
The Topological Structure of Asynchronous
Computability

MAURICE HERLIHY

Brown University, Providence, Rhode Island

AND

NIR SHAVIT

Tel-Aviv University, Tel-Aviv Israel

Abstract. We give necessary and sufficient combinatorial conditions characterizing the class of
decision tasks that can be solved in a wait-free manner by asynchronous processes that communicate
by reading and writing a shared memory.

We introduce a new formalism for tasks, based on notions from classical algebraic and combinato-
rial topology, in which a task’s possible input and output values are each associated with high-
dimensional geometric structures called simplicial complexes. We characterize computability in terms
of the topological properties of these complexes. This characterization has a surprising geometric
interpretation: a task is solvable if and only if the complex representing the task’s allowable inputs
can be mapped to the complex representing the task’s allowable outputs by a function satisfying
certain simple regularity properties.

Our formalism thus replaces the “operational” notion of a wait-free decision task, expressed in
terms of interleaved computations unfolding in time, by a static “combinatorial” description
expressed in terms of relations among topological spaces. This allows us to exploit powerful theorems
from the classic literature on algebraic and combinatorial topology. The approach yields the first
impossibility results for several long-standing open problems in distributed computing, such as the
“renaming” problem of Attiya et al., and the “k-set agreement” problem of Chaudhuri.

Preliminary versions of these results appeared as HERLIHY, M. P., AND SHAVIT, N. 1993. The
asynchronous computability theorem for t-resilient tasks. In Proceedings of the 25th Annual ACM
Symposium on Theory of Computing (San Diego, Calif., May 16 –18). ACM, New York, pp. 111–120,
and HERLIHY, M. P., AND SHAVIT, N. 1994. A simple constructive computability theorem for wait-free
computation. In Proceedings of the 26th Annual ACM Symposium on Theory of Computing (Montreal,
Que., Canada, May 23–25). ACM, New York, pp. 243–252.
The work of M. Herlihy was supported by NSF grant DMS 95-05949.
The work of N. Shavit was supported by NSF grant CCR 95-20298 and Israeli Academy of Science
grant Number 0361-88.
Authors’ addresses: M. Herlihy, Computer Science Department, Brown University, Box 1910,
Providence, R. I. 02912; N. Shavit, Computer Science Department, Tel-Aviv University, Tel-Aviv
69978, Israel.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery (ACM), Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1999 ACM 0004-5411/99/1100-0858 $05.00

Journal of the ACM, Vol. 46, No. 6, November 1999, pp. 858 –923.

Categories and Subject Descriptors: F.1.1 [Computation by Abstract Devices]: Models of Computa-
tion—computability theory; F.1.2 [Computation by Abstract Devices]: Modes of Computation—
parallelism and concurrency

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Algebraic topology, asynchronous distributed computation,
decision tasks, distributed computing, homology, simplicial complex, wait-free algorithms

1. Introduction

Modern multiprocessors, whether they communicate by message-passing or
through shared memory, are inherently asynchronous: processes can be halted or
delayed without warning by cache misses, interrupts, or scheduler pre-emption. A
task in an asynchronous system is a problem where each process starts with a
private input value, communicates with the others, and halts with a private
output value. A protocol is a program that solves the task. In asynchronous
systems, it is desirable to design protocols that are wait-free: any process that
continues to run will halt with an output value in a fixed number of steps,
regardless of delays or failures by other processes.

Under what circumstances does a task have a wait-free protocol? In this paper,
we give the first completely combinatorial characterization of the circumstances
under which tasks have wait-free protocols in shared read/write memory. We
show that any task and any protocol can be associated with a pair of high-
dimensional geometric structures called simplicial complexes. A protocol solves a
task if and only if their simplicial complexes can be mapped to one another by a
function satisfying certain simple regularity properties. Our main theorem gives
necessary and sufficient conditions for such a map to exist.

Although our characterization is quite general, it has concrete applications. In
particular, it yields the first impossibility results for several long-standing open
problems in distributed computing, including the renaming problem of Attiya et
al. [1990] with a small number of names, and the set agreement problem of
Chaudhuri [1990]. It is also a building block in other characterizations such as
Afek and Stupp’s [1993] characterization of the effect of register size on the
power of multiprocessor synchronization operations.

Informally speaking, impossibility is demonstrated as follows: Our theorem
implies that there exists a map from the protocol complex to the task complex
that preserves certain topological properties. We can establish that no map exists
by showing that the complexes are topologically “incompatible,” in much the
same way that classical algebraic topology uses topological invariants to prove
that two spaces cannot be homeomorphic, that is, cannot be continuously
mapped each to the other. In particular, we show that the simplicial complex
associated with any wait-free protocol using read/write memory has a remarkable
topological property: it has no “holes” in any dimension. We exploit this simple
property to derive our impossibility results.

In a fundamental paper, Fischer et al. [1985] showed that there exists a simple
task that cannot be solved in a message-passing system if even one process may
fail by halting (or may be infinitely slow). This result showed that the notion of
“asynchronous computability” differs in important ways from conventional no-
tions of computability (such as sequential “Turing” computability). It led to the

859The Topological Structure of Asynchronous Computability

creation of a highly active research area, the full scope of which is surveyed in
recent book by Lynch [1996].

A first step toward a systematic characterization of asynchronous computabil-
ity was taken in 1988 by Biran et al. [1988] who gave a graph-theoretic
characterization of the tasks that could be solved by a message-passing system in
the presence of a single failure. Although the problem subsequently received
considerable attention, it proved difficult to extend such graph-theoretic ap-
proaches to encompass more than a single failure. Even the problem of fully
characterizing specific tasks like renaming [Attiya et al. 1990] and set agreement
[Chadhuri 1990] remained unresolved. Chor and Moscovici [1980] later provided
a graph-theoretic characterization of tasks solvable in a system where the n 1 1
processes can solve (n 1 1)-process consensus (either deterministically or
randomized).

In 1993, three research teams—Borowsky and Gafni [1993], Saks and Zaharo-
glou [1993], and the current authors [1993] independently derived lower bounds
for the k-set agreement problem of Chaudhuri. The proof of Borowsky and Gafni
[1993] is based on a powerful simulation method that allows N-process protocols
to be executed by fewer processes in a resilient way. Both Saks and Zaharoglou
[1993] and the current authors [1993] apply notions and techniques from
mainstream combinatorial topology. Saks and Zaharoglou construct an elegant
model that casts processors’ collective knowledge of the unfolding computation
as a topological space, and apply a variant of the Brouwer fixed point theorem
[Munkres 1984] to derive impossibility of wait-free set agreement. This technique
appears to be specific to set agreement.

In contrast, our work [Herlihy and Shavit 1993; 1994] focused on general
properties of the model of computation rather than on properties of specific
tasks. We introduced a new formalism based on simplicial complexes and
homology, notions taken from undergraduate-level algebraic topology. The new
formalism replaces the popular “operational” notion of a wait-free decision task,
expressed in terms of interleaved computations unfolding in time, by a static
“combinatorial” description expressed in terms of relations among simplicial
complexes. Simplicial complexes are a natural generalization of graphs. They
provide a notion of dimensionality, absent in earlier graph-theoretic models, that
captures in a natural way the effects of multiple failures. A further advantage of
this model is that it becomes possible to apply standard results from mainstream
mathematics to distributed computation.

The paper is organized as follows: Section 2 provides the details of our new
topological framework for asynchronous computation. Section 3 presents the
statement of our main theorem and a collection of example results derived from
it, including the impossibility of wait-free set agreement. Sections 5 and 4
respectively provide the proofs of the “if” and “only if” parts of our theorem. We
conclude the paper with a proof of the impossibility of solving the renaming
problem with a small number of names.

2. Model

We begin with an informal synopsis of our model, in which N 5 n 1 1
sequential threads of control, called processes, cooperate to solve a decision task.
In a decision task, each process starts with a private input value, and halts with a

860 M. HERLIHY AND N. SHAVIT

private output value. For example, in the well-known binary consensus task, the
processes have binary inputs, and must agree on some process’s input as their
common output [Fischer et al. 1985]. A protocol is a program that solves a
decision task. A protocol is wait-free if it guarantees that every nonfaulty process
will finish in a bounded number of steps, no matter how many processes fail.

This paper considers protocols in which processes communicate by reading and
writing variables in shared memory. The literature encompasses a variety of
shared-memory models; fortunately they are all equivalent in the sense that any
one can be implemented in a wait-free manner from any other. From the
simplest single-bit, single-reader, and single-writer variables, one can construct
multi-bit, multi-reader variables (see Lynch’s survey [Lynch 1996]). From these
variables, in turn, one can implement an atomic snapshot memory: an array where
each Pi updates (writes) array element i, and any process can instantaneously
scan (atomically read) the entire array [Afek et al. 1990; Anderson 1990]. It is
thus convenient to assume that processes communicate via atomic snapshot
memory.

In the remainder of this section, we restate the model in more formal terms,
and introduce the mathematical concepts underlying our main theorem and its
proof.

2.1. DECISION TASKS. We now define decision tasks more precisely. We start
with the notion of a vector, which describes the input/output behavior of finite
executions. Let DI and DO be data types, possibly the same, called the input and
output data types.

Definition 2.1. An (n 1 1)-process input vector IW (respectively, output vector
OW) is an (n 1 1)-component vector, each component of which is either a value
of type DI (respectively, DO), or the distinguished value '. At least one
component of IW (respectively, OW) must be different from '.

We denote the ith component of input vector IW by IW[i], and similarly for output
vectors. An input vector IW represents a possible assignment of input values to
processes: if IW[i] is an input value v, then v is Pi’s input at the start of the
execution, while if IW[i] is ', then Pi does not participate in that execution: it has
no input and takes no steps. Similarly, an output vector OW represents a possible
choice of output values by processes: if OW [i] is an output value v, then v is Pi’s
output chosen during that execution, while if IW[i] is ', then Pi does not choose
an output in that execution. Vectors thus describe the input/output behavior of
finite executions in which some subset of processes participate.

Definition 2.2. A participating index (process) in an input vector is one whose
value is distinct from '.

Definition 2.3. Vector UW matches VW if, for 0 # i # n, UW [i] 5 ' if and only
if VW [i] 5 '.

Matching vectors have the same set of participating indexes. We are often
concerned with executions that are prefixes of a given execution.

Definition 2.4. Vector UW is a prefix of VW if, for 0 # i # n, either UW [i] 5 VW [i]
or UW [i] 5 '.

861The Topological Structure of Asynchronous Computability

If a prefix has an entry distinct from ', then it agrees with the corresponding
entry in the original.

Definition 2.5. A set V of vectors is prefix-closed if for all VW [V, every prefix
UW of VW is in V.

We use prefix-closed sets of vectors to characterize the legitimate sets of input
and output value assignments. If the set of input vectors is prefix-closed, then any
legitimate assignment of input values remains legitimate if fewer processes
participate. If the set of output vectors is prefix-closed, then any legitimate
choice of output values remains legitimate if fewer processes decide.

Definition 2.6. Let I and O be prefix-closed sets of input and output vectors.
A task specification is a relation D # I 3 O, carrying each input vector to a
non-empty subset of matching output vectors.

Let D(IW) denote the set of vectors OW in O such that (IW, OW) [D. For a given
input vector IW, the set D(IW) is just the set of legitimate output vectors corre-
sponding to the inputs IW. Because task specifications are typically nondetermin-
istic, D(IW) typically contains multiple vectors.

We are now ready to give a precise definition of decision tasks.

Definition 2.7. A decision task ^I, O, D& is a tuple consisting of a set I of
input vectors, a set O of output vectors, and a task specification D relating these
two sets.

This class of decision tasks includes all linearizable one-time objects, that is
linearizable objects [Herlihy and Wing 1990] that permit at most one operation
per process. The model captures the intuitive notion of “order of events in time”
through the use of participating processes. For example, although the following
tasks have the same sets of input and output vectors, they have a very different
structure.

Unique-id. Each participating process Pi [{0, . . . , n} has an input xi 5 0 and
chooses an output yi [{0, . . . , n} such that for any pair Pi Þ Pj, yi Þ yj.

Fetch-And-Increment. Each participating process Pi [{0, . . ., n} has an input
xi 5 0 and chooses a unique output yi [{0, . . . , n} such that (1) for some
participating index i, yi 5 0, and (2) for 1 # k # n, if yi 5 k, then, for some
j Þ i, yj 5 k 2 1.

The tables in Figure 2 show the task specifications for Unique-id and Fetch-
And-Increment. Notice that Unique-Id allows identifiers to be assigned statically,

FIG. 1. The Unique-Id task.

862 M. HERLIHY AND N. SHAVIT

while Fetch-And-Increment effectively requires that they be assigned dynamically
in increasing order. We will see that the first task has a trivial wait-free solution,
while the second has no solution in read/write memory if one or more processes
can fail.

2.2. OBJECTS, PROCESSES, AND PROTOCOLS. Formally, we model objects, pro-
cesses, and protocols using a simplified form of the I/O automaton formalism of
Lynch and Tuttle [1988]. An I/O automaton is a nondeterministic automaton with
a finite or infinite set of states, a set of input events, a set of output events, and a
transition relation given by a set of steps, each defining a state transition
following a given event. An execution of an I/O automaton is an alternating
sequence of states and enabled events, starting from some initial state. An
execution fragment is a subsequence of consecutive states and events occurring in
an execution. For simplicity, we will use the term, execution, to mean either
execution or execution fragment, the appropriate term being clear from context.
All executions considered in this paper are finite. An automaton history is the
subsequence of events occurring in an execution. Automata can be composed by
identifying input and output events in the natural way (details can be found in
Lynch and Tuttle [1988]).

An object X is an automaton with input events CALL(P, v, X, T) and output
event RETURN(P, v, X, T) where P is a process id, v is a value, and X an object,
and T is a type. A process P is an automaton with output events CALL(P, v, X,
T), and FINISH(P, v) and input events RETURN(P, v, X, T) and START(P, v). A
RETURN event matches an earlier CALL event in a history if the two events have
the same type, name, and process id. An operation is a matching pair of CALL and
RETURN events.

A read/write memory object M is an automaton with input events READ(P, a)
and WRITE(P, a, v)1 and output event RETURN(P, v). The read/write memory
model we use in this paper is the standard atomic snapshot memory: an array a
where each WRITE(P, a, v) is an update of array element a[P] to the value v, and
each READ(P, a) is an instantaneous scan operation returning the contents of the
entire array a (see Afek et al. [1990] and Anderson [1990] for details and Lynch
[1996] for a survey of why read/write memory models are all equivalent to atomic
snapshot memory.)

A history is sequential if each call event is immediately followed by a matching
response. (A sequential execution permits process steps to be interleaved, but at

1 Strictly speaking, READ(P, a) is short for CALL(P, READ, M, a), and similarly for WRITE.

FIG. 2. The Fetch-And-Inc task.

863The Topological Structure of Asynchronous Computability

the granularity of complete operations.) If we restrict our attention to sequential
histories, then the behavior of the atomic snapshot memory is straightforward:
any scan operation of array a returns for each element a[P] the value of the last
preceding update by process P, or ' if no such update existed. Each history H
induces a partial “real-time” order aH on its operations: op0 aH op1 if the
output event for op0 precedes the input event for op1. Operations unrelated by
aH are said to be concurrent. If H is sequential, aH is a total order. A
concurrent protocol or object is linearizable if for every history H, there exists a
sequential history G with the same events as H, where aH # aG. Informally, a
history is linearizable if it can be mapped to a sequential history by making each
operation appear to take effect instantaneously at some point between its call
and its response (see Herlihy and Wing [1990] for details). An atomic snapshot
memory object is one that is linearizable to the sequential object specified above.

A protocol {P0, . . . , Pn; M} is the automaton composed by identifying in the
obvious way the events for processes P0, . . . , Pn and the memory M. At any
point in the execution of a protocol, the state of each process is called its local
state. The set of local states together with the state of the memory is called the
protocol’s global state. To capture the notion that a process represents a single
thread of control, a protocol execution is well-formed if every process history (the
projection of the history onto the actions of Pi) has a unique START event
(generated externally to the protocol), which precedes any CALL or RETURN

events, it alternates matching CALL and RETURN events, and has at most one
FINISH event. We restrict our attention to well-formed executions.

Definition 2.8. Operations p and q of object X commute if, for all sequential
histories H and G, H z p z q z G is a history of X if and only if H z q z p z G is
a history of X (where “z” is the concatenation operator).

In this paper, we use atomic snapshot memory, where scan (READ) operations
commute with one another, as do memory update (WRITE) operations. This
property will be shown as fundamental in determining the computational power
of read/write memory.

For brevity, we express protocols using pseudo-code, although it is straightfor-
ward to translate this notation into automaton definitions.

2.3. SOLVABILITY. We are interested in characterizing when tasks can be
solved by processes that are individually equivalent to Turing machines. A
process is active at a point in an execution if it does not yet have a FINISH event.
An active process is faulty at that point if it has no output events later in that
execution. An execution is t-faulty if up to t processes become faulty.

Definition 2.9. A protocol solves a decision task in an execution if the
following condition holds. Let {Piui [U} be the set of processes that have
START events, and let {uiui [U} be their arguments. Let {Pjuj [V}, V # U, be
the processes that execute FINISH events, and let {vjuj [V} be their output
values. Let IW be the input vector with ui in component i, and ' elsewhere, and
let OW be the corresponding output vector for the vj. We require that

(1) no process takes an infinite number of steps without a FINISH event, and
(2) OW is a prefix of some vector in D(IW).

864 M. HERLIHY AND N. SHAVIT

Informally, the second condition implies that if a protocol solves a task in an
execution, the outputs of the nonfaulty processes in any prefix of the execution
are consistent with the allowable outputs of the possibly larger set of inputs to
the execution as a whole. A protocol for N processes wait-free solves a decision
task if it solves it in every t-faulty execution where 0 # t , N. We will call such
a protocol wait-free and henceforth use the term solves to mean wait-free solves.

It is convenient to assume that any wait-free protocol using read/write memory
is expressed in the following normal form. The processes share an atomic
snapshot memory array a whose N 5 n 1 1 elements are all initially '. Each
process has a local state, consisting of its input value and the history of values it
has so far read from the shared memory. Computation proceeds in a sequence of
asynchronous rounds, from 0 to some fixed r. In round 0, each process writes its
input value to its local variable. In any subsequent round, each Pi executes a
sequence of steps: (1) it updates a[i] to its current local state, and (2) it
atomically scans the elements of a, appending them to its local state. After r
rounds, Pi computes its output value by applying a task-specific decision map d to
its final local state. Figure 3 shows a generic protocol in normal form.

Because the set I of input vectors is finite, any kind of wait-free atomic
snapshot memory protocol can be expressed in normal form.2 The memory
locations a[i] need only be of bounded size, though for our lower bound proofs
we allow them to be unbounded. Without loss of generality, we may assume that
each time a process performs an update operation it writes a unique value.

2.4. SIMPLICIAL COMPLEXES. We start with a number of standard technical
definitions taken mostly from standard undergraduate textbooks [Munkres 1984;
Spanier 1966].

A vertex vW is a point in a high dimensional Euclidean space. A set {vW0, . . . , vWn}
of vertexes is affinely independent if and only if the vectors vW1 2 vW0, . . ., vWn 2 vW0
are linearly independent.

Definition 2.10. Let {vW0, . . . , vWn} be an affinely independent set of n 1 1
vertexes. We define the (geometric) n-simplex S spanned by vW0, . . . , vWn to be the
set of all points x such that x 5 (i50

n tivW i where (i50
n ti 5 1 and t i $ 0 for all i.

For example, a 0-simplex is a vertex, a 1-simplex a line segment, a 2-simplex a
solid triangle, and a 3-simplex a solid tetrahedron. For an example of vertexes3

2 If the number of input vectors were unbounded, then the protocol would need an explicit
termination test since it could be that there is no bound r on the maximal number of rounds necessary
to complete a task.
3 In the example we name vertexes with names like P0 and Q1 using a combination of process id
(such as P or Q) and a “value” (such as 0 or 1). The reason will become clear in the sequel.

