Time and Space Lower Bounds for
Non-blocking Implementations*

(Preliminary version)

Prasad Jayantit King Tan? Sam Toueg?

Abstract

We show the following time and space complex-
ity lower bounds. Let Z be any randomized non-
blu - ing n-process implementation of any object
in- 1from any combination of objects in set B,
where A = {increment, store-conditional bit, com-
pare&swap, bounded-counter, single-writer atomic
snapshot, fetch&add}, and B = {resettable con-
sensus, register, swap register}. The space com-
plexity of 7 is at least n — 1. Moreover, if 7 is
deterministic, both its time and space complex-
ity are at least » — 1. These lower bounds hold
even if objects used in the implementation are of
unbounded size.

This improves on some of the Q(,/n) space com-
plexity lower bounds of Fich, Herlihy & Shavit
[FHS93]. It also shows the near optimality of
sote known wait-free implementations in terms
of space complexity.

*Research partially supported by NSF grants CCR-
9402894 and CCR-9410421, DARPA/NASA Ames grant
NAG-2-593, and Dartmouth College Startup grant.

tSudikoff Laboratory for Computer Science, Dartmouth
College, Hanover, NH 03755, USA.

{Department of Computer Science, Upson Hall, Cornell
University, Ithaca, NY 14853, USA.

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee.

PODC'96, Philadelphia PA, USA

© 1996 ACM 0-89791-800-2/96/05..$3.50

257

1 Introduction

Non-blocking and wait-free implementations of
shared objects have been the subject of much re-
search. While there have been several results on
when such implementations are feasible and when
they are not, results establishing their intrinsic
time and space requirements are relatively scarce,
especially for randomized implementations. In
this paper, we present a technique by which one
can obtain a linear lower bound on the space com-
plexity of several randomized non-blocking imple-
mentations. The technique also yields a linear
lower bound on the time complexity of several de-
terministic non-blocking implementations.

Specifically, our results are as follows. Let 7
be any randomized non-blocking n-process im-
plementation of any object in set A from any
combination of objects in set B, where A =
{increment, store-conditional bit, compare&swap,
bounded-counter, single-writer atomic snapshot,
fetch&add}, and B = {resettable consensus, regis-
ter, swap register }. The space complexity of 7 is
at least n—1. Moreover, if 7 is deterministic, both
its time and space complexity are at least n — 1.
These lower bounds hold even if objects used in
the implementation are of unbounded size.

Some of the results in this paper improve known
lower bounds, while others are completely new.
In particular, Fich, Herlihy & Shavit proved a
Q(+/n) space complexity lower bound for a ran-
domized non-blocking n-process implementation
of binary consensus from registers and swap reg-
isters [FHS93]. Using this result, they showed
that any randomized non-blocking n-process im-
plementation of compareé&swap, or fetch&add, or
bounded-counter from any combination of regis-

ters and swap registers requires Q(y/n) instances
of such objects. Our results on compare&swap,
fetch&add, and bounded-counter are stronger in
two ways: (i) They show that at least n—1 objects
are necessary, and (ii) They show that n — 1 ob-
jects are needed even if the implementation is free
to use resettable consensus objects, besides the
registers and swap registers allowed by [FHS93].

The results presented in this paper also imply
that the following deterministic implementations
in the literature are almost space-optimal.

1. Afek et al give two wait-free implementa-
tions of a single writer atomic snapshot ob-
Jject (consisting of n segments, each one writ-
ten by a different process): one from un-
bounded registers and one from bounded regis-
ters [AAD*93]. The one that uses unbounded
vegisters is of space complexity n. We prove
& lower bound of n — 1.

. Aspnes gives a wait-free implementation of a
n-process bounded-counter from a single in-
stance of a single writer atomic snapshot ob-
ject [Asp90]. Combined with the above re-
sult of Afek et al, this implies that bounded-
counter can be implemented from = un-
bounded registers. We prove that at least n—
1 registers are necessary when the bounded-
counter is a modulo &k counter, where k > 2n.

In both cases above, the lower bound of n —1 is
particularly appealing because it applies to even
randomized non-blocking implementations while
the upper bound of n holds for deterministic wait-
free implementations.

In fact, the lower bounds proved in this paper
apply not just to non-blocking implementations,
but to any implementation satisfying a progress
condition that we call solo-finish. Roughly speak-
ing, a deterministic implementation is solo-finish
if at every configuration C in a system execution
the following holds for all processes p: if p runs
alone from C, p’s operation on the implemented
object will eventually complete. For a randomized
itnplementation to be considered solo-finish we re-
quire that for all C and p if p runs alone from C,
there is at least one sequence of outcomes for p’s
coin tosses that will enable p to complete its op-
eration on the implemented object.

