
Time and Space Lower Bounds for

Abstract

Non-blocking Implementations*

(Preliminary version)

Prasad Jayantit King Tan* Sam Toueg*

We show the following time and space complex-

ity lower bounds. Let Z be any randomized non-

bk, ;ng n-process implementation of any object

in 1 from any combination of objects in set 1?,

where A = {increment, store-conditional bit, com-

pare@swap, bounded-counter, single-writer atomic

snapshot, fetch~add}, and B = { resettable con-

sensus, register, swap register}. The space com-

plexity of ~ is at least n – 1. Moreover, if ~ is

deterministic, both its time and space complex-

it y are at least n – 1. These lower bounds hold

even if objects used in the implementation are of

unbounded size.

This improves on some of the C?(@) space com-

plexit~ lower bounds of Fich, Herlihy & Shavit

[FHS93]. It also shows the near optimality of

Dome known wait-free implementations in terms

of space complexity.

*Research partially supported by NSF grants CCR-

9402894 and CCR-9410421, DARPA/NASA Ames grant

NAG-2-593, and Dartmouth College Startup grant.

t Sudikoff Laboratory for Computer Science, Dartmouth

College, Hanover, NH 03755, USA.

t Department of Computer Science, Upson Hall, Cornell

L[niversity, Ithaca, NY 14853, USA.

k mi8eion Wmeked*lherd copieeofell apertofthiu ameriel*
permnel orcle9uoom tmi8greded wbboutfeepmvided tbettbecopic8
emlbotrMde otdi9trib@d forpditot CornmMciel edvedege, tbe cq)y-
~tde, ti@ofk*tihd ti&n~r, d*w.
@en Utet copyright u by Puminkm Of the ACM, h% ‘To-y otbeavm
IOr’epublieh.iopoelaemenweorto

s
mdhrhte t0Wmquue8qecifie

pelmieeiott eadhr b.

PODC’%, Philttdcl “ PA, USA
PO 199(j ACM @89 1~2/9&05..$3.~

1 Introduction

Non-blocking and wait-free implementations of

shared objects have been the subject of much re-

search. While there have been several results on

when such implementations are feasible and when

they are not, results establishing their intrinsic

time and space requirements are relatively scarce,

especially for randomized implement ations. In

this paper, we present a technique by which one

can obtain a linear lower bound on the space com-

plexity of several randomized non-blocking imple-

ment ations. The technique also yields a linear

lower bound on the time complexity of several de-

terministic non-blocking implementations.

Specifically, our results are as follows. Let Z

be any randomized non-blocking n-process im-

plementation of any object in set A from any

combination of objects in set l?, where A =

{increment, store-conditional bit, compare&swa,p,

bounded-counter, single-writer atomic snapshot,

fetch&add}, and B = {resettable consensus, regis-

ter, swap register }. The space complexity of Z is

at least n – 1. Moreover, if Z is deterministic, both

its time and space complexity are at least n – 1.

These lower bounds hold even if objects used in

the implementation are of unbounded size.

Some of the results in this paper improve known

lower boundg, while others are completely new.

In particular, Fich, Herlihy & Shavit proved a

Q(@) space complexity lower bound for a ran-

domized non-blocking n-process implementation

of binary consensus from registers and swap reg-

isters [FHS93]. Using this result, they showed

that any randomized non-blocking n-process im-

plementation of compare&wap, or fetch&add, or

bounded-counter from any combination of regis-

257

ters and swap registers requires Q(@) instances

of such objects. Our results on compare&wap,

fetch f$add, and bounded-counter are stronger in

two ways: (i) They show that at least n – 1 objects

are necessary, and (ii) They show that n – 1 ob-

jects are needed even if the implementation is free

to use resettable consensus objects, besides the

registers and swap registers allowed by [FFfS93].

The results presented in this paper also imply

that the following deterministic implementations

in the literature are almost space-optimal.

1. Afek et al give two wait-free implementa-

tions of a single writer atomic snapshot ob-

ject (consisting of n segments, each one writ-

ten by a different process): one from un-

bounded registers and one from bounded regis-

/ers [AAD+93]. The one that uses unbounded

,egisters is of space complexity n. We prove

a lower bound of n – 1.