FIG. 3. A Wait-Free Protocol in Normal Form.

865The Topological Structure of Asynchronous Computability

and simplexes, see Figure 4. For simplicity, we often denote the simplex spanned
by a set {vW0, . . . , vWn} of affinely independent vertexes as (vW0, . . . , vWn). The
number n is called the dimension of the simplex S, and is often denoted by
dim(S). For clarity, we often indicate the dimension of a simplex as a super-
script: Sn denotes to the simplex spanned by the vertexes in {vW0, . . . , vWn}.

Any simplex T spanned by a subset of {vW0, . . . , vWn} is called a face of S,
denoted T # S. The faces of S different from S itself are called the proper faces
of S. In Figure 4, the 1-simplex spanned by the vertexes {P0, Q1} is a proper
face of the 2-simplex {P0, Q1, R2}. The union of the proper faces of S is called
the boundary of S, and is denoted Bd(S). The interior of S, denoted Int(S), is
defined by the set equation Int(S) 5 S 2 Bd(S).

Definition 2.11. Let Sd 5 (sW0, . . . , sWd) be a d-simplex. Define facei(Sd), the
ith face of Sd, to be the (d 2 1)-simplex (sW0, . . . , ŝ i, . . . , sWd), where the
circumflex denotes omission.

As will soon become clear, we will use vertexes to model local process states,
and simplexes to model consistent states of multiple processes involved in solving
a decision task or in running a protocol in the atomic snapshot model. To model
a collection of such states, we need the concept of a geometric simplicial
complex, or complex for short.

Definition 2.12. A geometric simplicial complex _ in a Euclidean space is a
collection of geometric simplexes such that

—Every face of every simplex of _ is also a simplex of _.
—The intersection of any two simplexes of _ is also a simplex of _.

We consider only finite complexes. The dimension of a complex _, denoted
dim(_), is the highest dimension of any of its simplexes, and is sometimes
indicated explicitly by a superscript. An n-dimensional complex (or n-complex) is
pure if every simplex is a face of some n-simplex. Except when noted, all
complexes considered in this paper are pure. A simplex S in _ with dimension
dim(S) 5 dim(_) is called a principal simplex.

Figure 4 shows an example of a pure 2-dimensional complex consisting of the
union of the faces of the 2-simplexes (P0, Q1, R2) and (P3, Q1, R2). Both
2-simplexes are principal simplexes in this example.

If + is a subcollection of simplexes in _ closed under containment and
intersection, then + is a complex in its own right, called a subcomplex of _.

FIG. 4. Vertexes and simplexes.

866 M. HERLIHY AND N. SHAVIT

The set of simplexes of _ of dimension at most , is a subcomplex of _, called
the ,-skeleton of _, denoted skel,(_). The elements of skel0(_) are the vertexes of
_. For example the 0-skeleton of _ in Figure 4 is just {P0, P3, Q1, R2}.
Similarly, the 1-skeleton of _ is the union of the 0-skeleton and the set of
1-simplexes {(P0, Q1), (P0, R2) (R2, Q1) (P3, Q1) (P3, R2)}. We now
define a way of “adding” simplexes, known as joining.

Definition 2.13. Let S 5 (sW0, . . . , sWp) and T 5 (tW0, . . . , tWq) be simplexes
whose combined sets of vertexes are affinely independent. Then the join of S and
T, denoted S z T is the simplex (sW0, . . . , sWp, tW0, . . . , tWq).

We may extend the notion of joining to complexes as well.

Definition 2.14. If _ and + are simplicial complexes, not necessarily of the
same dimension, then their join, denoted _ z +, is the collection of simplexes _
ø + ø {S z T uS [_, T [+}.

The join of two complexes _ and + is a complex in its own right [Munkres
1984]. One useful complex derived using the join operator is the cone over _,
defined as vW z _ for some vertex vW affinely independent of _. Let u_u be the
subset øS[_ S of a high-dimensional Euclidean space R,, that is, the union of
the simplexes of _. Giving each simplex its natural topology as a subspace of R,,
we topologize u_u by declaring a subset A of u_u to be closed if and only if A ù S
is closed for all S [_. This space is called the polyhedron of _. Conversely, _ is
called a triangulation of u_u. We define the diameter of a simplex S to be the
maximum Euclidean distance between any pair of points of uS u.

Definition 2.15. Two topological subspaces A and B are homeomorphic if
there exists a one-to-one continuous map f: A 3 B with a continuous inverse.

We say that a complex # is an n-disk if u#u is homeomorphic to u6nu, and it is
an (n 2 1)-sphere if u#u is homeomorphic to u6̇n21u.

2.5. ABSTRACT SIMPLEXES AND COMPLEXES. The geometric representations
we have given for simplexes and complexes are not always convenient, and we
therefore introduce the “complementary” notions of abstract simplexes and
abstract complexes.

Definition 2.16. An abstract simplex S is a finite, nonempty set.

The dimension of S is one less than its cardinality. Each nonempty subset T of
S is called a face of S. Each element of S is called a vertex of S. Geometric and
abstract simplexes are closely related: any affinely independent set of vectors {vW0,
. . . , vWn} span both a geometric and abstract simplex.

Definition 2.17. An abstract complex _ is a collection of abstract simplexes
closed under containment, that is, if S is in _, so is any face of S.

The notions of dimension, join, and subcomplex are defined for abstract
simplexes and complexes in the obvious way.

Definition 2.18. Let & be a geometric complex, and let V be the vertex set of
&. If ! is the abstract complex of all subsets S of V such that S spans a simplex
in &, then ! is called the vertex scheme of &.

867The Topological Structure of Asynchronous Computability

Definition 2.19. Two abstract complexes _ and + are isomorphic if there is a
bijective correspondence c between their vertex sets such that a set S of vertexes
is in _ if and only if c(S) [+. The bijective correspondence c is called an
isomorphism.

The proof of the following theorem can be found in most standard textbooks
on algebraic topology [Munkres 1984; Spanier 1966].

THEOREM 2.20. Every abstract complex ! is isomorphic to the vertex scheme of
some geometric complex & in R2 dim(!)11.

2.6. SIMPLICIAL MAPS AND SUBDIVISIONS. In the rest of this paper, it is
convenient to use abstract and geometric simplexes and complexes more or less
interchangeably. The remainder of this section, however, focuses on geometric
complexes. We first define the notions of vertex maps and simplicial maps.

Definition 2.21. Let _ and + be complexes, possibly of different dimensions.
A vertex map m: skel0(_) 3 skel0(+) carries vertexes of _ to vertexes of +. The
map is a simplicial map if it also carries simplexes of _ to simplexes of +. Any
simplicial map m induces a piece-wise linear map umu: u_u 3 u+u as follows. Every
point kW of u_u has a unique representation as

kW 5 O ki z kW i ,

where the kW i span a simplex in _, 0 , ki # 1, and (ki 5 1. The ki are called
the barycentric coordinates of kW . Define

um u~kW ! 5 O ki z m~kW i!

Henceforth, unless stated otherwise, all maps between complexes are assumed
to be simplicial. An example of a simplicial map is given in Figure 5.

Definition 2.22. Let ! , @, and f: ! 3 #. A simplicial map c: @ 3 #
extends f if they agree on !.

We note that a simplex and its image under a simplicial map need not have the
same dimension. As seen in Figure 5, the simplicial map may “collapse” some
simplexes.

Definition 2.23. A simplicial map f: @ 3 # collapses a simplex Tm, m . 0,
if dim(f(Tm)) 5 0.

A simplicial map m: _ 3 + is noncollapsing if it preserves dimension, that is,
for all S [_: dim(m(S)) 5 dim(S).

FIG. 5. A simplicial map.

868 M. HERLIHY AND N. SHAVIT

Definition 2.24. A coloring of an n-dimensional complex _ is a noncollapsing
simplicial map x: _ 3 6, where S is an n-simplex.

Intuitively, a coloring corresponds to a labeling of the vertexes of the complex
such that no two neighboring vertexes (vertexes connected by a 1-simplex) have
the same label. A chromatic complex or colored complex (_, x) is a complex _
together with a coloring x of _. An example of a chromatic complex is given in
Figure 33, where the colors are the letters {P, Q, R}. When it is clear from the
context, we specify the chromatic complex (_, x) simply as the complex _,
omitting explicit mention of the coloring x.

Definition 2.25. Let (_, x_) and (+, x+) be chromatic complexes, and let
m: _ 3 + be a simplicial map. We say that m is color-preserving (or chromatic) if,
for every vertex vW [_, x_ (vW) 5 x+(m(vW)).

In other words, m is color-preserving if it maps each vertex in _ to a vertex in
+ of the same color. Except when otherwise noted, all simplicial maps consid-
ered in this paper are color-preserving.

Definition 2.26. Let _ be a complex in R,. A complex s(_) is a subdivision of
_ if:

—Each simplex in s(_) is contained in a simplex in _.

—Each simplex of _ is the union of finitely many simplexes in s(_).

One type of subdivision of particular interest in our proof is the barycentric
subdivision from classical algebraic topology [Munkres 1984]. Let Sn 5 {sW0, . . . , sWn}
be an n-simplex of some complex _. The point

bW 5 O
i50

n S sW i

n 1 1D
is the barycenter of Sn. In particular, if Sn is a vertex, then bW 5 Sn.

Definition 2.27. The barycentric subdivision of a complex _, denoted b(_) is
defined as follows. Its vertexes are the barycenters of the simplexes of _. For
each ordered sequence S0, . . . , Sm of simplexes of _ where Si is a face of Si11
(i 5 0, . . . , m 2 1), the sequence of corresponding barycenters is the set of
vertexes of a simplex of b(_). Only simplexes obtained in this manner are in
b(_).

Figure 6 shows b(6) defined on a 2-complex 6.

FIG. 6. A barycentric subdivision of a 2-simplex.

869The Topological Structure of Asynchronous Computability

Definition 2.28. If S is a simplex of s(_) or a point in u_u, the carrier of S,
denoted carrier(S, _) is the unique smallest T [_ such that S , uT u.

Figure 7 illustrates the notions of subdivisions and carriers. It shows a complex
on the right, and a subdivision on the left, and highlights a simplex S in the
subdivision together with its carrier.

One drawback of the barycentric subdivision is that a barycentric subdivision of
a chromatic complex is typically not chromatic.

Definition 2.29. A chromatic subdivision of (_, x_) is a chromatic complex
(s(_), xs(_)) such that s(_) is a subdivision of _, and for all S in s(_), xs(_) (S)
x_ (carrier(S, _)).

Figure 33 shows a chromatic subdivision of a complex 6 defined on a 2-simplex
S. We call this specific type of subdivision the standard chromatic subdivision and
will use it extensively later in the paper. All subdivisions we consider will be
chromatic unless, as in the case of the barycentric subdivision, we explicitly state
otherwise.

Definition 2.30. A simplicial map m: s1(_) 3 s2(_) between chromatic
subdivisions of _ is carrier-preserving if for all S [s1(_), carrier(m(S), _) #
carrier(S, _).

2.7. SIMPLICIAL COMPLEXES AND TASKS. Earlier in this section, we defined
the notion of a decision task in terms of input and output vectors. That definition
was intended to help the reader understand what a decision task is, but it lacks
the mathematical structure necessary to prove interesting results. We now
reformulate this definition in terms of simplicial complexes. We present a
topological specification that replaces the vector-based task specification of
Section 2.1. A formal proof of the correspondence among the two representa-
tions is beyond the scope of this paper and can be found in Hoest [1997].

We will construct the topological specification using abstract simplexes and
complexes. The reader should note that it follows from Theorem 2.20 that there
exists a representation using geometric simplexes and complexes, for which the
vertex scheme is isomorphic to the abstract representation. To illustrate our
constructions, we accompany the formal definitions with examples of how they
are used to represent the following variant4 of the well-known Renaming
decision task first introduced and studied by Attiya et al. [1990].

4 The full renaming problem is treated in the sequel. It assumes an additional symmetry property.

FIG. 7. A simplex and its carrier.

870 M. HERLIHY AND N. SHAVIT

Renaming. The input to each process is a unique input name in the range {0, . . . ,
M 2 1}. Each participating process chooses a unique output name taken from a
strictly smaller range 0, . . . , K.

Definition 2.31. Let IW [I be an input vector. The input simplex correspond-
ing to IW, denoted 6(IW), is the abstract colored simplex whose vertexes ^Pi, vi&
correspond to the participating entries in IW, for which IW[i] 5 vi Þ '.

The output simplex corresponding to OW , denoted 6(OW), is defined accordingly.
The process id labeling of a vertex vW is denoted by id(vW), and the value by val(vW).
We use ids(S) to denote the set of process ids of vertexes in a simplex S, and
vals(S) to denote the set of values. Figure 4 shows two triangles (2-simplexes)
corresponding to two distinct final states for the 3-process renaming task, one in
which process P chooses 0, Q chooses 1, and R chooses 2, and another in which
P chooses 3, and Q and R choose the same values. Notice that the vertexes of
each simplex are colored by the process ids.

This simplicial representation gives a geometric interpretation to the notion of
“similar” system states. The vertexes on the common boundary of the two
simplexes are local process states that cannot distinguish between the two global
states. Unlike graph-theoretic models (e.g., Biran et al. [1988]), simplicial
complexes capture in a natural way the notion of the degree of similarity between
two states: it is the dimension of the intersection of the two n-simplexes.

Since the sets of input vectors we consider are prefix-closed, we can collect
input and output vectors into abstract chromatic complexes (i.e., sets of sim-
plexes closed under containment).

Definition 2.32. The input complex corresponding to I, denoted (, is the
collection of input simplexes 6(IW) corresponding to the input vectors of I. The
output complex corresponding to O, denoted 2, is the collection of output
simplexes 6(OW) corresponding to the output vectors of O.

For example, Figure 8 shows the output complexes for renaming with two
processes {P, Q} using three names {0, 1, 2}, three processes {P, Q, R} with
three names {0, 1, 2}, and three processes using the four names {0, 1, 2, 3}. The
four-name output complex’s polyhedron is homeomorphic (topologically equiva-
lent) to a torus. To see why, notice in Figure 9 that the vertexes on edges of the

FIG. 8. Some output complexes for the renaming task.

871The Topological Structure of Asynchronous Computability

complex are the same, so the edges can be “glued together” in the direction of
the arrows.

We now construct a topological equivalent of the task specification map D #
I 3 O.

Definition 2.33. The topological task specification corresponding to the task
specification D, denoted D # (3 2, is defined to contain all pairs (6(IW), 6(OW))
where (IW, OW) are in the task specification D.

Note that the topological task specification D is not a simplicial map.
We can now put these definitions together, as shown schematically in Figure

10.

Definition 2.34. Given an (n 1 1)-process decision task ^I, O, D&, the
corresponding topological representation of the task, denoted ^(, 2, D&, consists of
an input complex (corresponding to I, and output complex 2 corresponding to
O, and a topological task specification D corresponding to the task specification
D.

Usually, we simply refer to a topological task specification as a “task specifica-
tion.”

Definition 2.35. Let U be a set of processes. A solo execution by U is one in
which all processes in U complete the protocol before any other process takes a
step. D(Sm) for m , n is the set of possible outputs of solo executions by the
processes in ids(Sm).

2.8. LINKS, MANIFOLDS, AND CONNECTIVITY. The definitions given so far
should suffice to understand the statement (and implications) of our main
theorem. The remainder of this section consists of definitions needed to under-
stand the proofs of our theorems, and some of the theorem’s applications.

The star of a simplex 6 [#, written st(6, #), is the union of all uT u such that
S # T (see Figure 11). Although stars are defined as polyhedrons, we sometimes
treat them as simplicial complexes, relying on context to clarify the precise
meaning. The open star, written st8(6, #), is the interior of the star. The link,

FIG. 9. Output complex for 3-process renaming with 4 names.

872 M. HERLIHY AND N. SHAVIT

written lk(6, #), is the complex consisting of all simplexes in st(6, #) that
contain no vertex of S. These concepts are illustrated in Figure 11. The notion of
a link has a simple interpretation. In the renaming complex shown in Figure 8,
consider the node labeled P2. This node indicates that 2 is a correct output for
P. The link of this node is a one-dimensional complex (a hexagon) in which each
1-simplex represents a possible combination of legal outputs for the remaining
processes Q and R. In general, in any chromatic complex #, lk(6, #) is a
colored complex with the following interpretation: if we fix the values assigned to
processes in ids(6), then lk(6, #) represents all possible legal ways to assign
values to the remaining processes.

A complex ! is an n-manifold with boundary if

(1) for every pair of n-simplexes T0
n, T1

n in !, there exists a sequence of
simplexes S0

n, . . . , S,
n such that T0

n 5 S0
n, T1

n 5 S,
n, and Si

n ù Si11
n is an

(n 2 1)-simplex, and
(2) every (n 2 1)-simplex is contained in either one or two n-simplexes.

The boundary complex of a manifold with boundary is the subcomplex of (n 2
1)-simplexes contained in exactly one n-simplex. If the boundary complex is
empty, we refer to the complex simply as a manifold.

Some, but not all, the complexes we consider are manifolds. Manifolds satisfy
the following property [Glaser 1970; Theorem II.2]:

LEMMA 2.36. If } is an n-manifold with boundary, and Tm an interior simplex,
then lk(Tm, }) is an (n 2 m 2 1)-sphere.

Many complexes of interest have a simple but important topological property:
they have no “holes” in certain dimensions. There are several ways to formalize
this notion, but the following is the most convenient for our purposes.

FIG. 10. A decision task.

FIG. 11. st8(vW), st(vW), and lk(vW).

873The Topological Structure of Asynchronous Computability

Definition 2.37. For k . 0, a nonempty complex # is k-connected [Spanier
1966, p. 51] if, for m # k, any continuous map of the m-sphere into u#u can be
extended to a continuous map over the (m 1 1)-disk. It is convenient to define
a complex to be (21)-connected if it is nonempty, and any complex to be
k-connected for k , 21.

A 0-connected complex is usually called connected: there is a path linking every
pair of vertices. A 1-connected complex is usually called simply connected: any
loop (closed path) can be continuously deformed to a point.

To illustrate how this formal definition captures the informal notion of a
“hole” in a complex, Figure 12 shows a complex (rendered as a surface for
simplicity) together with images of a 1-sphere (circle) under continuous maps f
and g. The image under f can be contracted to a point, while the image under g
circumnavigates a “hole” and cannot be contracted. We will be concerned with
proving that certain complexes are k-connected. Although the definition of
k-connectivity is topological in nature, we can reason about connectivity in a
purely combinatorial way, using the following elementary theorem, proved in the
appendix.

THEOREM 2.38. If _ and + are complexes such that _ and + are k-connected,
and _ ù + is (k 2 1)-connected, then _ ø + is k-connected.

Before continuing, we note some examples of useful k-connected complexes.

LEMMA 2.39. The following complexes are k-connected: (1) the complex 6k

consisting of a k-simplex and its faces, and (2) a cone over an arbitrary (k 2
1)-dimensional complex.

This completes the topological concepts necessary to prove our main theorem.

3. The Main Theorem

We are now ready to state our main theorem.

FIG. 12. Contractible and non-contractible loops.

874 M. HERLIHY AND N. SHAVIT

THEOREM 3.1 (ASYNCHRONOUS COMPUTABILITY THEOREM). A decision task
^(, 2, D& has a wait-free protocol using read-write memory if and only if there exists
a chromatic subdivision s of (and a color-preserving simplicial map

m: s~(! 3 2

such that for each simplex S in s((), m(S) [D(carrier(S, ()).