258

It is well-known that a wait-free implementa-
tion is also non-blocking. It is clear that a non-
blocking implementation is also solo-finish. Thus,
the lower bounds that we prove here for solo-finish
implementations also apply to non-blocking and
wait-free implementations.

2 Road Map

We give an informal model in Section 3. In Sec-
tion 4, we prove a special case of our results,
namely, that the space complexity of any solo-
finish randomized implementation (and the time
complexity of any solo-finish deterministic imple-
mentation) of an increment object from resettable
consensus objects, swap registers and registers is
at least n — 1. This proof illustrates the basic
technique common to all our lower bound proofs.
In Section 5, we extend this result by identifying
the properties of increment that are used in the
proof, and showing that a variety of other objects
(such as compare&swap, store-conditional bit, and
single-writer atomic snapshot) also possess these
properties, and so the lower bound applies to im-
plementations of these objects as well. In Ap-
pendix A, we present the sequential specifications
of the types of objects considered in this paper.

3 Informal Model

3.1 Type

A type is a tuple (OP, RES, Q, 6), where OP is a
set of operations, RES is a set of responses, Q is
a set of states, and § : Q X OP — @Q X RES is
a function, known as the sequential specification
of the type. Intuitively, if §(o,0p) = (¢,res) it
means the following: applying the operation op to
an object of this type in state o causes the object
to move to state o' and return the response res.

3.2 Implementation

A randomized implementation of object O is spec-
ified by the following elements:

e the type and the initial value of O (the initial
value of O is a state of its type).

e a set of objects Oy,...,0,, (from which O
is implemented), their types and their initial
values.

e a set of processes py,...,p, that may access

0.

e a set of randomized access procedures
Apply(pi,op, 0), for p; € {p1,...,pn} and
op € OP, where OP is the set of operations
associated with the type of O.

The access procedure Apply(p;, op, O) specifies
how p; should execute the operation op on O in
terms of operations on Oy, ...,0,,. The value re-
turn« d by the procedure is deemed to be the re-
sponse from 0. We call O4,...,0,, the base ob-
jecis of the implementation. The space complezity
of the implementation is m.

11+ definitions presented in the rest of this sec-
tion are with respect to a system that consists of
processes py,...,p, and an implemented object
O that py,...,p, may access. We denote such a
system by (p1,...,0n;O). Each p; has a distin-
guished input variable op-list;. This variable is
initialized (by the user of the system) with any
infinite sequence of operations opy, ops, ... where
each op; is an operation supported by O. Each p;
performs the following actions repeatedly forever:
obtain the next operation op from op-list; and ex-
ecute the access procedure Apply(p;,op, O). Let
comp, denote the sequence of completed opera-
tions and rem; denote the sequence of operations
that have not yet been completed. The state of
process p; is specified by (i) comp;, (ii) the values
of variables associated with p;’s access procedures,
namely, Apply(p;, op, O) for all op € OP, and (iii)
p;’s program counter.

A process p; executes an access procedure
Apply(pi,op, O) in steps. Each step consists of
the following actions, all of which occur together
atomically:

® p; tosses a coin. Let toss-outcome €
+'OINSPACE denote the outcome of this toss.

o toss-outcome and p;’s present state uniquely
determine an operation oper and a base ob-
ject O; that oper should be applied to. Ac-
cordingly, p; applies oper to O;.

259

o O; changes state and returns a response. The
new state of O; and the response are uniquely

determined by the sequential specification of
0;.

e The response from O;, together with toss-
outcome and p;’s present state, uniquely de-
termine the new state of p;. It is also possible
for the procedure Apply(p;,op, Q) to termi-
nate, returning some response.

A configuration of (p1,...,pn;0) is a tuple
(015, 0n, 7€M, ..., T€MY, T1,. .., Tm), Where o;
is the state of p; and 7; is the state of base ob-
ject O;. Notice that the initial configuration is
uniquely determined by an assignment of infinite
sequences of operations to the input variables op-
list; (1 < i < n). An ezecution of (py,...,pn; 0)
is a sequence Cy, Cy,Cy,. .. of configurations such
that C is an initial configuration and Cjy; is the
configuration that results when some process per-
forms a step in configuration Cj.

