the size of the ring is odd or even, or show that no such
algorithm is possible.

Clarification: Assume a bidirectional, oriented ring and a deterministic
algorithm.

Solution

Here is an impossibility proof. Suppose there is such an algorithm, and let
it correctly decide “odd” on a ring of size 2k + 1 for some k& and some set
of leader inputs. Now construct a ring of size 4k + 2 by pasting two such
rings together (assigning the same values to the leader bits in each copy)
and run the algorithm on this ring. By the usual symmetry argument,
every corresponding process sends the same messages and makes the same
decisions in both rings, implying that the processes incorrectly decide the
ring of size 4k + 2 is odd.

3 Implementing atomic snapshot arrays using message-
passing (20 points)

Consider the following variant of Attiya-Bar-Noy-Dolev for obtaining snap-
shots of an array instead of individual register values, in an asynchronous
message-passing system with ¢ < n/4 crash failures. The data structure we
are simulating is an array a consisting of an atomic register a[i] for each
process ¢, with the ability to perform atomic snapshots.

Values are written by sending a set of (i,v,t;) values to all processes,
where i specifies the segment a[i] of the array to write, v gives a value for
this segment, and ¢; is an increasing timestamp used to indicate more recent
values. We use a set of values because (as in ABD) some values may be
obtained indirectly.

To update segment a[i] with value v, process i generates a new timestamp
t;, sends {(i,v,t;)} to all processes, and waits for acknowledgments from at
least 3n/4 processes.



Upon receiving a message containing one or more (i,v,t;) triples, a pro-
cess updates its copy of a[i] for any 7 with a higher timestamp than previously
seen, and responds with an acknowledgment (we’ll assume use of nonces so
that it’s unambiguous which message is being acknowledged).

To perform a snapshot, a process sends SNAPSHOT to all processes, and
waits to receive responses from at least 3n/4 processes, which will consist of
the most recent values of each a[i] known by each of these processes together
with their timestamps (it’s a set of triples as above). The snapshot process
then takes the most recent versions of ali] for each of these responses and
updates its own copy, then sends its entire snapshot vector to all processes
and waits to receive at least 3n/4 acknowledgments. When it has received
these acknowledgments, it returns its own copy of a[i| for all i.

Prove or disprove: The above procedure implements an atomic snap-
shot array in an asynchronous message-passing system with ¢ < n/4 crash
failures.

Solution

Disproof: Let s; and so be processes carrying out snapshots and let w;
and we be processes carrying out writes. Suppose that each w; initiates a
write of 1 to a[w;], but all of its messages to other processes are delayed
after it updates its own copy a,|w;]. Now let each s; receive responses
from 3n/4 — 1 processes not otherwise mentioned plus w;. Then s; will
return a vector with afw;] = 1 and afws] = 0 while sy will return a vector
with aw;] = 0 and a[ws] = 1, which is inconsistent. The fact that these
vectors are also disseminated throughout at least 3n/4 other processes is a
red herring.

4 Priority queues (20 points)

Let @ be a priority queue whose states are multisets of natural numbers and
that has operations enq(v) and deq(), where enq(p) adds a new value v to
the queue, and deq() removes and returns the smallest value in the queue,
or returns null if the queue is empty. (If there is more than one copy of the
smallest value, only one copy is removed.)

What is the consensus number of this object?

Solution

The consensus number is 2. The proof is similar to that for a queue.



To show we can do consensus for n = 2, start with a priority queue with
a single value in it, and have each process attempt to dequeue this value. If
a process gets the value, it decides on its own input; if it gets null, it decides
on the other process’s input.

To show we can’t do consensus for n = 3, observe first that starting from
any states C' of the queue, given any two operations x and y that are both
enqueues or both dequeues, the states Cry and Cyx are identical. This
means that a third process can’t tell which operation went first, meaning
that a pair of enqueues or a pair of dequeues can’t get us out of a bivalent
configuration in the FLP argument. We can also exclude any split involving
two operations on different queues (or other objects) But we still need to
consider the case of a dequeue operation d and an enqueue operation e on
the same queue @). This splits into several subcases, depending on the state
C of the queue in some bivalent configuration:

1. C ={}. Then Ced = Cd = {}, and a third process can’t tell which of
d or e went first.

2. C'is nonempty and e = enq(v), where v is greater than or equal to the
smallest value in C'. Then Cde and Ced are identical, and no third
process can tell which of d or e went first.

3. C is nonempty and e = enq(v), where v is less than any value in C.
Consider the configurations Ced and C'de. Here the process pg that
performs d can tell which operation went first, because it either obtains
v or some other value v' # v. Kill this process. No other process in Ced
or C'de can distinguish the two states without dequeuing whichever of
v or v' was not dequeued by py. So consider two parallel executions
Cedo and C'deo where o consists of an arbitrary sequence of operations
ending with a deq on @) by some process p (if no process ever attempts
to dequeue from (), then we have already won, since the survivors
can’t distinguish Ced from Cde). Now the state of all objects is the
same after Cedo and C'deos, and only pg and p have different states in
these two configurations. So any third process is out of luck.