This theorem establishes that task solvability can be characterized in terms of
purely topological properties of the task specification, without explicit mention
of protocols and executions. A task is solvable if and only if one can subdivide
the input complex and map that subdivided complex to the outputs in a way that
agrees with D. In one direction, we will see that any protocol induces a
subdivision, and the structure of that subdivision reflects in a natural way the
structure of the protocol.

The theorem is depicted schematically in Figure 13. The figure’s top half shows
how the task specification D takes input simplexes to allowed output simplexes.
The bottom half shows how m maps the subdivided input complex to the output
complex in a way consistent with D.

In Figure 14, we give a simple example illustrating how the subdivision
mentioned in the theorem reflects the unfolding of a protocol execution.
Consider the following 2-process task ((, 2, D), solved by a single-round
normal-form protocol. P and Q have respective inputs p and q. They share a
two-element array, both elements initialized to '. P writes its value to the first
array element, and then scans the array, while Q writes its value to the second

FIG. 13. Asynchronous computability theorem.

875The Topological Structure of Asynchronous Computability

element, and then scans the array. Define a process view to be the sequence of
values it read at the end of the protocol. A one-round, two-process normal-form
protocol has only three possible executions: (1) If P reads before Q writes, then
P’s view is (p, '), and Q’s is (p, q). (2) If P and Q each reads after the other
writes, then both have view (p, q). (3) Q reads before P writes, then P’s view is
(p, q), and Q’s is (', q). These executions define a protocol complex 3 as
follows. There are three 1-simplexes, one for each execution. Each vertex is
labeled with a process id and that process’s view in that execution. If P reads
(p, q), then it cannot “tell” from its view whether P executed before Q or
concurrently with Q. The complex 3 captures this ambiguity in a geometric way
by placing ^P, pq& in the intersection of the two 1-simplexes representing these
two executions. If we identify vertexes ^P, p& and ^Q, q& of (with vertexes
^P, p'& and ^Q, 'q& of 3, we can see that 3 is a subdivision of (, dividing the
single edge of (into three edges.

When a process finishes executing the protocol, it chooses an output value
based only on its local state. Formally, this choice is captured by a decision map d
carrying vertexes of 3 to vertexes of 2. Recall that a fixed execution corresponds
to a single simplex of 3. At the end of this execution, the processes must choose
vertexes that lie on a common simplex of 2, implying that the vertex map d: 3 3
2 is a simplicial map. Moreover, because the protocol solves the task, for every
simplex S in 3, d(S) [D(carrier(S, ()), satisfying the theorem’s conditions. In
summary, the one-round normal-form protocol defines a protocol complex 3
which is the desired subdivision of (, and the decision map defines the desired
map to the output complex.

Although this construction of a subdivision and map for a two-process
one-round protocol is only an example, the proof of the “only if” part of the
theorem is based on the same notions: the protocol itself defines a protocol
complex that encompasses a subdivision of the input complex having the desired
properties.

The proof of the asynchronous computability theorem appears in Section 4 and
5. In the remainder of this section, we give examples of applications of the
asynchronous computability theorem.

3.1. BINARY CONSENSUS. Perhaps the simplest decision task is binary consen-
sus [Fischer et al. 1985]. As specified in Figure 15, each process starts with a
binary input, and eventually chooses a binary output. All output values must
agree, and each output must be some process’s input.

FIG. 14. Simplicial representation of a one-round execution.

876 M. HERLIHY AND N. SHAVIT

The input complex for this task is the complex @n constructed by assigning
independent binary values to n 1 1 processes. We call this complex the binary
n-sphere (Figure 16).5

The output complex consists of two disjoint n-simplexes, corresponding to
decision values 0 and 1. Figure 17 shows the input and output complexes for
2-process binary consensus. In general, the input complex is (n 2 1)-connected,
while the output complex is disconnected. Consensus is the generalization of
binary consensus to allow input values from an arbitrary range, not only {0, 1}.

It is well-known that binary consensus has no wait-free read-write protocol
[Chor et al. 1987; Herlihy 1991; Loui and Abu-Amara 1987]. Nevertheless, it is
instructive to see how this result follows from the asynchronous computability
theorem. To keep our presentation simple, we focus on the two-process task.

Processes P and Q are given private binary inputs, and they must agree on one
of their inputs. In a solo execution, where P runs alone, it observes only its own
input, say 0. Since P must choose a value even if Q never takes a step, P must
eventually choose 0. The same is true if Q runs solo with input 1. If, however, P
and Q run together, then one of them, say P, must change its tentative decision,
while preventing Q from doing the same. At the heart of the published
impossibility results for this task is a case analysis of a “bad” execution showing
that the commuting and overwriting properties of read and write operations
make this kind of synchronization impossible.

The asynchronous computability theorem captures this impossibility in a
geometric rather than operational way. Figure 17 shows the input and output
complexes for the two-process consensus task. Assume by way of contradiction
that a protocol exists. The input complex (is connected, and so is the
subdivision s((). Simplicial maps preserve connectivity, so m(s(()) is also
connected. Let Iij and Oij denote the input and output simplexes where P has
value i and Q has value j. Because D(I11) 5 O11, m carries input vertex ^P, 1& to
output vertex ^P, 1&. Symmetrically, it carries input ^Q, 0& to output ^Q, 0&.
However, these output vertexes lie in distinct connected components of the
output complex, so m cannot be a simplicial map, and by Theorem 3.1, 2-process
consensus is not solvable. (Generalizing this argument to n processes yields a
simple geometric restatement of the impossibility of wait-free consensus in
read/write memory [Chor et al. 1987; Dolev et al. 1987; Loui and Abu-Amara
1987].)

5 Informally, to see why this complex is homeomorphic to an n-sphere, note that it consists of two
subcomplexes: %0

n is the set of n-simplexes containing ^Pn, 0&, and %1
n the set containing ^Pn, 1&.

Each of these is an n-disk, a cone over the binary (n 2 1)-sphere @n21. These two n-disks are joined
at their boundaries, forming an n-sphere.

FIG. 15. The consensus task.

877The Topological Structure of Asynchronous Computability

3.2. QUASI-CONSENSUS. We introduce the following “toy” problem to illus-
trate further the implications of the theorem. Let us relax the conditions of the
consensus task (Figure 18) as follows:

Quasi-Consensus. Each of P and Q is given a binary input. If both have input v,
then both must decide v. If they have mixed inputs, then either they agree, or
Q may decide 0 and P may decide 1 (but not vice-versa).

Figure 19 shows the input and output complexes for the quasi-consensus task. Is
quasi-consensus solvable?

It is easily seen that there is no simplicial map directly from the input complex
to the output complex. Just as for consensus, the vertexes of input simplex I01
must map to output vertexes ^P, 0& and ^Q, 1&, but there is no single output
simplex containing both vertexes. Nevertheless, there is a map satisfying the
conditions of the theorem from a subdivision of the input complex. If input
simplex I01 is subdivided as shown in Figure 20, then it can be “folded” around
the output complex, allowing input vertexes ^P, 0& and ^Q, 1& to be mapped to
their counterparts in the output complex.

Figure 21 shows a simple protocol for quasi-consensus. Recall our earlier
explanation that the subdivisions of an input simplex correspond to executions of
the protocol. If P has input 0 and Q has input 1, then this protocol admits three
distinct executions: one in which both decide 0, one in which both decide 1, and
one in which Q decides 0 and P decides 1. These three executions correspond to
the three simplexes in the subdivision of I01, which are carried to O00, O10, and
O11.

This approach can be extended to tasks involving more than two processes.
Recall that in the two-process (one-dimensional) case, the impossibility of
consensus follows from the observation that a simplicial map cannot carry a
connected component of the subdivided input complex to disconnected compo-
nents of the output complex. In the (n 1 1)-process (n-dimensional) case, the

FIG. 16. Binary 0, 1, and 2-spheres.

FIG. 17. Simplicial complexes for 2-process consensus.

878 M. HERLIHY AND N. SHAVIT

impossibility of the k-set agreement task follows from a similar observation: a
simplicial map cannot carry the boundary of a “solid” disk to the boundary of a
“hole.”

3.3. SET AGREEMENT. The k-set agreement task [Chaudhuri 1990] is a natural
generalization of consensus.

k-Set Agreement. Like consensus, each process starts with an input value from
some domain, and must choose some process’s input as its output. Unlike
consensus, all processes together may choose no more than k distinct output
values.

Consensus is just 1-set agreement: all processes together may choose no more
than k 5 1 distinct values. When n 5 2 and k 5 2, the three processes must
return at most two distinct values. As illustrated in Figure 22, the output complex

FIG. 18. The quasi-consensus task.

FIG. 19. Input and output complexes for 2-process quasi-consensus.

FIG. 20. Subdivided input and output complexes for 2-process quasi-consensus.

FIG. 21. Quasi-consensus protocols for P and Q.

879The Topological Structure of Asynchronous Computability

for three-process two-set agreement consists of three binary 2-spheres linked in a
ring. This complex is not 1-connected—note the “hole” created by the missing
simplexes colored with all three values.

The set agreement problem was first proposed by Chaudhuri [1989], along with
a conjecture that it could not be solved when k # n. This problem remained
open until 1993, when three independent research teams, Borowsky and Gafni
[1993], Herlihy and Shavit [1993], and Saks and Zaharoglou [1993], proved this
conjecture correct.

We now show that the k-set agreement task of Chaudhuri has no wait-free
read-write protocol when k # n. The proof we present is short and rather simple
since most of the complexity is hidden in the use of the asynchronous computa-
bility theorem. Our proof uses Sperner’s Lemma [Lefschetz, 1949, Lemma 5.5], a
standard tool from algebraic topology.

LEMMA 3.2 (SPERNER’S LEMMA). Let s(T) be a subdivision of an n-simplex T.
If F: s(T) 3 T is a map sending each vertex of s(T) to a vertex in its carrier, then
there is at least one n-simplex S 5 (sW0, . . . , sWn) in s(T) such that the F(sWi) are
distinct.

We begin with an informal sketch of the three-process case, where k 5 2, and
input and output values taken from {0, 1, 2}. Figure 22 shows the output
complex.

Figure 23 shows a subcomplex of the input complex consisting of a simplex T
with vertexes ^P, 0&, ^Q, 1&, and ^R, 2& (P0, P1, and R2 for short), and a
collection of 2-simplexes that intersect it along its proper faces. In simplex S0, all
processes have input value 0, and similarly for S1 and S2. In simplex S01, all
processes have input value 0 or 1, and similarly for S12 and S02.

Now assume by way of contradiction that a protocol exists. Recall that the task
specification requires each process to decide some process’s input. By the
asynchronous computability theorem, there exist subdivision s and color-preserv-
ing simplicial map m consistent with the task specification.

For S0, the task specification requires each process to decide 0, so for every
vertex of sW, val(m(sW)) 5 0. As a result, m sends the vertex P0 of T to an output

FIG. 22. Output complex for (3,2)-set agreement.

880 M. HERLIHY AND N. SHAVIT

vertex also labeled with 0. Similarly, m(Q1) and m(R2) are respectively labeled
with 1 and 2.

For S01, the task specification requires each process to decide 0 or 1, so for
every vertex of sW, val(m(sW)) [{0, 1}. As a result, m sends every vertex in the
subdivided edge s(P0, Q1) to an output vertex labeled with 0 or 1. Similarly, the
vertexes of m(s(Q1, R2)) and m(s(P0, R2)) are respectively labeled with
values from {1, 2} and {0, 2}.

As a result, m carries each vertex in each subdivided proper face of T to a
value in its carrier’s set of inputs, as depicted in Figure 24. The map m thus
satisfies the preconditions of Sperner’s Lemma, and therefore it carries some
2-simplex in the subdivision s(T) to an output simplex labeled with all three
values. The output complex, however, contains no such three-colored simplex,
because there is no execution in which three distinct output values are chosen.
(Even less formally, it maps to the “hole” in the output complex.)

Here is the full proof.

THEOREM 3.3. The k-set agreement task has no wait-free read-write protocol for
k # n.

PROOF. It suffices to prove that there is no solution for k 5 n. Assume by
way of contradiction that there is such a protocol. From the k-set agreement task
specification, there is an input n-simplex Tn in (n with n 1 1 distinct inputs
(uvals(Tn) u 5 n 1 1). For every proper face Tm , Tn, there exists an input
simplex Sn , (n such that Tm , Sn and vals(Tm) 5 vals(Sn). For example, if
Tm is a single vertex ^P, 1&, then Sn is the input simplex with vals(Sn) 5 {1}. By
Theorem 3.1, there exists a color-preserving simplicial map m: s((n) 3 2n, and
by definition, m(s(7m)) must be consistent with D(Sn) for any Sn # (n

containing Tm. By the task specification vals(D(Sn) # vals(Sn) and it follows
that the simplicial map m carries every vertex v of s(Tm) to a vertex in its carrier,
hence by Lemma 3.2, there exists a simplex in s(Tn) whose vertexes are mapped
to n 1 1 distinct inputs, that is, to a simplex in 2 with n 1 1 distinct values, a
contradiction. e

4. Necessity

In this section, we show that the conditions of our theorem are necessary: any
decision task ^(, 2, D& has a wait-free protocol using read/write memory only if
there exists a chromatic subdivision s(() and a color-preserving simplicial map

m: s~(! 3 2

FIG. 23. Part of the set agreement input complex.

881The Topological Structure of Asynchronous Computability

such that for each simplex S in s((), m(S) [D(carrier(S, ()).
In our informal discussion of Figure 14, we represented the three possible

executions of a one-round normal form protocol as a simplicial complex which
we called the “protocol complex.” We observed that this protocol complex
induces a subdivision of an input simplex, and that the decision map d from the
protocol complex to the output complex is a simplicial map satisfying the
conditions of the theorem.

Our lower-bound proof is just a formalization of the same argument. We first
define the protocol complex for a normal-form protocol with multiple processes
and multiple rounds. We then show that the protocol complex encompasses a
subdivided image of the input complex, and that the decision map induces the
desired simplicial map.

First, a note about notational conventions. Some of the results presented here
concern properties of arbitrary complexes, while others concern properties of
complexes that arise in the context of asynchronous computation. To highlight
this distinction, we use symbols such as p and q for dimensions of arbitrary
simplexes, while n, as usual, is one less than the number of processes, and m
typically ranges between 0 and n.

4.1. PROTOCOL COMPLEXES. At each step in a protocol, the local state of a
process consists of its input value together with the sequences of values it
scanned. The protocol’s global state is just the set of local states, together with
the state of the shared atomic snapshot memory a[0Pn]. It is useful to treat any
protocol as an “uninterpreted” protocol in which each process’s decision value is
just its final local state (bypassing the decision map d).

We model protocols just like decision tasks. The inputs and outputs for any
execution of a protocol 3 are given by sets of (n 1 1)-process input and output
vectors, respectively denoted by I and O. As noted in Section 2, because the
protocols solve decision tasks, the set I of possible input vectors is prefix-closed.
For any protocol, the set O of possible output vectors from all executions of the
protocol must also be prefix-closed, for the following reason. Let OW be an output
vector produced by an execution of the protocol, and PW any prefix. For each i
such that OW [i] Þ ' and PW [i] 5 ', we can create a new execution in which
process i fails just before the FINISH event, that is, just before deciding. Clearly,
this execution is a possible execution of 3 with output vector PW .

Because the sets of input and output vectors I and O associated with a
protocol 3 are prefix-closed, there exist corresponding input and output com-
plexes, respectively denoted (and 3(().

FIG. 24. Sperner’s Lemma: At least one simplex has all colors.

882 M. HERLIHY AND N. SHAVIT

Definition 4.1. The complex 3(() is called a protocol complex over (. Simi-
larly, for a subcomplex # of the input complex (, 3(#) denotes the set of
possible outputs when the protocol is given inputs corresponding to #.

An important special case occurs when # is Sm, where 0 # m # n. The
complex 3(Sm) is the set of output simplexes when the processes in ids(Sm) start
with their corresponding values in vals(Sm).

The protocol complex satisfies some useful functorial properties, which follow
immediately from the definitions. Let #1, . . . , #k be subcomplexes of (.

LEMMA 4.2. 3(ùi50
k #i) 5 ùi50

k 3(#i).

LEMMA 4.3. 3(øi50
k #i) 5 øi50

k 3(#i).

What does it mean for a protocol to solve a decision task? Recall that a
process chooses a decision value by applying a decision map d to its local state.
We reformulate our main theorem to say that a protocol 3 solves a decision task
^(, 2, D& if and only if there exists a simplicial, color-preserving decision map

d: 3~(! 3 2,

such that for every simplex Sm [(, and every simplex Tm [3(Sm), where 0 #
m # n, d(Tm) [D(Sm). This definition is just a formal way of stating that
every execution of the protocol must yield an output value assignment permitted
by the decision problem specification. Though this might seem like a roundabout
formulation, it has an important and useful advantage: we have moved from an
operational notion of a decision task, expressed in terms of computations
unfolding in time, to a purely combinatorial description expressed in terms of
relations among topological spaces.

4.2. OUR PROOF STRATEGY. Figure 25 shows the protocol complex for a
simple one-round wait-free normal-form protocol. The processes share a three-
element atomic snapshot memory array with each entry initialized to 0. Each
process P, Q, and R writes 1 to its entry in the array, scans the array’s values,
and halts. This complex has a simple inductive structure. The vertex at the top
“corner” represents a solo execution by P: it writes 1, scans the array, and
observes only its own value. The vertexes along the left-hand edge represent solo
executions by P and Q together, as in Figure 14. The three vertexes in the
interior of the complex represent executions in which all processes’ operations
are interleaved: each process observes each of the others’ values.

FIG. 25. A one-round protocol complex.

883The Topological Structure of Asynchronous Computability

Our proof strategy is as follows. For each input simplex Sm, where 0 # m #
n, we identify a subdivision s(Sm) with a subcomplex of the protocol complex
3(Sm), and construct the simplicial map m in terms of the decision map d. The
construction is based on the following notion:

Definition 4.4. A span for a protocol complex 3(() is a subdivision s(() and
a color-preserving simplicial map f: s(() 3 3((), such that for every simplex
S [s((),

f~S! [3~carrier~S, s~(!!! . (1)

A span s is thus a subdivision of the input complex with the property that for
each input simplex Sm, 0 # m # n, the subdivision s(Sm) is mapped to a
subcomplex of the protocol complex 3(Sm). This construction is illustrated in
Figure 26. The left-hand side shows a three-process input simplex (oval vertexes)
which is subdivided (round vertexes) and mapped to a subcomplex of the
protocol complex.

The “only if” direction of our main theorem will follow from showing that “if
there is a protocol complex then there is a span.” The required subdivision s is
the chromatic subdivision of (induced by the span, and the simplicial map m(vW)
is just d(f(vW)), the composition of the span map and the task decision map.

We need to construct the span because the protocol complex itself is not
necessarily a subdivision of the input complex (unlike the simple example
presented in Figure 14). For example, the one-round three-process protocol
complex of Figure 25 is a not subdivided 2-simplex, although it does contain the
subdivided 2-simplex shown on the right-hand side of Figure 26.

We construct a span for a given protocol inductively by dimension, successively
extending a span defined over the k-skeleton to the (k 1 1)-skeleton, as in
Figure 31.

Here are the principal steps of our construction.

—We show that there are no topological “obstructions” to extending f from the
k-skeleton to the (k 1 1)-skeleton. Section 4.4 provides this first step, showing
that for each input simplex Sm, 0 # m # n, 3(Sm) is m-connected.

FIG. 26. A span.

884 M. HERLIHY AND N. SHAVIT

—To maintain the color-preserving nature of s and f, we check that f can be
extended in a way that does not “collapse” simplexes, that is, it does not map
higher-dimensional simplexes to lower-dimensional simplexes.

—The key to showing this “noncollapsing” property is the following local
topological property: for every input simplex Sm, 0 # m # n, the link of any
k-simplex in 3(Sm) is (m 2 k 2 2)-connected, a property we call link-
connectivity. We address this issue in Section 4.5.