A schedule is a finite or an infinite se-
quence [p;,, 4], [pi,, 2], . . where each p;, is from
{p1,...,pn} and each ¢; is from coiNsPAcE. If
C is a configuration and o = [p;,], [ps,, t2], - - -
is a schedule, EXEC(C, a) denotes the unique se-
quence C = (Cy,Cq,Cy,. .. of configurations such
that each Ciy results from C) when p;, takes a
step in which the outcome of p;, ’s toss is tx. A
configuration C is reachable if there is some initial
configuration Cy and a finite schedule a such that
the configuration at the end of EXEC(Cy,) is C.

3.3 Linearizability

An implementation of O is linearizable if in each
execution of (p1,...,pn; O), each operation on O
appears to take effect at some “instant” between
its invocation and response [HW90]. In this pa-
per, we restrict our attention to linearizable im-
plementations.

3.4 Solo-finish: a progress property

An implementation whose access procedures never
terminate is trivially linearizable. Such an imple-
mentation, however, can hardly be useful. Thus,
in addition to linearizability, implementations of-
ten guarantee certain progress properties. Wait-
freedom and non-blocking are the progress con-

ditions that received the most attention recently.
Here we state a new, weaker progress property
that we call “solo-finish”. Informally, an im-
pler.entation has solo-finish property if for each
configuration C' and each process p the following
holds: if p runs alone from configuration C, then
there is at least one sequence of outcomes for p’s
coin tosses that will enable p to complete an op-
eration on the implemented object.

More formally, a randomized implementation of
O is solo-finish if, for all reachable configurations
C and all processes p;, there is some finite schedule
a = [pi,t], i, tal, - - -, [Pi, te] such that p; com-
pletes an operation on O during EXEC(C, a).

The lower bounds proved in this paper apply
to sclo-finish (and therefore to non-blocking and
wail free) implementations.

3.5 Deterministic time complexity

A deterministic implementation is a special
case of a randomized implementation for which
COINSPACE, the set of possible outcomes for a
coin toss, is a singleton set. The solo-finish time
complezity of a deterministic implementation of
O is at least k if for some reachable configura-
tion " and process p; the following holds: for all
schedules a of length k£ — 1 that contain only p;,
p; does not complete an operation on O during
ex:o(C, a).

3.6 Notation

For a schedule a, |a| denotes its length. We say
a contains process p if, for some t, [p,] is in the
sequence a. PSET(a) denotes the set of all pro-
cesses p such that « contains p. If ¥ is a set, X*
denotes the set of all finite sequences of elements
from ¥. The empty sequence, denoted by ¢, is a
member of £* for all sets & (even if & = 0, the
empty set).

4 The lower bound

We illustrate our lower bound technique by prov-
ing that the space complexity of any randomized
solo-finish implementation and the time complex-
ity of any deterministic solo-finish implementa-
tion of an increment object, shared by processes

260

P1,---,Pn, are both at least n — 1 if base objects
are restricted to be (any combination of) regis-
ters, swap registers, and resettable consensus ob-
jects. (The specifications of these various objects
are presented in the appendix.) In the next sec-
tion, we explain how this technique generalizes to
implementations of other types of objects.

Theorem 1 Let O be a randomized implementa-
tion of an increment object, initialized to 0, from
registers, swap registers, and resettable consensus
objects. Let p1,...,pn be the processes that may
access O. If the implementation is linearizable
and solo-finish:

1. Its space complezity is at least n — 1.

2. If the implementation is deterministic, ils
solo-finish time complexity is at least n — 1.

Below, we prove a key lemma from which both
parts of the theorem will be immediate.! Let Cy
be the initial configuration of (py,...,pn; O) cor-
responding to the following assignment of oper-
ation sequences to the input variables: for 1 <
i < n — 1, op-list; is an infinite sequence of in-
crement operations, and op-list, is an infinite se-
quence of read operations. Let COINSPACE be any
non-empty set.

Lemmal Letn>1. Forallk, 0 <k <n-1,
Statement S, described in Figure 1, is true.

Proof By induction. Below, we let S; : 7 denote
the j* part of Statement Si.
Base case. We show that Sp is true.

Let Ag = Yo =Ilp = € and let So = 0. It is
easy to verify that all of Sy : 1 —7 are true. Hence
the base case.

Induction step. Suppose 0 < k< n—2 and
S is true. We now show that Siy1 is true.

