
CS425/CS525 Final Exam
May 10th, 2010

Write your answers in the blue book(s). Justify your answers. Work
alone. Do not use any notes or books.

There are four problems on this exam, each worth 20 points, for a total
of 80 points. You have approximately three hours to complete this exam.

1 Anti-consensus (20 points)

A wait-free anti-consensus protocol satisfies the conditions:

Wait-free termination Every process decides in a bounded number of its
own steps.

Non-triviality There is at least one process that decides different values
in different executions.

Disagreement If at least two processes decide, then some processes decide
on different values.

Show that there is no deterministic wait-free anti-consensus protocol
using only atomic registers for two processes and two possible output values,
but there is one for three processes and three possible output values.

Clarification: You should assume processed have distinct identities.

2 Odd or even (20 points)

Suppose you have a protocol for a synchronous message-passing ring that is
anonymous (all processes run the same code) and uniform (this code is the
same for rings of different sizes). Suppose also that the processes are given
inputs marking some, but not all, of them as leaders. Give an algorithm
for determining if the size of the ring is odd or even, or show that no such
algorithm is possible.

Clarification: Assume a bidirectional, oriented ring and a deterministic
algorithm.

1



3 Implementing atomic snapshot arrays using message-
passing (20 points)

Consider the following variant of Attiya-Bar-Noy-Dolev for obtaining snap-
shots of an array instead of individual register values, in an asynchronous
message-passing system with t < n/4 crash failures. The data structure we
are simulating is an array a consisting of an atomic register a[i] for each
process i, with the ability to perform atomic snapshots.

Values are written by sending a set of 〈i, v, ti〉 values to all processes,
where i specifies the segment a[i] of the array to write, v gives a value for
this segment, and ti is an increasing timestamp used to indicate more recent
values. We use a set of values because (as in ABD) some values may be
obtained indirectly.

To update segment a[i] with value v, process i generates a new timestamp
ti, sends {〈i, v, ti〉} to all processes, and waits for acknowledgments from at
least 3n/4 processes.

Upon receiving a message containing one or more 〈i, v, ti〉 triples, a pro-
cess updates its copy of a[i] for any i with a higher timestamp than previously
seen, and responds with an acknowledgment (we’ll assume use of nonces so
that it’s unambiguous which message is being acknowledged).

To perform a snapshot, a process sends snapshot to all processes, and
waits to receive responses from at least 3n/4 processes, which will consist of
the most recent values of each a[i] known by each of these processes together
with their timestamps (it’s a set of triples as above). The snapshot process
then takes the most recent versions of a[i] for each of these responses and
updates its own copy, then sends its entire snapshot vector to all processes
and waits to receive at least 3n/4 acknowledgments. When it has received
these acknowledgments, it returns its own copy of a[i] for all i.

Prove or disprove: The above procedure implements an atomic snap-
shot array in an asynchronous message-passing system with t < n/4 crash
failures.

4 Priority queues (20 points)

Let Q be a priority queue whose states are multisets of natural numbers and
that has operations enq(v) and deq(), where enq(p) adds a new value v to
the queue, and deq() removes and returns the smallest value in the queue,
or returns null if the queue is empty. (If there is more than one copy of the
smallest value, only one copy is removed.)

2



What is the consensus number of this object?

3