—We complete the proof in Section 4.6 by using connectivity and link-connectiv-
ity properties to show that any protocol has a span.

Both m-connectivity and link-connectivity are topological properties of com-
plexes.

4.3. BASIC LEMMAS. We begin with some general lemmas about simplicial
complexes.

Definition 4.5. Complexes #0, . . . , #q cover # if # 5 ø i50
q # i. For any

index set U, define #U 5 ù i[U# i.

LEMMA 4.6. If #0, . . . , #q cover #, then for any index sets U and V,

#U ù #V 5 #UøV .

PROOF. #U ù #V 5 (ù i[U # i) ù (ù i[V # i) 5 ù i[UøV # i 5 #UøV. e

We will need the following inductive generalization of Theorem 2.38.

LEMMA 4.7. Let #0, . . . , #q cover #, and k . 0 be such that for all U, #U is
(k 2 uUu)-connected. If U0, . . . , U, are index sets of a given size u, , 1 u # q 1 1,
such that for each distinct i and j, {i} 5 Ui 2 Uj, then

ø
i50

,

#Ui
is ~k 2 u!-connected.

PROOF. If k 5 u 2 1, then this lemma simply states that the union of
nonempty complexes is nonempty. Let k . u 2 1. We argue by induction on ,.
The base case, when , 5 0, is just the hypothesis. For the induction step, when ,
. 0, assume that every

! 5 ø
i50

,21

#Ui

is (k 2 u)-connected. By the hypothesis,

@ 5 #U,

is (k 2 u)-connected. Their intersection is

! ø ù @ 5 S ø
i50

,21

#UiD ù #U,
5 ø

i50

,21

#UiøU,
.

Let Vi 5 Ui ø U,, for 0 # i , ,. Notice that each uViu 5 u 1 1, and for each
distinct i and j, {i} 5 Vi 2 Vj.

885The Topological Structure of Asynchronous Computability

! ù @ 5 ø
i50

,21

#Vi
.

The #Vi
satisfy the conditions of the induction hypothesis, so ! ù @ is (k 2

u 2 1)-connected, and the claim now follows from Theorem 2.38. e

4.4. CONNECTIVITY. We now prove a remarkable property of wait-free read/
write protocol complexes: for any input simplex Sm, 0 # m # n, the protocol
complex 3(Sm) is m-connected. In other words, every protocol complex in this
model has no “holes.”

4.4.1. The Reachable Complex. We start with some definitions capturing the
way in which the set of executions starting in any global state define a reachable
complex.

Definition 4.8. Let Sm be an input simplex, 0 # m # n, and let s be a global
state reached by executing 3 from the initial state given by Sm. A simplex Rm of
3(Sm) is reachable from s if there is some execution starting from s in which
each process in ids(Rm) completes the protocol with the local state specified in
Rm. The reachable complex from s, written 5(s), is the complex generated by
reachable simplexes from s.

Notice that the reachable complex from the initial state with participating
processes and their inputs given by Sm is just 3(Sm). For brevity, we say a state
is reachable from an input simplex Sn if it is reachable from the initial state
whose process ids and inputs are given by Sn.

If s is a global state in which not all processes have decided, then processes fall
into two categories: (1) a pending process is about to execute an operation, and
(2) a decided process has completed its protocol and halted.

Definition 4.9. For a pending process Pi in state s, define the reachable
complex 5 i(s) to be the subcomplex of the protocol complex that is reachable
after Pi executes its pending operation.

As i ranges over the pending processes, the 5 i(s) cover 5(s). A pending index
set is a set of indexes of pending processes. If U is a pending index set, define
5U(s) 5 ù i[U 5 i(s). Lemma 4.6 applies. Informally, each simplex in 5U(s)
corresponds to an execution starting in s in which no process can tell which
process in U went first.

4.4.2. Evolving Connectivity. We now give an informal example showing how
the connectivity of the reachable complex evolves as an execution unfolds.
Consider the one-round execution of Figure 14, illustrated in Figure 27.

The input complex consists of the single simplex S1 5 {^P, p&, ^Q, q&}, and
the protocol’s initial state is s. The reachable complex 3(S1) encompasses three
1-simplexes. There are two pending operations in s: an update by P and an
update by Q. If P goes first, the reachable complex 5P(s) encompasses the
simplexes {^P, (p, ')&, ^Q, (p, q)&}, {^P, (p, q)&, ^Q, (p, q)&}, and their
faces. The reachable complex 5Q(s) is defined symmetrically. Let U 5 {P, Q},
the set of participating processes. Clearly, {5 i(s) ui [U} cover 5(s). 5U(s) 5
5P(s) ù 5Q(s) is the single simplex {^P, (p, q)&, ^Q, (p, q)&} reached in the
execution in which both updates occurred before either scan (since updates

886 M. HERLIHY AND N. SHAVIT

commute, their order does not matter). 5U(s) is 1-connected. To show that
3(S1) is 1-connected, Theorem 2.38 implies that it is enough to show that both
5P(s) and 5Q(s) are 0-connected (connected in the graph-theoretic sense).

First, let us check that 5P(s) is connected (a symmetric argument holds for
5Q(s)). Let s9 be the global state if P updates a[P] in s, and s0 the global state
if Q updates a[Q]. There are two pending operations in s9: Q’s update changing
a[Q] to q, and P’s scan. If P goes first in s9, the reachable complex consists of
the 1-simplex {^P, (p, ')&, ^Q, (p, q)&}. If Q goes first, the reachable complex
consists of {^P, (p, q)&, ^Q, (p, q)&}. Their intersection 5U(s9) 5 5P(s9) ù
5Q(s9) cannot contain vertexes of P since in 5Q(s9), Q’s update of a[Q] to q
must be reflected in the view returned by P’s scan. Thus, this intersection is
nonempty, containing the 0-simplex ^Q, (p, q)&} of Q, which is 0-connected.
The 1-connectivity of 5P(s) follows from Theorem 2.38, since each outcome
1-simplex is connected and their intersection is 0-connected.

4.4.3. Proof of Connectivity. We now present the complete proof. Instead of
exhaustively considering all executions, as in the example above, we concentrate
on a specific “critical” state and argue by contradiction.

Definition 4.10. A global state s is critical for a property ` if ` does not hold
in s, and a step by any pending process will bring the protocol’s execution to a
state where ` henceforth holds.

LEMMA 4.11. If ` is a property that does not hold in some state s but does hold
in the final state of every execution, then ` has a critical state.

PROOF. A process is noncritical if its next step will not make ` henceforth
hold. Starting from state s, repeatedly pick a noncritical pending process and run
it until it is no longer noncritical. Because the protocol must eventually terminate

FIG. 27. Connectivity of reachable complexes.

887The Topological Structure of Asynchronous Computability

in a state where ` holds, advancing noncritical processes in this way will
eventually leave the protocol in a state where ` does not hold, but all processes
are either decided or about to make ` henceforth true. This state is the desired
critical state. e

We will now show that in any state reachable from any input simplex Sn, 3(Sn)
satisfies the conditions of Lemma 4.7. Informally, our proof strategy proceeds by
contradiction. Assume the claim is initially false. Since the reachable complex
eventually shrinks to a single simplex, it eventually satisfies the desired proper-
ties, so by Lemma 4.11 we can run the protocol to a critical state. We then
analyze the possible interactions of the pending operations to show that the
reachable complex must have satisfied the conditions to begin with, yielding a
contradiction. A similar strategy was used by Fischer et al. [1985] to prove the
impossibility of asynchronous consensus.

LEMMA 4.12. For any input simplex Sn, 3(Sn) is n-connected.

PROOF. By way of contradiction, let 3 be an (n 1 1)-process protocol for
which the claim is false. Pick 3 so that n is minimal. Let ` be the property “5(s)
is n-connected.” If s is any final state of 3, then 5(s) is a single simplex, which
is n-connected (Lemma 2.39). Because ` holds in every final state, Lemma 4.11
implies that ` has a critical state s.

We claim that for every pending set U, 5U(s) is (n 2 uU u 1 1)-connected.
We proceed by a case analysis. Since ` is true in any final state, we can restrict
our attention to nonempty pending sets.

Suppose U consists entirely of scans. In every execution leading to a simplex in
5U(s), each pending scan is ordered before any update. Because scans commute,
each such execution is equivalent to one in which all processes in U perform their
scans before any other operation occurs. If s9 is the state reached from s by
executing all pending scans in U, then 5(s9) 5 5U(s). Because s is critical,
5(s9) 5 5U(s) is n-connected. Because uU u . 0, 5U(s) is (n 2 uU u 1
1)-connected.

Suppose U consists entirely of updates. Recall that in normal form protocols,
processes update an atomic snapshot memory a, where each new value is distinct
from any earlier value. In every execution leading to a simplex in 5U(s), each
pending update must be ordered before any scan. Because updates commute,
each such execution is equivalent to one in which all processes in U perform their
updates before any other operation occurs. If s9 is the state reached from s by
executing all pending updates in U, then 5(s9) 5 5U(s). Because s is critical,
5(s9) 5 5U(s) is n-connected. Because uU u . 0, 5U(s) is (n 2 uU u 1
1)-connected.

Finally, suppose both scans and updates appear in U. Let U 5 R ø W, where
R (respectively, W) is the set of processes with pending scans (updates). Suppose
Pi [R is about to scan, and Pj [W is about to update a[j] from v to v9. In
every simplex in 5 i(s), Pi’s scan returns v, while in every simplex in 5 j(s), it
returns v9. As a result, Pi has no vertexes in 5 i(s) ù 5 j(s). More generally,
5U(s) contains no vertex of any process in R. In every execution leading to a
simplex in 5U(s), each update in W is ordered before any scan by a process in
ids(5U(s)). Conversely, any execution from s by processes not in R in which all
updates in W precede any other operation is in 5U(s). Let s9 be the state

888 M. HERLIHY AND N. SHAVIT

reached from s by executing all pending updates in W. Since updates commute,
their order is unimportant.

Let 39 be the (n 2 uR u 1 1)-process protocol with initial state s9 identical to
3 except that the processes in R do not participate. Let 59(s9) be the reachable
complex for 39 from s9. We have just argued that 5U(s) 5 39(s9). Because
uR u . 0, and 3 was chosen to be minimal, 59(s) is (n 2 uR u 1 1)-connected,
and because uU u . uR u, it is also (n 2 uU u 1 1)-connected.

In all cases, we have shown that 5U(s) is (n 2 uU u 1 1)-connected. By
Lemma 4.7, 5(s) 5 ø5 i(s) is n-connected. It follows that ` holds in s,
contradicting our assumption that s is a critical state for `. We have shown that
5(s) is n-connected for every state s. If s is the initial state given by Sn, then
5(s) 5 3(Sn) is n-connected for every input simplex Sn. e

For any input simplex Sm, 0 # m # n, 3(Sm) can be considered the protocol
complex for an (m 1 1)-process protocol.

COROLLARY 4.13. For any input simplex Sm, 0 # m # n, 3(Sm) is m-
connected.

Note that for any input n-complex (, 3(() is not necessarily n-connected,
since (itself may not be n-connected.

4.5. LINK CONNECTIVITY. Given Corollary 4.13, it is not hard to construct a
subdivision s(() and a simplicial map m: s(() 3 3(() satisfying Eq. 1. This
construction suffices to show this paper’s principal impossibility results (such as
the impossibility of k-set agreement), but it is not yet enough to construct an
algorithm.

The missing property is that m must be color preserving: for every vertex vW ,
id(m(vW)) must equal id(vW). This property cannot be taken for granted: the
existence of a simplicial map does not always guarantee the existence of a
color-preserving simplicial map. Consider the following simple example. Let !
and @ be the colored complexes shown in Figure 28, and f the simplicial map
carrying vertexes aW , bW and cW to f(aW), f(bW), and f(cW), respectively. Does there
exist a chromatic subdivision s of ! and a simplicial map c: s(!)3 @ extending
f? It is not difficult to construct a chromatic subdivision s and a non color-
preserving simplicial map satisfying these conditions, but it turns out that no
color-preserving map is possible. For any subdivision s, one can show that lk(bW ,
s(!)) must be connected. By contrast, lk(f(bW), @) is not connected. Some
vertex xW in lk(bW , s(!)) must map to f(aW), and some yW to f(cW), and the path
between xW and yW in lk(bW , s(!)) must map to a path linking the disconnected
components of lk(f(bW), @), a contradiction.

FIG. 28. Complexes ! (left) and @ (right).

889The Topological Structure of Asynchronous Computability

To ensure that m is color preserving, we must prove one more property of each
protocol complex 3(Sm), 0 # m # n. In addition to being m-connected
(Corollary 4.13), 3(Sm) is also link-connected.

Definition 4.14. A p-complex # is link-connected if for all simplexes Tq [#,
0 # q # p, lk(Tq, #) is (p 2 q 2 2)-connected.

A p-complex can be p-connected without being link-connected, and vice-versa.

LEMMA 4.15. If # is link-connected, so is lk(T, #) for any simplex T [#.

PROOF. For every simplex S of # and T of lk(S, #),

lk~T, lk~S, #!! 5 lk~T z S, #! . e

LEMMA 4.16. For every input simplex Sn, and simplex T m [3(Sn), lk(T m,
3(Sn)) is (n 2 m 2 2)-connected.

PROOF. The proof resembles the proof of Lemma 4.12.
By way of contradiction, let 3 be an (n 1 1)-process protocol for which the

claim is false. Pick 3 so that n is minimal. For a global state s, let 5(s) be the
reachable complex from s, and 4(s) 5 lk(Tm, 5(s)) (empty if Tm is not in
5(s)). Let ` be the property

Tm [5~s! f 4~s! is ~n 2 m 2 2!-connected.

Initially, ` is false by assumption. In every final state s, either Tm is not in 5(s),
or 4(s) is a single (n 2 m 2 2)-simplex (which is (n 2 m 2 2)-connected).
Either way, ` holds in every final state. By Lemma 4.11, ` has a critical state s.
Notice that because ` is false in s, Tm is in 5(s).

As usual, for each Pi pending in s, 5 i(s) is the reachable complex after Pi

executes its operation, and for each set U of pending processes in s, 5U(s) 5
ù i[U 5 i(s). Define 4 i(s) 5 lk(Tm, 5 i(s)), and 4U(s) 5 lk(Tm, 5U(s)), the
4 i(s) cover 4(s), and Lemma 4.6 applies.

Define a pending operation to be preserving if it leaves Tm within the reachable
complex. There must be a preserving operation pending in s, because otherwise
Tm would not be reachable, and ` would be true. Let U be any non-empty set of
pending preserving operations in s. For each Pi in U, that process’s pending
operation is preserving, so Tm is in each 5 i(s), and therefore in 5U(s). We now
show, by case analysis, that any 4U(s) is (n 2 m 2 uU u 2 1)-connected.

Suppose U consists entirely of scans. In every execution leading to a simplex in
5U(s), each pending scan is ordered before any update. Because scans commute,
each such execution is equivalent to one in which all processes in U perform their
scans before any other operation occurs. If s9 is the state reached from s by
executing all pending scans in U, then 5(s9) 5 5U(s) and 4(s9) 5 4U(s).
Because s is critical, ` holds in s9. Since Tm is in 5U(s) 5 5(s9), 4(s9) 5
4U(s) is (n 2 m 2 2)-connected. Because uU u . 0, 4U(s) is (n 2 m 2 uU u 2
1)-connected.

Suppose U consists entirely of updates. Recall that in normal form protocols,
processes update an atomic snapshot memory a, where each new value is distinct
from any earlier value. In every execution leading to a simplex in 5U(s), each
pending update must be ordered before any scan. Because updates commute,

890 M. HERLIHY AND N. SHAVIT

each such execution is equivalent to one in which all processes in U perform their
updates before any other operation occurs. If s9 is the state reached from s by
executing all pending updates in U, then 5(s9) 5 5U(s) and 4U(s) 5 4(s9).
Because s is critical, 4(s9) 5 4U(s) is (n 2 m 2 2)-connected, and because
uU u . 0, 4U(s) is (n 2 m 2 uU u 2 1)-connected.

Finally, suppose both scans and updates appear in U. Let U 5 R ø W, where
R(W) is the set of processes with pending preserving scans (updates). Suppose
Pi [R is about to scan, and Pj [W is about to update a[j] from v to v9. In
every simplex in 5 i(s), Pi’s scan returns v, while in every simplex in 5 j(s), it
returns v9. As a result, Pi has no vertexes in 5 i(s) ù 5 j(s). More generally,
5U(s) contains no vertex of any process in R. In every execution leading to a
simplex in 5U(s), each update in W is ordered before any scan by a process in
ids(5U(s)). Conversely, any execution from s by processes not in R in which all
updates in W precede any other operation is in 5U(s). Let s9 be the state
reached from s by executing all pending updates in W. Since updates commute,
their order is unimportant.

Let 39 be the (n 2 uR u 1 1)-process protocol with initial state s9 identical to
3 except that the processes in R do not participate. Let 59(s9) be the reachable
complex for 39 from s9, and 49(s9) 5 lk(Tm, 59(s9)). We have just argued that
5U(s) 5 39(s9), and 4U(s) 5 49(s9). Because uR u . 0, and 3 was chosen to
be minimal, 49(s9) 5 4U(s) is (n 2 m 2 uR u 2 1)-connected. Because uU u .
uR u, 4U(s) is also (n 2 m 2 uU u 2 1)-connected.

In all cases, we have shown that 4U(s) is (n 2 m 2 uU u 2 1)-connected. By
Lemma 4.7, 4(s) 5 ø4 i(s) is (n 2 m 2 2)-connected. It follows that ` holds
in s, contradicting our assumption that s is a critical state for `. We have shown
that ` must hold in every state, and that every 4(s) is (n 2 m 2 2)-connected.
In particular, for every input simplex Sn, 3(Sn) is link-connected. e

For any input simplex Sm, 0 # m # n, 3(Sm) can be considered the protocol
complex for an (m 1 1)-process protocol.

COROLLARY 4.17. For any input simplex Sm, 0 # m # n, 3(Sm) is link-
connected.

4.6. EVERY PROTOCOL HAS A SPAN. For our inductive construction, we will
need to show that any color and carrier-preserving map from a subdivision of the
i-skeleton of (to 3(() can be extended up one dimension, to a color and
carrier-preserving map of the (i 1 1)-skeleton.

Recall that a simplicial map collapses a simplex of non-zero dimension if it
maps that simplex to a vertex. A map is noncollapsing if it collapses no simplexes.
Clearly, color-preserving maps are noncollapsing. Conversely, if a color-preserv-
ing map s(skeli(!)) 3 @ has a noncollapsing extension s(skeli11(!)) 3 @,
then that extension is also color-preserving. Consequently, we focus on the
circumstances under which maps have noncollapsing extensions.

The following lemma appears in Glaser [1970, Theorem IV.2].

LEMMA 4.18. Let !, @, and # be complexes such that ! , @, and f: u@u 3 u#u
a continuous map such that the vertex map induced by f restricted to u!u is
simplicial. There exists a subdivision t of @ such that t(!) 5 !, and a simplicial
map f: t(@) 3 # extending the restriction of f to u!u.

891The Topological Structure of Asynchronous Computability

Definition 4.19. Let s be a subdivision of skelp21(#), for some complex #.
The subdivision of skelp(Sp) obtained by starring s [Munkres 1984, p. 85] is
defined as follows. Let S0

p, . . . , SL
p be the p-simplexes of skelp(#). For 0 # i #

L, let wW i be the barycenter of uSi
pu. Each wW i z s(skelp21(Si

p)) is a subdivision of
Si

p, and the union of these complexes as i ranges from 0 to L is a subdivision of
skelp(#) that agrees with s on the (p 2 1)-skeleton.

If s is the trivial subdivision, we can apply this construction to the boundary
complex of a single simplex Sp in #, in which case we speak of starring Sp in #.