Let Ag,Zg, Ik, Sk be so defined as to make
Statement S true. We will demonstrate the ex-
istence of schedules Agy1, [Pr+1,tk+1), Tk+1 and a
base object Br4i such that for Apt1 = Apdryr,
Lerr = [peeroten1]Zk, Hppy = Igmeyr and
Sk4+1 = Sk U {Bk+1}, Statement Siy, is true. We
will do this through the following steps.

1There is a simpler proof if we are interested only in the
space complexity.

There are schedules Ag, Xk, Il, and a set Sy of base objects such that the following hold:

1.

(=22 L B ~ S

The schedules, Ax and X do not contain py: i.e., Ay, Tf € ({P1,P2,...,Pn—1} X COINSPACE)*.

distinct processes.

. I € ({pn} X COINSPACE)*.

1Sk] = k.

. Fork=0,%; =€ Fork > 1, ¥ is of the form [Piy> tl[Pir_y s th-1] - - [P, , t1], Where Diyy .-y Pi, aTe

. S is exactly the set of base objects that p, accesses in EXEC(Co, A XiIlg).
. In EXEC(Co, AxXiIlk), pn's first operation on O has either not completed or just completed.

. Let Pr = {p1,p2,...,Pn-1} — PSET(Zk). Let v be any schedule in (P} x COINSPACE)*. The state

of each base object in Sy at the end of EXEC(Cp, AxX) is the same as its state at the end of

EXEC(Co, AxyXk).

Figure 1: Statement S}

. By Sk : 6, in EXEC(Co, AxXIlk), pyn’s first

operation on O has either not completed or
just completed. Let 7 € ({p,} X COINSPACE)*
be such that p, just completes its first opera-
tion on O in EXEC(Cy, AxXiIl7), returning
some value res. Since the implementation is
solo-finish, 7 exists.

. Claim 1 In EXEC(Co, AfXrIllgm), pn ac-

cesses a base object not in Sy.

Proof Suppose the claim is false. Let p;
be any process in P = {p1,P2,.--sPn-1} —
PSET(Xg). Since |PSET(Zk)| = k and k <
n — 2, Pt is non-empty and we can pick p;.
Let v € ({pi} X COINSPACE)* be such that
there are at least res + 1 more completed in-
crement operations on O in EXEC(Cop, Axy)
than in EXEC(Co,Ag). Since the implemen-
tation is solo-finish, v exists. We now have
the following facts.

k1. The state of each base object in
Sk at the end of EXEC(Co,ArXy) is
the same as its state at the end of
EXEC(Co, AkyZk)-
This follows from part Si : 7 of the in-
duction hypothesis.

261

F2.

F3.

F4.

The exe-
cutions Ey = EXEC(Coy, AxXiIlgm) and
E; = EXEC(Co, Ay EiIlkn) are indis-
tinguishable to p,. (That is, p,’s state
is the same at the end of E; and E;.)

This follows from: (i) the schedules
AxXg and ApyXr do not contain p,,
(ii) the schedule IIxm contains only py,
(iii) the only base objects accessed by
Pn in Ey are the ones in Sg (by our as-
sumption that Claim 1 is false), and (iv)
the states of base objects in S}, are the
same at the end of EXEC(Cy, AxXy) and
EXEC(Co, AxyXy) (this is F1).

In EXEC(Co, ApyXellgm), p,’s first op-
eration on O completes and returns res.

This follows from F2 and the definition
of 7 in Step 1.

In EXEC(Co, ApyEIlm), pn’s first op-
eration on @ cannot return res.

By definition of 4, the number of com-
pleted increments in EXEC(Co, AxyXk)
is at least res + 1. Since the implemen-
tation is linearizable, it follows that p,,’s
first operation on O (which is a read op-
eration) cannot return res.

. CONSTRUCTION

F3 and F4 are contradictory. Hence the
claim. i

. Let w41 be the shortest prefix of 7 such that
in EXEC(Co, AxZklgmry1) prn accesses a base
object not in 8. (By Claim 1, 74y exists.)
Let Bpyy denote this base object. Define
Sk+1 = Sk U { By} and Hgyy = Hgpmpqa.
Since |Sx| = k and Bypyy ¢ Sk, we have
|Sk+1] = k + 1. Since IIx and g4y are
both from ({p.} X COINSPACE)*, we have
;41 € ({prn} X COINSPACE)*. Thus, we have
established parts Sg41 : 3 and Sgyq : 4 of the
induction step.

We will now define sched-
les Mgy and [piy,,,tk4+1] based on the type
of Bk+1 .

Case 1 By is a register or a swap register.

Subcase 1a There is some non-empty
schedule A € (P X COINSPACE)* such
that the last step in EXEC(Cp, AxA) is a
write to Bry1.

Define Ar41 and [p;,,,tk41] s0 that A =
’\k+1 -[pik+1 > tk+1] .

Subcase 1b There is no such A.

Define Agy1 to be € and [p;,,,,tk41] to
be any element of Pr X COINSPACE.

Case 2 By is aresettable consensus object.

Subcase 2a There is some non-empty
schedule A € (Pr X COINSPACE)* such
that the last step in EXEC(Cp, AgA) is a
reset operation on Byyi.

Define Ag4y and [p,-k+1,tk+1] so that A =
Akt 1-[Pig 1o te1]-

Subcase 2b There is no such A. How-
ever, there is some non-empty schedule
X € (Pr X COINSPACE)* such that the
last step in EXEC(Cy, AxX') is a propose
operation on Byyi.

Define Aiy1 to be A’ and [p;,,,,tk41] to
be any element of P, X COINSPACE.

Subcase 2¢ Neither A nor)\ exists.

Define Agy1 to be € and [p;,,,,tx41] to
be any element of Py X COINSPACE.

262

5. Define Apyy as Apdgy; and define Yiyy

as [Pix,1stk+1]Zk. By definition, Agyq €
(Pr x COINSPACE)* and [p;,, ., tks1] € Pr X
COINSPACE. From this and the induc-
tion hypothesis, we have Agyq, gy €
({p1,P2;---,Pn-1} X COINSPACE)*. This es-
tablishes part Sk4q : 1 of the induction step.

By induction hypothesis, g is € and 3
is of the form [p;,, t&)[pi,_,»th—1]-..[Piy, t1]
(for £ > 1), where p;,,...,p;, are distinct
processes. Furthermore, since [p;,,,,tx41] €
Pr X COINSPACE and Py does not include any
process from PSET(X}), it follows that Xy
is of the form [p;,,,,teq1].. . [pi), 1], where
Diys- - Piyy, are distinct processes. This es-
tablishes part Sky; : 2 of the induction step.

. Claim 2 Let Pry1 = {p1,P2,--yPn-1} —

PSET(Xky1). Let v be any schedule from
(Pr+1 X COINSPACE)*. Then we have:

(a) The state of Bpy, is the same at
the end of EXEC(CO,Ak/\k_;_l[pik+1 , tk+1])
and EXEC(Co, ApAk417[Piyy 1 ths1])-

(b) The state of By, is the same at the end
of EXEC(CO, Ak>\k+1 [Pik+1 R tk+1]2k) and
EXEC(C(), Ak)‘k+17[pik+1 R tk+1])3k)-

(c) For each base object B € S, B’s state is
the same at the end of EXEC(Co, ArXk),
EXEC(CO,Ak/\k+1[pik+1,tk+1]2k), and
EXEC(CO, Ak)\k-i-l’)’[PikH y tk+1]2k)-

Proof The proof is based on the construc-
tion. See [JTT96] for details. O

. Part Si41 : 7 of the induction step is immedi-

ate from parts (b) and (c) of Claim 2 and our
earlier definitions of Agyy, Yg41, and Sgy
as AgAgs1s [Pigyrs tet1]Zk, and Sp U {Brya},
respectively.

. Recall the definition of 74, from Steps 1 and

3, and the statement of Claim 1.

Claim 3 (a) Sk U {Bi4+1} is ezactly the
set of base objects that p, accesses in
EXEC(C(), Ak+1 Ek+1 Hk?fk+1) .

(6) In EXEC(Co, Ak41Zkt1IkTEt1), Pn’s
first operation on O has either not com-
pleted or just completed.

Proof Observe that (1) EXEC(Co, AxXk) and
EXEC(Cp, Ak+1Xk+1) are indistinguishable to
prn (since neither AxXy nor Agy1Xry; con-
tains py), and (2) For all B € Sk, B’s state
is the same at the end of EXEC(Co, ArXy)
and EXEC(Co, Ag+1Xk+1) (this is part (c)
of Claim 2). By definition of mg41, in
EXEC(Co, ApXIlgmry1), it is only in the last
step that p, accesses a base object not in Sy,
and p,’s first operation on O has either not
completed or just completed. This, together
with Observations (1) and (2) stated above,
implies the claim. a

9. The parts Sg41 : 5 and Sg41 : 6 of the induc-
tion step are immediate from Claim 3 and our
earlier definition of Iy as Hgmeyy.