LEMMA 4.20. Let ! be a (p 2 1)-sphere, @ a p-disk having ! as boundary, and
a complex that is (p 2 1)-connected and link-connected. If h: ! 3 # is a
simplicial map, then

(1) there exists a subdivision t of @ such that t(!) 5 !,
(2) a simplicial map f: t(@) 3 # that agrees with h on !, and
(3) f collapses no internal simplexes of t(@).

PROOF. Because # is (p 2 1)-connected, the continuous map uhu on ! can
be extended to a continuous f: u@9 u 3 u# u whose restriction to ! is simplicial.
Conditions 1 and 2 follow immediately from Lemma 4.18.

If Condition 3 does not hold, choose t and f to minimize (1) the dimension of
#, (2) the largest dimension of any collapsed simplex, and (3) the number of
collapsing simplexes of that dimension. We will demonstrate a contradiction by
“adjusting” t and f to collapse one fewer simplex of maximal dimension. To
adjust f, we subdivide the collapsed simplex T by inserting a new vertex at the
barycenter, and then extending f to send that new vertex to a vertex adjacent to
f(T), resulting in a new subdivision and map that collapses one fewer simplex of
maximal dimension.

Suppose f collapses a simplex Tp, where p is the maximal dimension of any
simplex in @. As illustrated in Figure 29, where Tp is a triangle, starring Tp yields
a new subdivision t9(@). Let f(Tp) 5 vW , and let tW be the barycenter of Tp. If
T0

p21, . . . , Tp
p21 are the (p 2 1)-faces of Tp, then starring Tp (Definition 4.19)

yields a new subdivision t9(@). Pick uW such that (vW , uW) is a 1-simplex in #. Define

FIG. 29. Eliminating simplex collapse: Top dimension.

892 M. HERLIHY AND N. SHAVIT

f9: t9(@) 3 # such that f9(tW) 5 uW , and elsewhere f9 5 f. We have constructed
a subdivision t9 and simplicial map f9 satisfying Conditions 1 and 2, but
collapsing one fewer p-simplex, a contradiction.

Suppose f collapses an internal simplex Tq [t(@) to vW , where 1 # q , p,
but collapses no internal simplexes of higher dimension. Our approach is
illustrated in Figure 30, where Tq is an edge. Define the subdivision t9(Tq) by
starring Tq in t(@).

Because q , p, then lk(Tq, @) is nonempty. The vertexes of any Lp2q21 [
lk(Tq, @) are affinely independent of the vertexes of Tq, so tW is affinely
independent of each Lp2q21. Moreover, each tW z Lp2q21 is a simplex, and tW z
lk(Tq, @) is a complex. Because @ is a manifold with boundary, Lemma 2.36
implies that lk(Tq, @) is a (p 2 q 2 1)-sphere, and hence tW z lk(Tq, @) is a
(p 2 q)-disk. Because f does not collapse any (q 1 1)-simplexes, f does not
send any vertex of lk(Tq, @) to vW , so f: lk(Tq, @) 3 lk(vW , #).

We have a simplicial map f carrying the (p 2 q 2 1)-sphere lk(Tq, @) to
lk(vW , #), which is (p 2 2)-connected by Lemma 4.15. Recall that the dimension
of # is the smallest for which Condition 3 fails, and dim(lk(vW , #)) , dim(#), so
all three conditions are satisfied: (1) there is a subdivision r of tW z lk(Tq, @), (2)
a simplicial map c: r(tW z lk(Tq, @)) 3 lk(vW , #) that agrees with f on
lk(Tq, @), and (3) c collapses no internal simplexes of r(tW z lk(Tq, @)).

The complex r(tW z lk(Tq, @)) z 7̇q21 is a subdivision of st(Tq, @) that leaves
its boundary unchanged. Replacing st(Tq, @) in t(@) by this subdivision yields a
subdivision t9(@). Define f9 to agree with c on r(tW z lk(Tq, @)), and with f
elsewhere. Condition 2 ensures that f and c agree on lk(Tq, @), so this map is
well-defined. The complex t9(@) and map f9 satisfy Conditions 1 and 2, but the
map collapses one fewer q-simplex, a contradiction. e

LEMMA 4.21. Let Sp be a p-simplex, 6̇p21 its boundary complex, and s a
chromatic subdivision of 6̇p21. Let # be a p-colored complex that is (p 2
1)-connected and link-connected, and

f: s~6̇p21! 3 #

FIG. 30. Eliminating simplex collapse: Intermediate dimensions.

893The Topological Structure of Asynchronous Computability

a color-preserving simplicial map. There exist a chromatic subdivision ŝ of Sp, and
a color-preserving simplicial map

f̂: ŝ~Sp! 3 #

such that ŝ agrees with s on 6̇p21, and f̂ agrees with f on s(6̇p21).

PROOF. The complex s(6̇p21) is a (p 2 1)-sphere, and the subdivision of Sp

constructed by starring s(6̇p21) is a p-disk having s(6̇p21) as boundary. By
Lemma 4.20, f and s can be extended to f̂ and ŝ such that ŝ agrees with s on
6̇p21, and f̂ is a simplicial map that agrees with f on s(6̇p21), and collapses no
internal simplexes of ŝ(Sp).

It remains to check that f̂ is color-preserving. Say that Tp is a boundary simplex
if it can be expressed as tW z Tp21, where Tp21 is in s(6̇p21). Because f is
chromatic on s(6̇p21), it carries the face Tp21 to a simplex labeled with (p 2
1) out of the p colors labeling #. Because f does not collapse Tp, it must carry tW
to a vertex labeled with the only remaining color. Therefore, f̂ is color-
preserving on the boundary complex Tp.

Because ŝ(Sp) is a p-manifold with boundary, for every simplex Tp in ŝ(Sp),
there is a sequence of simplexes S0

p, . . . , S,
p such that S0

p is a boundary simplex,
S,

p 5 Tp, and Si
p ù Si11

p is an (n 2 1)-simplex. The claim now follows by
inductively extending the same argument along the sequence. e

We now have the tools needed to construct a span.

LEMMA 4.22. Every wait-free protocol complex has a span.

PROOF. We build up s and f by induction on the skeleton of (as depicted in
Figure 31. For each vW [(, define f0(vW) 5 3(vW), the unique vertex in the
protocol complex corresponding to a solo execution of process id(vW) with input
val(vW). This map is color-preserving, and satisfies Eq. (1) of Definition 4.4.

Assume inductively that we have a subdivision sk21 and a color-preserving
simplicial map

fk21;sk21~skelk21~(!! 3 3~(!

satisfying Eq. (1). Let t be the subdivision of skelk(() obtained by starring sk21.
Let S0

k, . . . , SK
k be all the k-simplexes in skelk((). For each Si

k, 0 # i # K, let
! i be the complex t(skelk21(Si

k)), and @ i the complex t(Si
k), and # i the

complex 3(Si
k). By Lemma 4.21, there exists a chromatic subdivision t i of @ i

such that t i(! i) 5 ! i, a color-preserving simplicial map c i: t(@ i) 3 # i that
agrees with fk21 on the ! i. Because the t i agree on skelk21((), they induce a
subdivision sk(skelk(()). Because the c i also agree on sk21(skelk21(()), they
induce a color-preserving simplicial map fk: sk(skelk(()) 3 3((). Finally, it is
immediate from the construction that sk and fk satisfy Eq. (1).

The desired subdivision s is sn, and the desired map f is fn. (Notice that
skeln(() 5 (.) e

THEOREM 4.23. If a decision task ^(, 2, D& has a wait-free read/write protocol,
then there exists a chromatic subdivision s(() and a color-preserving simplicial map
m: s(() 3 2 such that for each simplex Sm in s((), m(S) [D(carrier(S, ()).

894 M. HERLIHY AND N. SHAVIT

PROOF. Suppose a protocol exists. By Lemma 4.22, the protocol has a span.
Let s be the chromatic subdivision of (induced by the span, and let m(S) 5
d(f(S)), the composition of the span map and the decision map. e

5. Sufficiency

In this section, we show how to construct an algorithm for any task satisfying the
conditions of the asynchronous computability theorem. We now give an overview
of this construction.

We introduce the standard chromatic subdivision of a complex (, denoted x((),
the chromatic analogue of the classical barycentric subdivision. This subdivision
is illustrated in Figure 33. We also introduce the iterated standard chromatic
subdivision xK((), and the notion of a chromatic subdivision holding a subcom-
plex fixed.

We will show that we can assume without loss of generality, that the span
subdivision s(() has the form xK((), for some sufficiently large K. To solve the
task, each process Pi begins by placing a token on an input vertex sW i. As vertexes
of (, they are “close”, since they span a simplex S. As vertexes of xK((),
however, they are “far apart”, since they lie on the boundary of the subcomplex

FIG. 31. Inductive span construction.

895The Topological Structure of Asynchronous Computability

xK(S). The key insight is that we can construct a protocol for this task by
reduction to a variation on approximate agreement [Attiya et al. 1990; Fekete
1986], in which the processes start out at the vertexes of S, and after a process of
negotiation eventually converge to the vertexes of a single simplex in xK(S).
Once Pi has converged on a vertex tWi of matching color, it solves the original task
by choosing m(tWi).

We call this process simplex agreement. Simplex agreement on x(() is solved by
the elegant “participating set” protocol of Borowsky and Gafni [1993]. Simplex
agreement on xK(() is solved by iterating that protocol K times.

Our construction relies on the following theorem, proved below.

Let Sn be a colored n-simplex, x the standard chromatic subdivision, and s an
arbitrary chromatic subdivision. For sufficiently large K, there exists a color
and carrier-preserving simplicial map

f: xK~Sn! 3 s~Sn! .

This theorem implies that any algorithm for simplex agreement on xK(Sn) yields
an algorithm for simplex agreement on an arbitrary s(Sn). Note that this
theorem is expressed entirely in terms of combinatorial topology.

5.1. PROOF STRATEGY. To establish the intuition underlying our proof, we
give an informal outline of a proof that for sufficiently large K, there exists a
carrier-preserving (but not necessarily color-preserving) simplicial map
f: xK(Sn) 3 s(Sn). This claim is a special case of the well-known finite
simplicial approximation theorem [Munkres 1984, p. 89].

Here are some useful notions from classical point-set topology.

Definition 5.1. An open cover for a geometric complex # is a finite collection
of open sets U0, . . . , Uk such that # # ø i50

k Ui.

The following result is standard [Munkres 1984, p. 89].

LEMMA 5.2. Let # be a complex,6 and U0, . . . , Uk an open cover for #. There
exists a l . 0 (called a Lebesgue number) such that any set of diameter less than l
lies in a single Ui.

The open stars around vertexes of s(Sn) form an open cover for s(Sn) with
Lebesgue number l. By choosing K sufficiently large, we can ensure that the
diameter of any vertex’s star in xK(Sn) is less than l. It follows that for each
vertex xW in xK(Sn), there is an sW in s(Sn) such that

st~xW , xK~Sn!! , st8~sW, s~Sn!! . (2)

Let f(xW) 5 sW. It is easily shown that f is the desired carrier-preserving simplicial
map. Unfortunately, f is not necessarily color-preserving: id(xW) may not equal
id(f(xW)).

Our goal is to extend Eq. (2) to require that xW and sW have matching colors: for
each vertex xW in xK(Sn), there is an sW in s(Sn) such that

st~xW , xK~Sn!! , st8~sW, s~Sn!! and id~xW! 5 id~sW! . (3)

6 In fact, # could be any compact space.

896 M. HERLIHY AND N. SHAVIT

An immediate difficulty is that xW itself may not lie in the open star of any sW of
matching color. This situation occurs exactly when xW lies in lk(sW, s(Sn)), for sW of
matching color. In such a case, however, we can displace xW by some small
distance e within its carrier to bring it within the open star of sW. We refer to such
a process as an e-perturbation (Figure 32). By applying a suitable e-perturbation,
we can ensure that every xW lies within an open star of matching color.

The extended star of a simplex S is the union of the stars of its vertices. For a
sufficiently large K, we can ensure that for every n-simplex Xn in xK(Sn), the
extended star of Xn lies within some open star st8(sW, s(Sn)). Since the vertexes
of Xn are labeled with all n colors, Xn must include one vertex xW whose color
matches that of sW. By construction, xW and sW satisfy Eq. 3. The vertex map f(xW) 5
sW is color and carrier-preserving, and it is defined on one vertex of each
N-simplex of xK(Sn).

The remaining vertexes for which f is not defined span an (n 2 1)-
dimensional subcomplex of xK(Sn). We repeat essentially the same construction
in a sequence of rounds. In each round, by applying a perturbation and further
subdivision, we extend f to one more vertex of each remaining simplex, and the
dimension of the subcomplex on which f remains undefined drops by one. After
n 1 1 rounds, we have constructed a color and carrier-preserving vertex map f.
Finally, we check that f is simplicial.

Our proof proceeds as follows. In Section 5.2, we define the standard
chromatic subdivision. In Section 5.3, we define the simplex agreement task and
give an algorithm for solving it on the standard chromatic subdivision. In Section
5.4, if we iterate the standard chromatic subdivision a sufficient number of times,
then there is a color and carrier-preserving map from the iterated standard
chromatic subdivision to any chromatic subdivision. This claim implies that any
simplex agreement protocol for the iterated chromatic subdivision yields a
simplex agreement protocol for any chromatic subdivision.

5.2. THE CHROMATIC SUBDIVISION. We start with a purely combinatorial
definition of the standard chromatic subdivision. This definition is analogous to
the combinatorial definition of the standard barycentric subdivision in Definition
2.27. Let Sn 5 (sW0, . . . , sWn), where id(sW i) 5 Pi.

Definition 5.3. In the standard chromatic subdivision of Sn, denoted x(Sn),
each n-simplex has the form (^P0, S0&, . . . , ^Pn, Sn&), where Si is a face of Sn,
such that (1) Pi [ids(Si), (2) for all Si and Sj, one is a face of the other, and (3)
if Pj [ids(Si), then Sj # Si.

FIG. 32. An e-perturbation.

897The Topological Structure of Asynchronous Computability

We refer to the xW i 5 ^Pi, Sn& as the central vertexes of the subdivision. The
standard chromatic subdivision of S2 is illustrated in Figure 33.

Definition 5.4. The iterated standard chromatic subdivision xK(Sn) is the
result of iterating the standard chromatic subdivision K times.

It is sometimes useful to restrict subdivisions to a subcomplex.

Definition 5.5. Let # be a complex with subcomplexes ! and @ such that
every simplex C of # can be written uniquely as A z B (the join of A and B),
where A is a simplex of !, and B of @. (Either A or B could be empty.) Any
subdivision g of ! induces a subdivision g(#/@) of #, called “g of # holding @
fixed”, defined to be the complex of all joins A9 z B where A9 [g(!), B [@,
and carrier (A9, !) z B a simplex of #.

For the standard chromatic subdivision, the process can be repeated: x2(#/
@) 5 x(x(#/@)/@), and so on.

LEMMA 5.6. There is a color and carrier-preserving simplicial map

f: xK~#! 3 xK~#/@! .

PROOF. The map f sends each vertex vW of xK(#) to the unique vertex uW in
xK(!/@) such that id(vW) 5 id(uW). e

We now give an equivalent geometric definition of the standard chromatic
subdivision. A proof that the two definitions are equivalent is given by Hoest
[1997]. To avoid notational clutter, we use f^P, v& as shorthand for f(^P, v&).

Definition 5.7. We construct the following homeomorphism i: ux(S) u 3 uS u
inductively by dimension. Assume inductively that there exist homeomorphisms

i i : ux~facei~S!! u 3 ufacei~S! u.

Let bW 5 (i50
m (sW i/(m 1 1)) be the barycenter of S, where m 5 dim(S), and d any

value such that 0 , d , 1/(m 1 1). Define for id Pi and simplex R,

i^Pi , R& 5 H i i^Pi , R& if R # facei~S! .

~1 1 d!bW 2 dsW i if R 5 S.

See Figure 33.

FIG. 33. Standard chromatic subdivision.

898 M. HERLIHY AND N. SHAVIT

For any value of d such that 0 , d , 1/(m 1 1), this definition gives an exact
geometric construction for the chromatic subdivision. We will use this construc-
tion for the remainder of this section.

Definition 5.8. The mesh of a complex is the maximum diameter of any
simplex.

LEMMA 5.9. mesh(x(Sn)) # n/(n 1 1) diam(Sn).

PROOF. We argue by induction on n. When n is zero, the claim is trivial. Let
6̇n21 be the boundary complex of Sn, b(Sn) the barycentric subdivision, and bW
and bW i the respective barycenters of Sn and facei(Sn). Assume inductively that
the claim holds for simplexes in x(6̇n21). From Definition 5.7, each remaining
central vertex xW i has the form xW i 5 (1 1 d)bW 2 dsW i, which lies on the line joining
bW to bW i. If xW [x(facei(Sn)), then the edge (xW , xW i) lies inside the triangle (xW , bW ,
bW i), which lies inside a simplex in b(Sn). Since mesh(b(Sn)) # (n/(n 1
1))diam(Sn) [Munkres 1984, Theorem 15.4], uxW 2 xW iu # (n/(n 1 1))diam(Sn).
Finally, for any central vertex xW j, uxW i 2 xW ju 5 d usW i 2 sW ju, and the claim follows
because d , 1/(n 1 1). e

Lemma 5.9 implies that by taking sufficiently large K, mesh(xK(()) can be
made arbitrarily small.

5.3. SIMPLEX AGREEMENT. Consider a task ^(, 2, D& together with a subdivi-
sion s and map m: s(() 3 2 satisfying the conditions of the theorem. As
described above, we will reduce any protocol to a “simplex agreement” protocol
in which processes converge to the vertexes of a single simplex in s((). More
precisely:

Definition 5.10. Let (be an (n 1 1)-colored complex, and s a chromatic
subdivision of (. The simplex agreement task ^(, s((), s& has input complex (,
output complex s((), and a task specification

s 5 $~Sm, Tm! uTm [s~Sm!% .

For brevity, “simplex agreement on s(()” means ^(, s((), s&.
Given a task ^(, 2, D& satisfying the conditions of Theorem 3.1, let s(() and

m: s(() 3 2 be the subdivision and simplicial map guaranteed by the theorem.
Any protocol that solves the simplex agreement task ^(, s((), s& can be adapted
to solve ^(, 2, D& simply by applying m to the result of the simplex agreement
protocol.

Combining these observations yields a protocol for any task ^(, 2, D& that
satisfies the conditions of Theorem 3.1: Each process executes the simplex
agreement protocol for xK((), and applies f and then m to the result.

LEMMA 5.11. There exists a wait-free protocol for simplex agreement on x(().

PROOF. Each process Pi must choose a face of Si of Sn such that (1) Pi [
ids(Si), (2) for all Si and Sj, one is a subset of the other, and (3) if Pj [ids(Si),
then Sj # Si. This is exactly the participating set problem of Borowsky and Gafni
[1993], developed as part of their “immediate snapshot” algorithm. Their elegant
wait-free solution appears in Figure 34. Borowsky [1995] gives a proof of this
algorithm. e

899The Topological Structure of Asynchronous Computability

LEMMA 5.12. There is a wait-free solution for simplex agreement on xK((), for
any K . 0.

PROOF. Iterate the participating set algorithm [Borowsky and Gafni 1993] K
times (Figure 35). e

5.4. MAPPING SUBDIVISIONS. In this section, we prove a number of lemmas
about subdivisions. Recall from Definition 2.21 that any point sW in u(u has a
barycentric representation

sW 5 O
i50

n

si z sW i ,

where each 0 # si # 1, (i s i 5 1, and the sW i span a simplex (. The si are called
the barycentric coordinates of sW with respect to (, and carrier(sW, () is the simplex
of (spanned by the sW i for which si . 0.

Recall that a sequence of vertexes sW0, . . . , sWk is affinely independent if sW1 2
sW0, . . . , sWk 2 sW0 are linearly independent. (The vertexes of a simplex are affinely
independent by definition.) Any sequence of vertexes sW0, sW1, . . . , sWk determines
a hyperplane, denoted hyper(sW0, sW1, . . . , sWk), defined to be the set of points
expressible as

sW 5 O
i50

k

si z sW i ,

where (i50
k si 5 1. A hyperplane’s dimension is one less than the size of the

smallest set of vertexes that determines that hyperplane. If sW is a vertex of any
chromatic subdivision of Sn, and sW i the vertex of Sn such that id(sW) 5 id(sW i),
then sW i [carrier(sW, Sn). This terminology extends to simplexes in a natural way.
Simplexes A 5 (aW 0, . . . , aW k) and B 5 (bW 0, . . . , bW ,) are affinely independent if
the sequence aW 0, . . . , aW k, bW 0, . . . , bW , is affinely independent. Define the
hyperplane hyper(A) to be hyper(aW 0, . . . , aW k). If H is a hyperplane, and aW a
point of H, the open e-ball around aW in H is the set of points bW in H such that
uaW 2 bW u , e.

LEMMA 5.13. Let H and K be hyperplanes, and aW a point in H but not in K. For
some e . 0, the open e-ball around aW does not intersect K.

FIG. 34. The Participating Set Protocol.

900 M. HERLIHY AND N. SHAVIT

PROOF. H ù K is a closed subset of H, and its complement H 2 K is open
and nonempty, so there exists e . 0 such that H 2 K contains the open e-ball
around aW in H. e

Informally, an e-perturbation of a subdivision is a new subdivision constructed
by slightly displacing some set of vertexes within their respective carriers (Figure
32). Formally,

Definition 5.14. Let a be a subdivision of (, and e . 0. A subdivision a* of (
is an e-perturbation of a if there is an isomorphism i: a(() 3 a*(() such that for
every vertex aW of a((), carrier(aW , () 5 carrier(i(aW), () and uaW 2 i(aW) u , e.

For brevity, when we speak of perturbing a vertex aW by e in a subdivision a((),
we mean constructing a new subdivision a*(() by replacing aW with a bW that lies in
the open e-ball around aW in carrier(aW , ().

We now show that any vertex of a subdivision can be perturbed by a
sufficiently small amount. We exploit the following lemma from Munkres [1984,
Lemma 15.2].

LEMMA 5.15. If {Ki} is a collection of complexes in Euclidean space, and if
every uKiu ù uKju is the polyhedron of a subcomplex of both Ki and Kj, then øKi is a
complex.

LEMMA 5.16. Let a be a subdivision of (, and aW a vertex of a((). There exists
e0 . 0 such that any perturbation of aW by e0 in a yields an e0-perturbation a* of
a(().

PROOF. Let C 5 carrier (aW, (). Because a(C) is a manifold with boundary, by
Lemma 2.36, lk(aW , a(C)) is a sphere, and aW is an interior point of st8(aW , a(C)).
There thus exists e . 0 such that the open e-ball around aW in uC u lies in
st8(aW , a(C)). Let A0

n21, . . . , AN
n21 be the (n 2 1)-simplexes of lk(aW , a(()).

For 0 # i # N, each aW z Ai
n21 is a simplex of a((), hence, aW is affinely

independent of Ai
n21, and aW does not lie on hyper(Ai

n21). By Lemma 5.13, there
exists « i . 0 such that every point bW of hyper(C) within « i of aW does not lie on
hyper(Ai

n21). Let e0 5 min(e, «0, . . . , «N). It follows that every bW within e0 of aW
in a(C) lies within st8(aW , a(C)), and is affinely independent of A0

n21, . . . ,
AN

n21. Each bW z Ai
n21 is thus a simplex, and bW z lk(aW , a(()) is a complex with

polyhedron identical to the polyhedron of aW z lk(aW , a(()) 5 st(aW , a(()).

FIG. 35. The Iterated Participating Set Protocol.

901The Topological Structure of Asynchronous Computability

Let ! be the complex consisting of all simplexes in a(() that do not contain aW ,
and let @ 5 bW z lk(aW , a(()). The intersection u!u ù u@u is the polyhedron of the
complex lk(aW , a(()), so by Lemma 5.15, ! ø @ is a complex. Since u! ø @u 5
u(u, this complex is the desired subdivision a*((). e

LEMMA 5.17. If a is a subdivision of (, xW a point of ua(()u, A 5 carrier(xW,
a(()), and aW a vertex of A, then xW [st8(aW, a(()).

PROOF. If not, then xW lies on a proper face of A that does not contain aW ,
contradicting the hypothesis that A 5 carrier(xW , a(()). e

In the remainder of this section, let a(() and b(() be two possible chromatic
subdivisions of a complex (, and @ a subcomplex of b((). We focus on the
relation between a and @.

Definition 5.18. Subdivision a is a chromatic cover for @ if every simplex B of
@ is covered by the open stars of vertexes of a(() labeled with process ids from
ids(B):

~@B [@! B, ø
id(aW)[ids~B!

st8~aW , a~(!! .

Definition 5.19. Simplexes A in a(() and B in @ are mismatched if ids(A)
and ids(B) are disjoint, but uA u intersects uB u.

LEMMA 5.20. Subdivision a is a chromatic cover for @ if and only if a(() and
@ contain no mismatched simplexes.

PROOF. Assume there are no mismatched simplexes: for all A [a(() and
B [@, if ids(A) and ids(B) are disjoint, so are uA u and uB u. Let xW be a point of
u@u, A 5 carrier(xW , a(()), and B 5 carrier(xW , @). Since uA u and uB u intersect at
xW , ids(A) and ids(B) must also intersect, and therefore A contains a vertex aW
such that id(aW) [ids(B). By Lemma 5.17, xW [st8(aW , a(()). It follows that a is
a chromatic cover for @.

Assume that a is a chromatic cover for @. If uA u is a simplex of a((), then for
any vertex aW of a(() where id(aW) [y ids(A), uA u does not intersect st8(aW , a(()).
Because a is a chromatic cover for @, if ids(A) and ids(B) are disjoint, then
every point of uB u lies in such an open star st8(aW , a(()), so uA u and uB u are
disjoint. e

Next we show that we can perturb any vertex of any subdivision of @ without
introducing any additional mismatches.

LEMMA 5.21. Let g be a subdivision of @, and gW a vertex of g(@). There exists
e1 . 0 such that any perturbation of gW by e1 yields an e1-perturbation g* of g such
that the number of mismatched simplexes between a(() and g*(@) is no greater
than between a(() and g(@).

PROOF. Lemma 5.16 states that there exists e0 . 0 such that g remains a
subdivision if we perturb gW by e0. Let {Gi} be the set of simplexes of g(@) that
have gW as a vertex, and let {Aij} be the following set of simplexes of a(() that are
not mismatched with Gi: ids(Gi) ù ids(Aij) 5 À and uGiu ù uAiju 5 À. Let d ij

be the minimum distance from any point of uGiu to any point of uAiju (well

902 M. HERLIHY AND N. SHAVIT

defined because both are closed sets). Define

e1 5 minS e0 , min
ij

~d ij!D
This minimum is well defined and positive because d ij ranges over a finite
number of positive distances. Perturbing gW by e1 yields a new subdivision g* with
no additional mismatched simplexes. e

LEMMA 5.22. If a is a chromatic cover for @, then there is an e-perturbation of
xb((), carrying x(@) to a subcomplex x*(@), such that a is a chromatic cover for
x*(@). (Note that x*(@) is not necessarily a subdivision of @, although it is
isomorphic to x(@).)

PROOF. If a(() is not a chromatic cover for x(@), then by Lemma 5.20 there
exist mismatched simplexes C 5 (cW0, . . . , cW c) of x(@), and A 5 (aW 0, . . . , aW a) of
a((). Pick C and A to have minimal dimensions a and c in the sense that no
proper face of C intersects A, and vice-versa, and let B 5 carrier(C, () of
dimension b. Because B is covered by open stars of the form st8(aW , a(()), where
id(aW) [ids(B), and because A has minimal dimension, ids(A) # ids(B) 2
ids(C), or a # b 2 c 2 1.

Because C is a simplex of x(B), C includes a central vertex of B whose carrier
in @ is B. By reindexing, let this vertex be cW c. By Lemma 5.21, there exists e1 .
0 such that any perturbation of cW c by e1 introduces no additional mismatches. Let
e2 5 min(e, e1).

Let H 5 hyper(aW 0, . . . , aW a, cW0, . . . , cW c21). H has dimension at most a 1 c,
which is strictly less than b, so B contains a point bW not in H. Let

« 5 ubW 2 cW cu/e1

cW 5 ~1 2 «! z cW c 1 « z bW

Because cW [carrier(cW c, () 5 B, replacing cW c by cW in x(@) yields an
e1-perturbation of b with no additional mismatches. Let C9 5 (cW0, . . . , cW c21, cW).
We claim that C9 does not intersect A. Consider the barycentric coordinates of
points of uC9 u with respect to C. Because C has minimal dimension, (cW0, . . . ,
cW c21) does not intersect A, so any point of uC9 u whose c-th barycentric
coordinate is zero does not lie in uA u. By construction, cW does not lie in the
hyperplane H (or in uA u) and neither does any point whose c-th barycentric
coordinate is positive.

We have constructed an e-perturbation of @, carrying x(@) to x*(@), with
strictly fewer mismatches with a((). The claim now follows from a simple
inductive argument. e

LEMMA 5.23. If a is a chromatic cover for @, then for all e . 0, and K $ 1,
a(() is a chromatic cover for an e-perturbation of xK(@).

PROOF. Let e i 5 (1 2 (1/ 2 i))e. We show inductively that for any 1 # i #
K, a is a chromatic cover for an e i-perturbation of x i(@). For the base case,
a(() is a chromatic cover for @ by construction. As induction hypothesis, assume
a(() is a chromatic cover for xp

i (@), an e i-perturbation of x i(@). Lemma 5.22

903The Topological Structure of Asynchronous Computability

states that a(() is a chromatic cover for an e/(2 i11)-perturbation xp
i11(@) of

x(xp
i (@)). Every vertex of xp

i (@) is displaced by at most e i from its correspond-
ing vertex in x i(@), and the last perturbation adds at most e/ 2 i11, yielding a
final maximal displacement of e i 1 e/ 2 i11 5 e i11. which is an ((i 1
1)e/K)-perturbation of x i11(@). We have shown that a is a chromatic cover for
an e i-perturbation of x i, and the lemma follows because e i , e, for all i $ 1. e

Definition 5.24. Define the extended star st*(S, () of a simplex S in (to be

st*~S, (! 5 ø
sW[S

st~sW, (! .

The next two lemmas are left as an exercise for the reader.

LEMMA 5.25. If a is a subdivision of (, and A a simplex of a((),

diam~st*~ A, a~(!!! # 3 z mesh~a~(!! .

LEMMA 5.26. If b is a subdivision of @, and b* an e-perturbation of b, then
mesh(b*(@)) , mesh(b(@)) 1 2e.

We will need the following lemma from Spanier.

LEMMA 5.27 [SPANIER 1966, 2.1.25]. A set of vertexes vW0, . . . , vWm belong to a
common m-simplex of (if and only if

ù
i50

m

st8~vW i , (! Þ À.

The next lemma is technical, but it encompasses most of the work needed to
prove our main theorem.

LEMMA 5.28. If a is a chromatic cover for @, then there exist K $ 0, a
subdivision g of @, and color and carrier-preserving simplicial maps j and c, where

xK~@! ¡
j

g~@! ¡
c

a~(! (4)

such that every simplex X in g(@) includes a vertex yW where

yW [ù
xW [X

st8~c~xW! , a~(!! . (5)

PROOF. We argue by induction on the dimension of @. In the base case, this
dimension is zero. Because a is a chromatic cover for @, each vertex bW of @ lies
in st8(aW , a(()), for a unique aW where id(bW) 5 id(aW). Define K 5 0, j the
identity map, g the trivial subdivision that introduces no new vertexes, and
c(bW) 5 aW .

For the induction hypothesis, assume the claim for subcomplexes of dimension
less than i. Consider @ of dimension i. Because a is a chromatic cover for @,
each i-simplex B of @ has a covering by open sets st8(aW , a(()), where id(aW) [
ids(B).

Let l be the minimum Lebesgue number of any such covering (well defined
because @ is finite). By Lemma 5.9, we can pick K0 large enough that

904 M. HERLIHY AND N. SHAVIT

mesh(xK0(@)) , l/9. By Lemma 5.23, xK0(@) has a (l/9)-perturbation xp
K0(@)

for which a is a chromatic cover. By Lemma 5.26, this perturbation adds at most
2l/9 to the diameter of any simplex in the subdivision, so mesh(xp

K0(@)) , l/3.
By Lemma 5.25, for every Xi [xp

K0(@),

diam~st*~Xi, xp
K0~@!!! , 3 z mesh~xp

K0~@!! , l ,

so st*(Xi, xp
K0(@)) , st8(aW , a(()) for some vertex aW in a(() where id(aW) [

ids(Xi). Xi has at least one vertex xW such that

st~xW , xp
K0~@!! , st8~aW , a~(!! (6)

for some aW in a(() where id(aW) [ids(Xi). Define c(xW) 5 aW . Let @0 be the
subcomplex of xp

K0(@) spanned by vertexes that satisfy Eq. (6), and @1 the
subcomplex spanned by vertexes that do not. @1 has dimension at most i 2 1
because each i-simplex of xp

K0(@) includes at least one vertex in @0.
By the induction hypothesis, there exist K1 $ 0, a subdivision g9 of @1, and

color and carrier-preserving simplicial maps j9 and c

xK1~@1! ¡
j9

g9~@1! ¡
c

a~(! , (7)

such that every simplex X1 in g9(@1) includes a vertex yW that

yW [ù
xW [X1

st8~c~xW! , a~(!! . (8)

Let g(@) 5 g9(@1/@0), the subdivision of @ constructed by subdividing @1 by
g9 while leaving @0 fixed. We have defined a color and carrier-preserving vertex
map c: g(@)3 a((). We now prove that c is simplicial. Every simplex X in g(@)
is a join X0 z X1, where X0 is a simplex in @0 and X1 in g9(@1). For every vertex
xW0 of X0,

yW [X1 , st~xW0 , xp
K0~@!! .

By Eq. (6),

st~xW0 , xp
K0~@! , st8~c~xW0! , a~(!! .

Combining these equations with Eq. (8),

yW [ù
xW [X

st8~c~xW! , a~(!! .

By Lemma 5.27, the c(xW) span a vertex of a((), so c is a simplicial map. So far
we have shown that there exists a simplicial map

g~@! ¡
c

a~(!

such that every simplex X in g(@) includes a vertex yW that

905The Topological Structure of Asynchronous Computability

yW [ù

xW [X

st8~c~xW! , a~(!! .

To complete the proof, we show that

j9: xK1~@1! 3 g9~@1!

can be extended to

j0: xK1~@/@0! 3 g~@!

by making j0 the identity on vertexes of @0. If X0 is a simplex of @0, and X1 in
xK1(@1), then the join X0 z X1 is in xK1(@/@0) if and only if carrier(X1,
xp

K0(@)) z X0 is a simplex of xp
K0(@). Similarly, if Y1 is a simplex of g9(@1), X0 z

Y1 is in g(@) 5 g9(@/@0) if and only if carrier(Y1, xp
K0(@)) z X0 is a simplex of

xp
K0(@). By the induction hypothesis, j9 is carrier-preserving, so carrier(X1,

xp
K0(@)) 5 carrier(j9(X1), xp

K0(@)), and therefore j0 is a simplicial map.
By Lemma 5.6, there is a color and carrier-preserving simplicial map

xK1~xp
K0~@!! 3 xK1~@/@0!

and an isomorphism

xK01K1~@! 3 xK1~xp
K0~@!! .

Composing these maps yields a color and carrier-preserving simplicial map

j : xK01K1~@! 3 g~@! .

completing the proof of Eq. 4. e

THEOREM 5.29. If s is a chromatic subdivision of a complex (, then there exists
K $ 0 and a color and carrier-preserving simplicial map

f: xK~(! 3 s~(! .

PROOF. Note that s(() is a chromatic cover for (, so by Lemma 5.28, there
exists K . 0 and a color and carrier-preserving simplicial maps

xK~(! ¡
j

g~(! ¡
c

s~(!

Define f: xK(() 3 s(() to be the composition of j and c. The map f is
simplicial, color-preserving, and carrier-preserving. e

THEOREM 5.30. A decision task ^(, 2, D& has a wait-free protocol using
read-write memory if there exists a chromatic subdivision s(() and a color-
preserving simplicial map

m: s~(! 3 2

such that for each simplex S in s((), m(S) [D(carrier(S, ()).

906 M. HERLIHY AND N. SHAVIT

PROOF. Suppose the participating processes start with inputs given by simplex
Sm. By Theorem 5.29, there exists a color and carrier-preserving map

f: xK~Sm! 3 s~Sm! .

By hypothesis, there exists a simplicial map:

m: s~Sm! 3 D~Sm! .

The protocol has the following steps:

(1) Use the iterated participating set protocol to agree on a simplex in xK(Sm).
(2) A process that chooses vertex xW [xK(Sm) then chooses as its output the

value labeling m(f(xW)). e

This completes the proof of the Asynchronous Computability Theorem.
Our construction shows that we can assume without loss of generality that the

span s is an iterated chromatic subdivision.

COROLLARY 5.31. A decision task ^(, 2, D& has a wait-free protocol using
read-write memory if and only if there exists a K $ 0 and a color-preserving
simplicial map

m: xK~(! 3 2

such that for each simplex S in xK((), m(S) [D(carrier(S, ()).

6. Renaming with a Small Number of Names

In the renaming task of Attiya et al. [1990] and Attiya and Welch [1998],
processes are issued unique input names from a large name space, and must
choose unique output names taken from a smaller name space. To rule out trivial
solutions, protocols must be anonymous [Sect. 17.3], meaning that the value any
process chooses does not depend in any way on the value of any participant’s
process id (including its own). Informally, a process may choose its output value
based only on the input name it received, and on how its memory accesses are
interleaved with the memory accesses of the other processes. (We give a formal
definition of anonymity below.)

In the message-passing model, Attiya et al. [1990] showed that renaming has a
wait-free solution when K $ 2n 1 1, and none when K # n 1 2. Bar-Noy and
Dolev [1989] extended their upper bound solution to the shared read-write
memory model. Whether a protocol exists for n 1 2 , K # 2n names remained
open until 1993, when Herlihy and Shavit [1993] showed that no such protocol
exists. Henceforth, by renaming, we mean the renaming task where K # 2n.

The restriction to anonymous protocols implies that the asynchronous comput-
ability theorem does not apply. Nevertheless, a variant of this theorem can be
devised for anonymous protocols. In this section we show how to adapt the
asynchronous computability theorem to prove that the renaming task has no
anonymous wait-free read/write protocol. This section differs from previous
sections in the level of technical detail: we make explicit use of elementary
homology theory (as presented by Munkres [1984]). Our original proof appeared
in 1993 [Herlihy and Shavit 1993]. Here we present a simplified version of that

907The Topological Structure of Asynchronous Computability

proof, based on the chain map proof methodology developed by Herlihy and
Rajsbaum [1995].

6.1. PROOF OUTLINE. The key insight underlying our proof is that the
anonymity requirement makes it impossible to break symmetry among certain
input configurations. We capture and formalize this intuition through the
following sequence of steps.

—We begin by giving a formal statement of the notion of anonymity [Attiya and
Welch 1998]. We prove a variant of the asynchronous computability theorem
for anonymous protocols. This theorem states that the map from a subdivision
of the input complex to the output complex must satisfy certain symmetry
properties. The theorem statement exploits the observation of Corollary 5.31
that we can restrict our attention to the iterated standard chromatic subdivi-
sion.