We have proved all the seven parts of Statement
Si4.- parts 1 and 2 in Step 5, parts 3 and 4 in
Step 3, parts 5 and 6 in Step 9, and part 7 in Step
7. This completes the induction step. Hence the
lemma. O

The first part of Theorem 1 is immediate from
part 4 of Statement S,_;. To obtain the second
part of the theorem, observe that a deterministic
implementation can be viewed as a randomized
implementation for which COINSPACE is a single-
ton set. Since Lemma 1 holds for any non-empty
COINSPACE, Statement S,_, is true for any de-
terministic implementation. By parts 4, 5, and 6
of Siatement Sy,_1, in EXEC(Co, Ap—1Zn-11I5_1),
we have: (i) |Sp—1| = n — 1, (ii) p, accesses all
objects in S,_1, and (iii) p, has either not com-
pleted or just completed its first operation on O.
This implies that the solo-finish time complexity
is at least » — 1.

5 Generalization to implemen-
tations of other objects

In the proof of Lemma 1, the following were the
~aly places where we used the fact that the ob-
s+t Leing implemented is an increment object: (i)
In he initial assignment of operation sequences
to the input variables op-list;, (ii) In defining
schedule v in the proof of Claim 1 (see the first
paragraph of that proof just before Fact F1 was
stated), and (iii) in proving Fact F4 in Claim 1.

Thus, to show that Lemma 1 also applies to im-
plementations of other types of objects, all that
is required is to specify the initial values for the
input variables op-list; and define v in Claim 1
so that Fact F4 in that claim is true. In the fol-
lowing, we show that this can be done for modulo
2n counter and n-valued compareéswap. In the
full paper, we will show this also for load-linked
store-conditional bit and atomic snapshot. It fol-
lows that the space complexity of a randomized
implementation or the time complexity of a de-
terministic implementation of these objects from
registers, swap registers, and resettable consensus
objects is at least n — 1.

5.1 modulo 2n counter

For 1 < i < n—1, let op-list; be an infinite se-
quence of increment operations, and op-list, be
an infinite sequence of read operations.

In the proof of Claim 1, let p; be any pro-
cess in {p1,p2,...,Pn—1} — PSET(Z). Let v €
({21} x COINSPACE)* be the shortest schedule such
that there are exactly n more completed incre-
ment operations on O in EXEC(Cp, Agy) than in
EXEC(Cp, Ag). Since the implementation is solo-
finish, v exists.

We now make the following observations:

1. In EXEC(Co, AXk), if a process completes an
increment on O in the last || steps, then it
has no pending increment on (. No process
completes more than one increment on O in
the last |Xx| steps of EXEC(Cop, AxXg).

This follows from the fact that each process
appears at most once in the schedule Xj.

2. For any execution FE, let NP(E) denote the
number of pending increment operations on
O in E. The sum of NP(EXEC(AxX)) and
the number of increments that completed in
the last | x| steps of EXEC(AxX)) is at most
n — 1.
Follows from Observation 1 and the fact that
the schedule AgX. contains at most n — 1
processes.

3. The sum of NP(EXEC(AgyXk)) and the num-
ber of increments that completed in the last
|Zk| steps of EXEC(AgyXy) is at most n — 1.

S

263

Similar to Observation 2.

. For any execution E, let NCI(E) denote the
number of completed increment operations
on O in E. Let NCI(EXEC(Co, Ak)) = v. In
EXEC(Cy, Ay XiIlym), the value res that p,’s
first operation on O (which is a read) returns
is in the range [v,v+ n — 1] mod 2n.

This follows from Proposition 1 and the fol-
lowing two chains of inequalities:

NCI(EXEC(ArXk)) > NCI(EXEC(Ag)) = v

NCI(EXEC(ArXk)) + NP(EXEC(ArZk))

= NCI(ExEC(Ag)) + NP(EXEC(ArXg))+
number of increments that completed in
the last |Z| steps of EXEC(ArXy)

~v+n—1

. [n EXEC(Cy, ApyXilliT), p,’s first operation
on O returns a value in the range [v + n,v +
2n — 1] mod 2n.

This follows from Proposition 1 and the fol-
lowing two chains of inequalities:

NCI(EXEC(AxYZk)) > NCI(EXEC(Agy)) =v+n

NCI(EXEC(AryZk)) + NP(EXEC(AryER))
= NCI(EXEC(AxY)) + NP(EXEC(ApyXr))+
number of increments that completed in
the last |Xx| steps of EXEC(AgyZk)
<(v+n)+(n-1)

From the last two observations, we conclude
that, in EXEC(Co, AgyZxlli), p,’s first operation
on O cannot return res. Hence we have Fact F4
of Claim 1. We conclude that Lemma 1 and hence
Theorem 1 also apply to implementations of mod-
ulo 2n counter.

5.2 n-valued compare&swap

Sec ‘e definition and the properties of n-valued
compare&swap presented in the appendix.

Let «a; denote the operation sequence
read, c€s(1,7),c8s(2,7),...,c8s(n,j). Let § de-
note the operation sequence afaj...o) (o™ de-
notes the sequence a repeated m times). Thus,
each |aj| = n+ 1 and || = n*(n 4+ 1). For

264

all 1 < 72 < n— 1, initialize the input variable
op-list; to the infinite sequence BGS..., and ini-
tialize op-list, to the infinite sequence of read op-
erations.

In the proof of Claim 1, let p; be any process in
{p1,p2;, ..., Pn—1} — PSET(Z). If p; has any pend-
ing operation on O at the end of EXEC(Cy, Ag),
let v/ € ({m} x COINSPACE)* be such that p
just completes that operation in EXEC(Cp, Axy').
Otherwise let v/ = €. Thus, at the end of
EXEC(Co, Axy'), pi has no pending operation on
O, but other processes may. Any such pend-
ing operations have to be from processes in
{p1,---,Pn=1} — {pi}. Furthermore, since each
process appears at most once in X, if a pro-
cess has a pending operation in EXEC(Cp, Axy')
then that process cannot initiate a new operation
on O in the last |Xx| steps of EXEC(Co, Agy'Ek).
Thus, the sum of the number of pending opera-
tions on O in EXEC(Co, Axy’) and the number of
operations on O initiated in the last |X| steps of
EXEC(Co, Axy'Zr) is at most n — 2. Let V be the
set of all v such that a c¢&s(v,*) operation on O
is either pending in EXEC(Cp, Ax7y’) or is initiated
in the last |Xj| steps of EXEC(Cy, Agy'Ek). From
the above, |V] < n —2. Let w € {1,2,...,n}
be such that w € V and w # res. Let 4" €
({p1} x cOINSPACE)* be the shortest schedule such
that, in EXEC(Co, Axy'y"), we have: (i) there are
at least n(n + 1) completed operations on O (by
) in the last |y”| steps, and (ii) the sequence of
n(n + 1) most recent operations of p; on O is a”.
The definition of op-list; and the fact that the im-
plementation is solo-finish imply that 4" exists.
Let v = v'4".

We now make the following observations:

1. In EXEC(Co, Axy'7"), consider the sequence
a? of the n(n+1) most recent operations of p;
on O. This sequence has n? c&s operations,
each of the form c&s(*,w). By Proposition 3,
at least one of these c&s operations succeeds,
returning true. In the following, we will refer
to this successful c&s operation as op. Since
oP is of the form c&s(*,w), just after the
point where op is linearized, the state of O
is w.

In EXEC(Ch, Axv'y"Ek), the state of O never
changes from w after the point at which op

is linearized.

From the previous observation, the state of
O is w just after the point where OP is lin-
carized. O’s state can change subsequently
only if some c&s operation is successful and
is linearized after or. Let oP’ be the first
c&s operation that is linearized after op and
changes the state of O from w. There are
three cases to consider: (i) oP’ is a c&s op-
eration from p; that follows op, (ii) op’ is a
c&s operation which is pending at the end
of EXEC(Co, Axy'), or (iii) oP’ is a c&s op-
eration which is initiated in the last |Xj]
steps of EXEC(Co, Axyy"2k). In Case (i), by
definition of 4" and oP, 0P’ is of the form
~Bs(x,w). So if op’ is successful, the re-
<ulting state is still w, a contradiction. In
Cases (ii) and (iii), by definition of w, op’ =
&s(v, x) for some v # w. Since the state of O
;just before linearizing oP’ is w, it follows that
oP’ cannot be successful, a contradiction.

3. By the previous observation, the state of O at
the end of EXEC(Co, Axy'y"2k) is w. There-
fore, in EXEC(Co, Apy'y"Sillgm), pn’s first
operation on O cannot return res (since by
definition of w, w # res).

Fact F4 that we needed to prove is the same as
the last observation. We conclude that Lemma 1
aud hence Theorem 1 also apply to implementa-
tions of n-valued compare&swap.