—We reduce the renaming task itself to a reduced renaming task in which
processes choose Boolean values instead of names. The resulting output
complex is smaller and easier to work with. In particular, the complex has a
single “hole” which will act as an obstruction to any protocol. For a larger
number of names, the corresponding output complex has no hole, so the
existence of this hole characterizes the boundary between solvable and unsolv-
able instances of renaming.

—We identify a subcomplex of the input complex satisfying two properties: the
subcomplex itself is “solid”, with no holes, and the inputs along its boundary
are symmetric.

—We then apply the anonymous computability theorem to show that the
simplicial map guaranteed by the theorem wraps the symmetric boundary of
the solid subcomplex around the output complex’s hole a nonzero number of
times, a contradiction.

6.2. ANONYMITY. We now give a formal definition of the notion of anonymity
used by Attiya and Welch [1998] to define the renaming task. Let p be any
permutation of 0, . . . , n. The permutation p acts on any labeled simplex by
replacing each occurrence of a process id P in the label with the process id p(P).
Here are some examples.

—For an input or output simplex Sn, p sends each vertex ^P, v& to ^p(P), v&.

—For the chromatic subdivision x(Sn), p sends each vertex ^P, S& to ^p(P),
p(S)&, where S is a face of Sn. The reader is invited to check that p(x(S)) 5
x(p(S)).

—For a protocol complex 3((), p sends each vertex ^P, e& to ^p(P), p(e)&,
where p(e) denotes the execution view in which each process id Q is replaced
by p(Q).

Definition 6.1. A complex # is symmetric if p induces a simplicial map from
to itself, denoted p: # 3 #. If ! and @ are symmetric complexes, then
f: ! 3 @ is symmetric under permutation if p(f(vW)) 5 f(p(vW)) for any
permutation p. A task specification ^(, 2, D& is symmetric if (and 2 are
symmetric, and for all Sn [(, D(p(Sn)) 5 p(D(Sn)).

908 M. HERLIHY AND N. SHAVIT

In short, the problem specification depends only on input values, not process
ids. This restriction is weak: all tasks considered in this paper (excluding our
contrived quasi-consensus example of Section 3.2) have symmetric specifications.

In Section 5, we showed that any protocol can be expressed as an iterated
“immediate snapshot” algorithm. This kind of protocol has the property that in
any valid execution, replacing each process id P with p(P) yields another valid
execution. As a result, we can assume without loss of generality that any protocol
complex is symmetric.

Definition 6.2. A protocol 3 is anonymous if the decision map d is symmetric
under permutation: for every simplex T in 3(Sn), p(d(T)) 5 d(p(T)).

We now give the anonymous variant of the asynchronous computability
theorem. The proof appears in the appendix, but it is essentially the same as the
proof of the original, except that we use a specific symmetric subdivision based
on the standard chromatic subdivision.

THEOREM 6.3 (ANONYMOUS COMPUTABILITY THEOREM). A symmetric decision
task ^(n, 2n, D& has a wait-free anonymous protocol using read-write memory if and
only if there exists an integer K and a color-preserving simplicial map

m: xK~(! 3 2

symmetric under permutation, such that for each simplex X in xK((), m(X) [
D(carrier(X, ()).

6.3. REDUCED RENAMING. We now simplify the task by reducing the size of
the output complex. Consider the following reduced renaming task.

REDUCED RENAMING. Each process chooses a binary value, and in every execu-
tion where all n 1 1 processes choose a value, at least one chooses 0, and at
least one chooses 1.

LEMMA 6.4. If an anonymous renaming protocol exists, then so does an anony-
mous reduced renaming protocol.

PROOF. Any renaming protocol (anonymous or not) can be transformed into
a reduced renaming protocol simply by taking the parity of the names chosen. If
the original protocol was anonymous, so is the reduced protocol. e

For example, the annulus of Figure 36 is the reduced output for the original
three-process torus-shaped output complex of Figure 8.

6.4. A THREE-PROCESS EXAMPLE. The full proof of the renaming lower
bound is unavoidably technical, due to the need to reason formally about the
structure of high-dimensional complexes. Nevertheless, the need for formal rigor
should not be allowed to obscure the inherent geometric simplicity of the proof’s
essence. In this section, we describe a three-process example that illustrates the
basic ideas underlying the full proof.

The output complex 22 for three-process reduced renaming, shown in Figure 36, is
the annulus constructed by taking the binary 2-sphere over P, Q, and R, and
removing the all-zero and all-one simplexes. As we will explain, the resulting hole

909The Topological Structure of Asynchronous Computability

will act as an “obstruction” to any anonymous protocol. The boundary between four
and five names is exactly the boundary between a reduced renaming task whose
output complex has a hole (impossible) and one that does not (possible). For
notational convenience, we will use P0 as shorthand for ^P, 0&, and so on.

Assume we have an anonymous protocol for three-process reduced renaming.
Consider the subcomplex 7 of the input complex shown in Figure 37. This
subcomplex is isomorphic to x(S2), the standard chromatic subdivision of a
2-simplex. The anonymous computability theorem states that there is a simplicial
map m carrying a subdivision of 72 to the reduced renaming output complex 22.
We will argue that any such map must wrap the boundary of 72 around the hole
in 22 a nonzero number of times. As stated formally in Section 6.6, no continuous
map can carry the boundary of a “solid” region (72) to the boundary of a hole, so
we have a contradiction.

The inputs along the boundary of 72 are symmetric in the following sense. Let
7P, 7Q, and 7R denote the subdivided edges opposite the “corner” vertexes P0,
Q0, and R0. Informally, traversing any 7X from the smaller id toward the larger
id, we encounter the same sequence of input values.7 More precisely, let pP and
pQ be the following permutations:

P Q R
pP Q R P
pQ P R Q.

The symmetry property is that pP(7R) 5 7P and pQ(7R) 5 7Q.
The anonymous computability theorem guarantees a simplicial map

m: xK(t(S2)) 3 22 symmetric under permutation. Assume, without loss of
generality, that if P runs solo, it chooses an even name: m(P0) 5 P0. Because
the protocol is anonymous, m(Q0) 5 Q0. The map m carries the subdivided
edge xK(7R) to a path linking P0 to Q0 in 22. For the sake of this example, let
us assume that

m~7R! 5 ~P0, Q1, P1, Q0! , (9)

as illustrated in Figure 38.
Because the protocol is anonymous, m maps 7P and 7R to 2 in a symmetric

7 Note that vertex labels in 72 are not necessarily unique.

FIG. 36. Reduced renaming output complex 22.

910 M. HERLIHY AND N. SHAVIT

way. More precisely,

m~7P! 5 m~pP~7R!!

5 pP~m~7R!! .

5 pP~P0, Q1, P1, Q0!

5 ~Q0, R1, Q1, R0! . (10)

By similar reasoning,

m~7Q! 5 ~R0, P1, R1, P0! . (11)

Combining Eqs. (9), (10), and (11) shows that m wraps the boundary complex of
72 around the hole in 22 twice in the counter-clockwise direction, as illustrated
in Figure 39.

No matter what path we choose for m(7R), we will see that m wraps the
boundary of 72 around the hole 3k 1 1 times, for some integer value k. (A
positive k corresponds to a clockwise orientation, and a negative value is
counter-clockwise.) In this example, k 5 21.

Although this example does not constitute a proof, all the key elements of the
full proof are represented. The reduced renaming protocol for n 1 1 processes
and 2n names also has a hole, corresponding to the “missing” all-zero simplex
0n. (As before, the boundary between 2n and 2n 1 1 names is the boundary
between an output complex with a hole, and one without.) We construct an input
subcomplex 7n, isomorphic to x(Sn), such that input names are symmetric on
the boundary of 7n. We formalize the claim that m cannot wrap the boundary of
7 around the hole in 2n a nonzero number of times. We then exploit the

FIG. 37. Input subcomplex 72.

FIG. 38. Mapping an edge of the input complex.

911The Topological Structure of Asynchronous Computability

symmetry of 7n and m to prove that m does indeed map the boundary of 7n

around the hole (n 1 1)k 1 1 times, for some integer value k (again, positive
and negative values indicate distinct orientations). The value (n 1 1)k 1 1 is
nonzero for any k, yielding the desired contradiction.

6.5. A SYMMETRIC INPUT SUBCOMPLEX. We now formalize the construction
of the “symmetric input subcomplex” 7n illustrated (for n 5 2) in Figure 37.

Definition 6.5. For 0 # m # n, and 0 # i # m, define the permutation p i
m

to be

p i
m~k! 5 5 k if 0 # k , i

k 1 1 if i # k , m
i if k 5 m.

The permutations p i
n are just the generalizations of pP and pQ defined over 72

in the previous section.

LEMMA 6.6. For i , j, 0 # k # m 2 2,

p i
m~p j21

m21~k!! 5 p j
m~p i

m21~k!! .

PROOF. Both composite permutations map 0, . . . , m 2 1 to 0, . . . , ı̂, . . . ,
ĵ, . . . , m, respectively. e

The symmetric input subcomplex Tn is isomorphic to the standard chromatic
subdivision of an n-simplex by a color-preserving isomorphism denoted by

i: x~Sn! 3 7n.

Let 7 i
n21 be the subcomplex i(facei(Sn)), which we call the ith face of 7n. We

require that the faces of 7n satisfy the following symmetry property:

p i
n~7n

n21! 5 7 i
n21. (12)

The subcomplex 7n is constructed inductively. Complex 70 is the single vertex
^P0, 0&. Assume inductively that we have constructed Tm21, for 0 , m # n,
colored with process ids P0, . . . , Pm21, satisfying Eq. 12, using m(m 1 1)/ 2
distinct input values. We construct 7m by assigning input values to x(Sm). As an
operator, each permutation p i

m defines an isomorphism

p i
m;7m21 3 7 i

m21.

FIG. 39. Mapping the boundary of the input complex.

912 M. HERLIHY AND N. SHAVIT

Assign each vertex in 7 i
m21 the value of its matching vertex in 7m21, and assign

each central vertex of 7m labeled with Pi the input value m(m 1 1)/ 2 2 m 1
i 5 m(m 2 1)/ 2 1 i.

To show that this assignment of values is well defined, we must check that the
value assigned to a face vertex does not depend on the choice of p i

m.
When m 5 0, all face vertexes are assigned 0, Assume m . 0. For

permutations p i
m and p j

m, where i , j,

p i
m~Tm21! ù p j

m~Tm21! 5 p i
m~Tj21

m21!

5 p i
m~p j21

m21~Tm22!! .

By a similar argument,

p i
m~Tm21! ù p j

m~Tm21! 5 p j
m~p i

m21~Tm22!! .

By Lemma 6.6, p i
m(p j21

m21(Tm22)) 5 p j
m(p i

m21(Tm22)), so the value assigned is
independent of p i.

6.6. ORIENTATION, CYCLES, AND BOUNDARIES. This section reviews some
standard technical definitions needed for our proof. Our discussion closely
follows that of Munkres [1984, Section 1.13], which the reader is encouraged to
consult for more detail.

Let Sn 5 (sW0, . . . , sWn) be an n-simplex. An orientation for Sn is an equivalence
class of orderings on sW0, . . . , sWn, consisting of one particular ordering and all
even permutations of it. For example, an orientation of a 1-simplex (sW0, sW1) is
just a direction, either from sW0 to sW1, or vice-versa. An orientation of a 2-simplex
(sW0, sW1, sW2) can either be clockwise, as in (sW0, sW1, sW2), or counterclockwise (sW0, sW2,
sW1). Any orientation of a simplex induces orientations on its faces. An n-manifold
with boundary is oriented if each n-simplex is oriented in a way that each internal
(n 2 1)-simplex inherits opposite orientations from its two containing n-
simplexes. Any n-sphere can be oriented in this way. Given a simplex whose
vertexes are colored by process ids, the standard orientation orders them by
increasing process id.

A d-chain is a formal sum of oriented d-simplexes: (i50
, l i z Si

d, where l i is an
integer. When writing chains, we typically omit d-simplexes with zero coeffi-
cients, unless they are all zero, when we simply write 0. We write 1 z Sd as Sd,
21 z Sd as 2Sd, and Sd 1 . . . 1 Sd (k times) as k z Sd. It is convenient to
identify 2Sd with Sd having the opposite orientation. The q-chains of _ form a
free Abelian group Cq(_), called the qth chain group of _.

Let Sd 5 (sW0, . . . sWd) be an oriented d-simplex. Define facei(Sd), the ith face
of Sd, to be the (d 2 1)-simplex (sW0, . . . , ŝ i, . . . , sWd), where the circumflex
denotes omission. The boundary operator q: Cq(_) 3 Cq21(_), q . 0, is
defined on simplexes:

qSq 5 O
i50

q

~21! i z facei~Sq! ,

913The Topological Structure of Asynchronous Computability

and extends additively to chains: q(a0 1 a1) 5 qa0 1 qa1. The boundary
operator has the important property that applying it twice causes chains to
vanish:

q21qa 5 0. (13)

(Henceforth, we omit subscripts from boundary operators.) A q-chain a is a
boundary if a 5 b for some (q 1 1)-chain b, and it is a cycle if a 5 0.
Equation 13 implies that that every boundary is a cycle.

Definition 6.7. Two d-cycles a and b are homologous, written a ; b, if a 2 b
is a boundary.

The chain complex C(_) is the sequence of groups and homomorphisms
{Cq(_), }. Let C(_) 5 {Cq(_), } and C(+) 5 {Cq(+), 9} be chain
complexes for simplicial complexes _ and +. A chain map f: C(_) 3 C(+) is
a family of homomorphisms

fq : Cq~_! 3 Cq~+! ,

that preserve cycles and boundaries: 9 + fq 5 fq21 + . Any subdivision s of _
induces a chain map in the obvious way,

C~_! 3 C~s~_!! ,

as does any simplicial map f: _ 3 +

C~_! 3 C~+! ,

or permutation operator p: _ 3 _

C~_! 3 C~_! .

We use the following facts [Munkres 1984, Th.8.3] about chain groups of
spheres. Let the complex @n21 be an (n 2 1)-sphere, and let B be the cycle
constructed by orienting the simplexes of @n21.

LEMMA 6.8. Every (n 2 1)-cycle of @n21 is homologous to k z B, for some
integer k, and every q-cycle is a boundary, for q , n 2 1.

We refer to B as a generator for @n21.
Let ! , _ be complexes.

Definition 6.9. A deformation retraction of _ onto ! is a continuous map
F: u_ u 3 I 3 u_ u such that F(x, 0) 5 x for x [u_ u, F(x, 1) [! for x [u_ u,
and F(a, t) 5 a for a [u! u. If such an F exists, we say that ! is a deformation
retract of _. Every cycle of _ is homologous to a cycle of !.

LEMMA 6.10. If the (n 2 1)-sphere @ is a deformation retract of _, then every
q-cycle of _ is a boundary, and every (n 2 1)-cycle of _ is homologous to k z B, for
some integer k.

We also refer to B as a generator of _. If B and B9 are both generators of _,
then B ; 6B9.

914 M. HERLIHY AND N. SHAVIT

This paragraph is an aside for readers familiar with standard algebraic
topology. The qth simplicial homology group Hq(_) for a complex _ is the
quotient group of the q-dimensional group of cycles by the q-dimensional group
of boundaries. Lemma 6.8 states the well-known fact that the homology groups of
the (n 2 1)-sphere @n21 are trivial below (n 2 1), and infinite cyclic in
dimension n, generated by B. Lemma 6.10 is a special case of the classical
theorem [Munkres 1984, p. 108] that any complex has the same homology as its
deformation retracts.

6.7. IMPOSSIBILITY OF RENAMING. Recall that reduced renaming requires
each process to choose a binary value, but n 1 1 processes may not all choose 1,
or all choose 0. The output complex 2n is thus constructed by taking a binary
n-sphere and removing the all-zero simplex 0n and the all-one simplex 1n. Let
0̇n21 be the boundary complex of 0n with the orientation induced by the standard
orientation of 0n. This complex is an (n 2 1)-sphere with generator Sn.
Because 0̇n21 is a deformation retract of 2n, Sn is also a generator for 2n.

Let 2 i
n21 be the subcomplex of 2n colored with process ids P0, . . . , P̂ i, . . . ,

Pn. This complex is a binary (n 2 1)-sphere. Let Bi denote the chain
constructed by orienting each (n 2 1)-simplex of 2 i

n21 so that the all-zero
simplex has standard orientation. Because 2 i

n21 is a deformation retract of 2n,
Bi is also a generator of 2n. These generators are shown in Figure 40.

Algebraically, these generators are related as follows:

LEMMA 6.11. Bi ; (21)i0n.

PROOF. Since Bi and 0n are both generators for 2n, Bi ; 60n. The
simplex facei(0n) is common to both Bi and 0n. It has the standard orientation
in Bi, and (21) i times the standard orientation in 0n. e

Recall that subdivisions, permutation operators, and simplicial maps all induce
chain maps. The standard chromatic subdivision x induces a chain map

C~Sn! 3 C~x~Sn!! .

The isomorphism i: x(Sn) 3 7n (where 7n is the symmetric input subcomplex
constructed in Section 6.5) induces a chain map

C~x~Sn!! 3 C~7n! .

Assume by way of contradiction that there exists an anonymous protocol for
reduced renaming. The anonymous computability theorem (Theorem 6.3) gives a
simplicial map m: xK(7n) 3 2n inducing chain maps

FIG. 40. Generators BQ and 02.

915The Topological Structure of Asynchronous Computability

C~7n! 3 C~xK~7n!!

C~xK~7n!! 3 C~2n! .

Let

a: C~Sn! 3 C~2n!

be the result of composing these maps.
The chain Sn is a boundary in C(Sn), and therefore a(Sn) must also be a

boundary in C(2n). We will exploit the symmetry properties of the subdivisions
and maps used to construct a, together with the annulus structure of the reduced
renaming output complex 2n, to show that a(Sn) cannot be a boundary chain in
C(2n). As a result of this contradiction, we must conclude that there is no
anonymous reduced renaming protocol.

Because 7n is symmetric on its boundary, and because m is symmetric under
permutation, the chain maps induced by the permutation operators p i

n, for 0 #
i # n, satisfy the following commutative property: For every chain k of
C(facen(Sn)), p i

n(a(k)) 5 a(p i
n(k)). The conventional way to represent such

relations is by a commutative diagram:

C~facen~Sn!!
¡

a

C~2n
n21!

2 p i
n 2 p i

n

C~facei~Sn!!
¡

a

C~2 i
n21! .

Let 6̇n21 be the boundary complex of Sn, the complex consisting of all proper
faces of Sn. The color-preserving isomorphism 6̇n21 3 0̇n21 induces a chain
map

z: C~6̇n21! 3 C~2n! .

Note that 0n 5 z(Sn). This map also commutes with p i
n:

C~facen~6n!!
¡

z

C~2n
n21!

2 p i
n 2 p i

n

C~facei~6n!!
¡

z

C~2 i
n21! .

LEMMA 6.12. For 0 # i , n, there is a chain map

d: Ci~Sn! 3 Ci11~2n!

such that for every face Sm of Sn, 0 # m , n

a~Sm! 2 z~Sm! 2 d~Sm!

916 M. HERLIHY AND N. SHAVIT

is an m-cycle of 2n. Moreover, for every 0 # m , n, the following diagram
commutes:

C~facen~6n!!
¡

d

C~2n
n21!

2 p i
n 2 p i

n

C~facei~6n!!
¡

d

C~2 i
n21! .

PROOF. We argue by induction on m. When m 5 1, ids(S1) 5 {i, j}. The
1-chains a(S1) and z(S1) have the same boundary: ^Pi, 0& 2 ^Pj, 0&, so a(S1) 2
z(S1) is a cycle, and d(^Pi, 0&) 5 0.

Assume the claim for m, 1 # m , n 2 1. By Lemma 6.10, every m-cycle of 2n is
a boundary (for m , n 2 1), so there exists an (m 1 1)-chain d(Sm) such that

d~Sm! 5 a~Sm! 2 z~Sm! 2 d~Sm! .