A Some types and their prop-
erties

The following are the operations and the sequen-
tial specifications associated with the types con-
sidered in this paper.

e register Supports read and write v opera-
tions, where v is any natural number. The
states are natural numbers. A write v opera-
tion changes the state to v and returns ack,
and a read operation returns the state, with-
out affecting it.

e swap register Supports read and write v op-
erations, where v is any natural number. The

265

states are natural numbers. A write v oper-
ation changes the state to v and returns the
previous value of the state. A read operation
returns the state, without affecting it.

resettable consensus Supports reset and
propose v operations, where v is any natu-
ral number. The states are {L} U N, where
N is the set of natural numbers. The reset
operation changes the state to L and returns
ack. The effect of a propose v operation de-
pends on whether or not the state is L: if the
state is L, propose v changes the state to v
and returns v; if the state is w # L, propose
v returns w without affecting the state.

increment Supports increment and read op-
erations. The states are natural numbers.
The increment operation adds 1 to the state
and returns ack. The read operation returns
the state, without affecting it.

modulo k counter Supports increment and
read operations. The states are 0,1,...,k —
1. The increment operation adds 1 to the
state (modulo k) and returns ack. The read
operation returns the state, without affecting
it.

Proposition 1 Let E be a finite execution
of (p1,..-,Pn; O), where O is a modulo m
counter initialized to 0. Let C be the con-
figuration at the end of E and suppose that
process pn, which has no pending operation
(on O in E), runs alone from C and per-
forms a read operation. In E, if the number
of completed increments is at least v and the
sum of the number of completed increments
and the number of pending increments is al
most v, the value returned by the read of p,
is in the range [v,v'] modm.

k-valued compare&swap Supports the op-
erations read and cés(u,v) for all u,v €
{1,2,...,k}. The states are 1,2,...,k. The
effect of c&s(u,v) depends on whether or not
the state is u: if the state is u, c&s(u,v)
changes the state to v and returns true; oth-
erwise it returns false without affecting the
state.

Here are some observations concerning n-
valued compare&swap.

Proposition 2 Let C be any reachable con-
figuration of (p1,...,pn; O), where O is an
n-valued compareéswap object. Suppose that
process p; has no pending operations on O
in C. If p1 runs alone from C, completing
the sequence read, c&s(1,w), c&s(2,w), ...,
c&s(n,w) of operations, then one of the fol-
lowing is true:

1. One of the c&s operations of p; returns
true.

2. Some operation on O that was pending
in C is linearized after the read and be-
fore the last c&s of p;.

Proof Let v be the value returned by the
read operation by p;. c8s(v,w) is one of the
n c&s operations that p; performs following
the read. Clearly, if this does not return true,
some pending operation must have taken ef-
fect after the read and before the c&s(v, w).
O

Proposition 3 Let C be any reachable con-
figuration of (p1,...,pn;O), where O is an
n-valued compareéswap object. Suppose that
rrocess p; has no pending operations on O in
7. Suppose further that p; runs alone from
C, completing on O the following sequence
¢f operations n times: read, c&s(1,w),
c&s(2,w), ..., c&s(n,w). Then, at least one

of the c8s operations returns true.

Proof Follows by successive application of
Proposition 2 and the observation that there
can be at most n — 1 pending operations on

Oin C. O

References

[AADT93] Y. Afek, H. Attiya, D. Dolev, E. Gafni,

M. Merritt, and N. Shavit. Atomic
snapshots of shared memory. Journal
of the ACM, 40(4):873-890, Septem-

ber 1993.

266

[Asp90]

[FHS93]

[HW90]

[ITT96]

J. Aspnes. Time and space efficient
randomized consensus. In Proceedings
of the 9th ACM Symposium on Prin-
ciples of Distributed Computing, 1990.

F. Fich, M. Herlihy, and N. Shavit.
On the space complexity of random-
ized synchronization. In Proceedings of
the 12th Annual Symposium on Prin-
ciples of Distributed Computing, pages
241-249, August 1993.

M.P. Herlihy and J.M. Wing. Lineariz-
ability: A correctness condition for
concurrent objects. ACM TOPLAS,
12(3):463-492, 1990.

P. Jayanti, K. Tan, and S. Toueg.
Time and space lower bounds for
non-blocking implementations. Tech-
nical report, Department of Com-
puter Science, Cornell University,
1996. Also available by anony-
mous ftp from ftp.cs.cornell.edu
in pub/jayanti/podc96.ps.