Because Sm 5 facem11(Sm11),

d~facem11~Sm11!!

5 a~facem11~Sm11!! 2 z~facem11~Sm11!! 2 d~facem11~Sm11!! .

Applying p i
n to both sides,

p i
n~d~facem11~Sm11!!!

5 p i
n~a~facem11~Sm11!! 2 z~facem11~Sm11!! 2 d~facem11~Sm11!!! .

By the induction hypothesis, p i
n commutes with d, a, and z, and it commutes

with the boundary operator because it is a chain map.

d~p i
n~facem11~Sm11!!!

5 a~p i
n~facem11~Sm11!! 2 z~p i

n~facem11~Sm11!!!

2 d~p i
n~facem11~Sm11!!! .

Because p i
n(facem11(Sm11)) 5 facei(Sm11)),

d~facei~Sm11!! 5 a~facei~Sm11! 2 z~facei~Sm11!! 2 d~facei~Sm11!! .

Taking the alternating sum over the faces of Sm11 yields

d~Sm11! 5 a~Sm11! 2 z~Sm11! 2 d~Sm11!

5 a~Sm11! 2 z~Sm11! .

Rearranging terms yields

0 5 ~a~Sm11! 2 z~Sm11! 2 d~Sm11!! ,

917The Topological Structure of Asynchronous Computability

implying that

C 5 a~Sm11! 2 z~Sm11! 2 d~Sm11!

is an (m 1 1)-cycle. e

THEOREM 6.13. There is no wait-free reduced renaming protocol.

PROOF. As noted above, it suffices to prove that the chain a(Sn) is not a
boundary in C(2n). By Lemma 6.12,

a~facen~Sn21!! 2 z~facen~Sn21!! 2 d~~facen~Sn21!!!

is an (n 2 1)-cycle of 2n. Lemma 6.10 implies that this cycle is homologous to
k z Bn, for some integer k. Recall that p i

n(Bn) 5 Bi.

p i
n~a~facen~Sn!! 2 z~facen~Sn!! 2 d~~facen~Sn!!!! , k z p i

n~Bn! 5 k z Bi .

Recall that p i
n(facen(Sn)) 5 facei(Sn). Taking the alternating sum over the (n 2

1)-dimensional faces of Sn yields:

a~Sn! 2 z~Sn! 2 d~Sn! , k O
i50

n

~21! iBi

Because Sn 5 0, z(Sn) 5 0n, and Bi ; (21) i0n (Lemma 6.11),

a~Sn! , ~1 1 ~n 1 1!k! z 0n.

Since there is no value of k for which (1 1 (n 1 1)k) is zero, the cycle a(Sn)
is not a boundary, yielding the desired contradiction. e

COROLLARY 6.14. There is no wait-free (n 1 1)-process read/write renaming
protocol with 2n or fewer names.

7. Discussion

Since the conference version of this paper appeared, our topological model has
yielded a variety of additional results. Herlihy and Rajsbaum [1994] consider
protocol complexes for protocols that employ more powerful primitives than
read/write memory. Chaudhuri et al. [1993] give the first tight topology-based
lower bounds on set agreement in the synchronous fail-stop model. Attiya and
Rajsbaum [1995] cast our topological model in an equivalent “combinatorial”
representation. Borowsky [1995] and Borowsky and Gafni [1993] base a key part
of their simulation method on our notion of spans. Herlihy and Rajsbaum [1994]
use homology theory to derive further impossibility results for set agreement, and
to unify a variety of known impossibility results in terms of the algebraic theory
of chain maps and chain complexes [Herlihy and Rajsbaum 1997]. The impossi-
bility proof for renaming reflects the influence of this paper.

The graph theoretic characterization of Biran et al. [1988] also provides an
effective procedure for deciding whether a task has a 1-resilient message passing
protocol. By contrast, Gafni and Koutsoupias [1996] use topological techniques
to show that it is undecidable in general whether wait-free read-write tasks have

918 M. HERLIHY AND N. SHAVIT

a read-write protocol. Herlihy and Rajsbaum [1997] extend these techniques to
characterize task decidability in a variety of computational models. Herlihy et al.
[1998] give a simple round-by-round construction that unifies the synchronous,
semi-synchronous, and asynchronous message-passing models of distributed com-
putation within a common formalism based on a topological construction called a
pseudosphere.

Herlihy and Rajsbaum [1998] use topological techniques to give the first
complete characterization of the computational power of a nontrivial family of
synchronization primitives, encompassing both read-write memory and three-
process set agreement.

The topological framework is also of use in modeling complexity. Hoest and
Shavit [1997] analyze the round complexity of protocols in the iterated immedi-
ate snapshot (IIS) model of Borowsky and Gafni. By introducing a novel form of
span called the nonuniform chromatic subdivision, they refine our topological
computability model into a theorem that states that the time complexity of any
IIS protocol is directly proportional to the level of nonuniform chromatic
subdivisions necessary to allow a simplicial map from a task’s input complex to its
output complex. In other words, the more you need to subdivide in order for a
map to exist, the higher the complexity of your algorithm.

We believe the topological approach has a great deal of promise for the theory
of distributed and concurrent computation, and that it merits further investiga-
tion. We look forward to the day when knowledge of elementary combinatorial
and algebraic topology is considered as essential to theoretical computer science
as knowledge of graph theory or probability theory.

Appendix A

A1. CONNECTIVITY

THEOREM A1. If ! and @ are each n-connected, and ! ù @ is (n 2
1)-connected, then ! ø @ is n-connected.

PROOF. Recall that a complex # is n-connected if its homotopy groups
p1(C), . . . , pn(#) vanish [Spanier 1966].

By induction on n. For the base case, when n 5 1, this theorem is just the
Siefert/Van Kampen theorem [Spanier 1966, p. 151]. For the induction step,
assume ! and @ are n-connected, and ! ù @ is (n 2 1)-connected, and ! ø
@ is (n 2 1)-connected. The homology groups Hn(!), Hn(@), and Hn21(! ù
@) all vanish. and by the Mayer-Vietoris sequence [Spanier 1966, p. 186], so does
the homology group Hn(! ø @). By the Hurewicz Isomorphism Theorem
[Spanier 1966, p. 394], pn(! ø @) must also vanish and therefore ! ø @ is
n-connected. e

A2. ANONYMOUS COMPUTABILITY THEOREM

Definition A2. The chromatic K-extension of a color-preserving simplicial
map f: ! 3 @ is the map c: xK(!) 3 @ defined by c(xW) 5 f(yW), where yW is
the unique vertex in carrier(xW , !) of matching color.

LEMMA A3. The chromatic K-extension of any color-preserving simplicial map
is a color-preserving simplicial map.

919The Topological Structure of Asynchronous Computability

PROOF. Define j : xK(!) 3 ! to be the map carrying each xW to yW , the
unique vertex in carrier(xW , !) of matching color. By Lemma 5.27, j is a simplicial
map. The chromatic K-extension of f is the composition of f and j, both
color-preserving simplicial maps. e

LEMMA A4. Let ! be a (p 2 1)-sphere, @ a p-disk having ! as boundary, and
a complex that is (p 2 1)-connected and link-connected. If f: ! 3 # is a
color-preserving simplicial map, then there exists a color-preserving simplicial map

c: xK~@! 3 !

for some K $ 0, such that c restricted to xK(!) is the K-chromatic extension of f.

PROOF. Lemma 4.21 states that there exists a chromatic subdivision s and
simplicial map

f̂: s~@! 3 #

such that s(!) 5 !, and f̂ agrees with f on !.
By Theorem 5.29, there exists K $ 0 and a color and carrier-preserving

simplicial map

g: xK~@! 3 s~@! .

The composition of f̂ and g yields the desired map c. e

An anonymous span is a color-preserving map f: xK(() 3 3, for some K $
0, such that f is symmetric under permutation, and for all X in xK((),

f~X! [3~carrier~X , s~(!!! . (14)

Definition A5. Let # be a symmetric complex. Two k-simplexes S0
k and S1

k

belong to the same k-orbit if S0
k 5 p(S1

k), for some permutation p.

The set of k-orbits partition the k-simplexes of # into equivalence classes.

LEMMA A6. Every wait-free anonymous protocol complex has an anonymous
span.

PROOF. We build up the span inductively. For each vW [(, define f0(vW) 5
3(vW), the unique vertex corresponding to a solo execution. This map trivially
satisfies Eq. 14, and is symmetric under permutation.

Assume inductively that for some Kk21 $ 0, we have a color-preserving
simplicial map

fk21 : xKk21~skelk21~(!! 3 3

symmetric under permutation, and satisfying Eq. (14). Let S0
k, . . . , SL

k be a set of
k-simplexes constructed by choosing one k-simplex from each k-orbit of
skelk(().

For 0 # i # L, xKk21(skelk21(Si
k)) is a (k 2 1)-sphere, and the subdivision of

Si
k constructed by starring xKk21 is a k-disk, so by Lemma A4, for some Li $ 0,

fk21 : xKk21~6̇ i
k21! 3 3~Si

k!

920 M. HERLIHY AND N. SHAVIT

can be extended to a color-preserving simplicial map

c: xKk211Li~Si
k! 3 3~Si

k! ,

such that c restricted to xKk211Li(skelk21(Si
k)) is the Li-chromatic extension of

fk21. Let Kk 5 maxi50
L (Kk21 1 Li). For 0 # i # L, define

c i : xKk~Si
k! 3 3~Si

k!

to be the Li-chromatic extension of c. The restriction of c i to skelk21(Si
k) is the

(Kk 2 Kk21)-chromatic extension of fk21, so for every 0 # i, j # L, c i and c j

agree on the intersection of their domains. Together they define a map

fk : xKk~skelk21~(!! 3 3

satisfying Eq. 14. This completes the induction step of the proof. e

THEOREM A7 (ANONYMOUS COMPUTABILITY THEOREM). A symmetric decision
task ^(n, 2n, D& has a wait-free anonymous protocol using read-write memory if and
only if there exists an integer K and a color-preserving simplicial map

m: xK~(! 3 2

symmetric under permutation, such that for each simplex X in xK((), m(X) [
D(carrier(X, ()).

PROOF. The “if” part follows immediately from the protocol construction in
Section 5.

The “only if” part follows from the existence of the anonymous span guaran-
teed by Lemma A6. e

ACKNOWLEDGMENTS. We wish to thank the many people whose comments have
helped to improve this paper over the past six years: Yehuda Afek, Hagit Attiya,
Elizabeth Borowsky, Faith Fich, Gunnar Hoest, Alan Fekete, Eli Gafni, Nancy
Lynch and her students, Shlomo Moran, Lyle Ramshaw, Eric Ruppert, Mark
Tuttle, Gideon Stupp, and most of all, Sergio Rajsbaum and John Havlicek.

REFERENCES

AFEK, Y., ATTIYA, H., DOLEV, D., GAFNI, E., MERRITT, M., AND SHAVIT, N. 1990. Atomic
snapshots of shared memory. In Proceedings of the 9th Annual ACM Symposium on Principles of
Distributed Computing (Quebec City, Que., Canada, Aug. 22–24). ACM, New York, pp. 1–14.

AFEK, Y., AND STUPP, G. 1993. Synchronization power depends on the register size (preliminary
version). In Proceedings of the 34th Annual IEEE Symposium on Foundations of Computer Science
(FOCS). IEEE Computer Society Press, Los Alamitos, Calif. 195–205.

ANDERSON, J. 1990. Composite registers. In Proceedings of the 9th ACM Symposium on Principles
of Distributed Computing (Quebec City, Que., Canada, Aug. 22–24). ACM, New York, pp. 15–30.

ATTIYA, H., BAR-NOY, A., DOLEV, D., PELEG, D., AND REISCHUK, R. 1990. Renaming in an
asynchronous environment. J. ACM, July.

ATTIYA, H., LYNCH, N., AND SHAVIT, N. 1990. Are wait-free algorithms fast? In Proceedings of the
31st Annual Symposium on the Foundations of Computer Science. IEEE Computer Society Press,
Los Alamitos, Calif. 55– 64.

ATTIYA, H., AND RAJSBAUM, S. 1995. A combinatorial topology framework for wait-free computa-
bility. Preprint.

ATTIYA, H., AND WELCH, J. 1998. Distributed Computing: fundamentals, simulations and advanced
topics. McGraw-Hill, London, England. ISBN 0-07-7093526.

921The Topological Structure of Asynchronous Computability

BAR-NOY, A., AND DOLEV, D. 1989. Shared-memory vs. message-passing in an asynchronous
distributed environment. In Proceedings of the 8th Annual ACM Symposium on Principles of
Distributed Computing (Edmonton, Alb., Canada, Aug. 14 –16). ACM, New York, pp. 307–318.

BIRAN, O., MORAN, S., AND ZAKS, S. 1988. A combinatorial characterization of the distributed
tasks which are solvable in the presence of one faulty processor. In Proceedings of the 7th Annual
ACM Symposium on Principles of Distributed Computing (Toronto, Ont., Canada, Aug. 15–17).
ACM, New York, pp. 263–275.

BOROWSKY, E. 1995. Capturing the power of resiliency and set consensus in distributed systems.
Tech. rep., University of California Los Angeles, Los Angeles, Calif.

BOROWSKY, E., AND GAFNI, E. 1993. Generalized FLP impossibility result for t-resilient asynchro-
nous computations. In Proceedings of the 25th Annual ACM Symposium on the Theory of Computing
(San Diego, Calif., May 16 –18). ACM, New York, pp. 91–100.

BOROWSKY, E., AND GAFNI, E. 1993. Immediate atomic snapshots and fast renaming. In Proceed-
ings of the 12th Annual ACM Symposium on Principles of Distributed Computing (Ithaca, N.Y., Aug.
15–18). ACM, New York, pp. 41–52.

CHAUDHURI, S. 1990. Agreement is harder than consensus: Set consensus problems in totally
asynchronous systems. In Proceedings of the 9th Annual ACM Symposium on Principles of Distributed
Computing (Quebec City, Que., Canada, Aug. 22–24). ACM, New York, pp. 311–324.

CHAUDHURI, S., HERLIHY, M. P., LYNCH, N., AND TUTTLE, M. R. 1993. A tight lower bound for
k-set agreement. In Proceedings of the 34th IEEE Symposium on Foundations of Computer Science
(Oct.). IEEE Computer Society Press, Los Alamitos, Calif., pp. 206 –215.

CHOR, B., ISRAELI, A., AND LI, M. 1987. On processor coordination using asynchronous hardware.
In Proceedings of the 6th Annual ACM Symposium on Principles of Distributed Computing (Vancou-
ver, B.C., Canada, Aug. 10 –12). ACM, New York, pp. 86 –97.

CHOR, B., AND MOSCOVICI, L. 1989. Solvability in asynchronous environments. In IEEE Sympo-
sium on Foundations of Computer Science (FOCS). IEEE Computer Society Press, Los Alamitos,
Calif., pp. 422– 427.

DOLEV, D., DWORK, C., AND STOCKMEYER, L. 1987. On the minimal synchronism needed for
distributed consensus. J. ACM 34, 1 (Jan.), 77–97.

FEKETE, A. 1986. Asymptotically optimal algorithms for approximate agreement. In Proceedings of
the 5th Annual ACM Symposium on Principles of Distributed Computing (Calgary, Alb., Canada,
Aug. 11–13). ACM, New York, pp. 73– 87.

FISCHER, M., LYNCH, N. A., AND PATERSON, M. S. 1985. Impossibility of distributed commit with
one faulty process. J. ACM 32, 2 (Apr.).

GAFNI, E., AND KOUTSOUPIAS, E. 1996. Three-processor tasks are undecidable. http://daphne.cs.u-
cla.edu/eli/undec.ps.

GLASER, L. C. 1970. Geometrical Combinatorial Topology, Vol. 1. Van Nostrand Reinhold, New
York.

HERLIHY, M. P. 1991. Wait-free synchronization. ACM Trans. Prog. Lang. Syst. 13, 1 (Jan.),
123–149.

HERLIHY, M. P., AND RAJSBAUM, S. 1994. Set consensus using arbitrary objects. In Proceedings of
the 13th Annual ACM Symposium on Principles of Distributed Computing (Los Angeles, Calif., Aug.
14 –17). ACM, New York, pp. 324 –333.

HERLIHY, M., AND RAJSBAUM, S. 1995. Algebraic spans. In Proceedings of the 14th Annual ACM
Symposium on Principles of Distributed Computing (Ottawa, Ont., Canada, Aug. 20 –23). ACM, New
York, pp. 90 –99.

HERLIHY, M. P., AND RAJSBAUM, S. 1997. The decidability of distributed decision tasks. In
Proceedings of the 29th Annual ACM Symposium on Theory of Computing (El Paso, Tex., May 4 – 6).
ACM, New York, pp. 589 –598.

HERLIHY, M., AND RAJSBAUM, S. 1998. A wait-free classification of loop agreement tasks. In
Proceedings of the 12th International Symposium on Distributed Computing (Sept.). Springer-Verlag,
New York, pp. 175–185.

HERLIHY, M. P., RAJSBAUM, S., AND TUTTLE, M. R. 1998. Unifying synchronous and asynchronous
message-passing models. In Proceedings of the 12th International Symposium on Distributed Comput-
ing (Sept.).

HERLIHY, M. P., AND SHAVIT, N. 1993. The asynchronous computability theorem for t-resilient
tasks. In Proceedings of the 25th Annual ACM Symposium on the Theory of Computing (San Diego,
Calif., May 16 –18). ACM, New York, pp. 111–120.

922 M. HERLIHY AND N. SHAVIT

HERLIHY, M. P., AND SHAVIT, N. 1994. A simple constructive computability theorem for wait-free
computation. In Proceedings of the 26th Annual ACM Symposium on the Theory of Computing
(Montreal, Que., Canada, May 23–25). ACM, New York, pp. 243–252.

HERLIHY, M. P., AND WING, J. M. 1990. Linearizability: A correctness condition for concurrent
objects. ACM Trans. Prog. Lang. Syst. 12, 3 (July), 463– 492.

HOEST, G. 1997. Towards a Topological Characterization of Asynchronous Complexity. Ph.D.
dissertation. Mass. Institute of Technology, Cambridge, Mass.

HOEST, G., AND SHAVIT, N. 1997. Towards a topological characterization of asynchronous com-
plexity. In Proceedings of the 16th Annual ACM Symposium on Principles of Distributed Computing
(Santa Barbara, Calif., Aug. 21–24). ACM, New York, pp. 199 –208.

LEFSCHETZ, S. 1949. Introduction to Topology. Princeton University Press, Princeton, N.J.
LOUI, M. C., AND ABU-AMARA, H. H. 1987. Memory Requirements for Agreement Among Unreliable

Asynchronous Processes, vol. 4. JAI Press, Greenwich, Conn., pp. 163–183.
LYNCH, N. A. 1996. Distributed Algorithms. Morgan-Kaufmann, New York.
LYNCH, N. A., AND TUTTLE, M. R. 1988. An introduction to input/output automata. Tech. Rep.

MIT/LCS/TM-373. MIT Laboratory for Computer Science, Cambridge, Mass.
MUNKRES, J. R. 1984. Elements of Algebraic Topology. Addison-Wesley, Reading, Mass. ISBN

0-201-04586-9.
SAKS, M., AND ZAHAROGLOU, F. 1993. Wait-free k-set agreement is impossible: The topology of

public knowledge. In Proceedings of the 25th Annual ACM Symposium on the Theory of Computing
(San Diego, Calif., May 16 –18). ACM, New York, pp. 101–110.

SPANIER, E. H. 1966. Algebraic Topology. Springer-Verlag, New York.

RECEIVED FEBRUARY 1996; REVISED APRIL 1999; ACCEPTED MAY 1999

Journal of the ACM, Vol. 47, No. 1, January 2000.

923The Topological Structure of Asynchronous Computability