2. Aspnes gives a wait-free implementation of a

n-process bounded-counter from a single in-

st ante of a single writer atomic snapshot ob-

ject [Asp90]. Combined with the above re-

sult of Afek et al, this implies that bounded-

counter can be implemented from n un-

bounded registers. We prove that at least n –

1 registers are necessary when the bounded-

counter is a modulo k counter, where k > 2n.

In both cases above, the lower bound of n – 1 is

part icularly appealing because it applies to even

randomized non-blocking implement ations while

the upper bound of n holds for deterministic wait-

free implementations.

In fact, the lower bounds proved in this paper

apply not just to non-blocking implementations,

but to any implementation satisfying a progress

condition that we call soto-finish. Roughly speak-

ing, a deterministic implementation is solo-finish

if at every configuration C in a system execution

the following holds for all processes p: if p runs

alonr from C, p’s operation on the implemented

object will eventually complete. For a randomized

i tilplernent ation to be considered solo-finish we re-

qu ire that for all C and p if p runs alone from C,

there is at least one sequence of outcomes for p’s

coin tosses that will enable p to complete its op-

eration on the implemented object.

It is well-known that a wait-free implement a-

tion is also non-blocking. It is clear that a non-

blocking implementation is also solo-finish. Thus,

the lower bounds that we prove here for solo-finish

implementations also apply to non-blocking and

wait-free implement ations.

2 Road Map

We give an informal model in Section 3. In Sec-

tion 4, we prove a special case of our results,

namely, that the space complexity of any solo-

finish randomized implementation (and the time

complexity of any solo-finish deterministic imple-

mentation) of an increment object from resettable

consensus objects, swap registers and registers is

at least n – 1. This proof illustrates the basic

technique common to all our lower bound proofs.

In Section 5, we extend this result by identifying

the properties of increment that are used in the

proof, and showing that a variety of other objects

(such as comparet%wap, store-conditional bit, and

single-writer atomic snapshot) also possess these

properties, and so the lower bound applies to im-

plementations of these objects as well. In Ap-

pendix A, we present the sequential specifications

of the types of objects considered in this paper.

3 Informal Model

3.1 Type

A type is a tuple (OP, RES, Q, 6), where OP is a

set of operations, RES is a set of responses, Q is

a set of states, and 6 : Q x OP + Q x BES’ is

a function, known as the sequential specification

of the type. Intuitively, if 6(o, op) = (a’, res) it

means the following: applying the operation op to

an object of this type in state a causes the object

to move to state u’ and return the response res.

3.2 Implementation

A randomized implementation of object 0 is spec-

ified by the following elements:

● the type and the initial value of 0 (the initial

value of 0 is a state of its type).

258

a set of objects 01, 0~ (from which ~

is implemented), their types and their initial

values.

a set of processes pl,pn that may access

0.

a set of randomized access procedures

APPIY(Pi, OP, ~), for pi E {PI,.. ., p~} and
op < OP, where OP is the set of operations

associated with the type of 0.

The access procedure Apply(p;, op, 0) specifies

how pi should execute the operation op on 0 in

terms of operations on 01,. ... O~. The value re-

turn{ d by the procedure is deemed to be the re-

sponse from 0. We call 01, 0~ the base ob-

jecis of the implementation. The space complexity

of 1h P implement ation is m.

‘1 !:G~definitions presented in the rest of this sec-

tion are with respect to a system that consists of

processes pl, . . ., Pn ad an implemented object

0 that pl,. . . . pn may access. We denote such a

system by (pi, ..., pn; 0). Each pi has a distin-

guished input variable op-listi. This variable is

initialized (by the user of the system) with any

infinite sequence of operations opl, OPZ, . . . where

each opj is an operation supported by 0. Each pi

performs “the following actions repeatedly forever:

obtain the next operation op from op-listi and ex-

ecute the access procedure Apply(p~, op, 0). Let

comp, denote the sequence of completed opera-

tions and remi denote the sequence of operations

that have not yet been completed. The state of

process pi is specified by (i) compi, (ii) the values

of variables associated with p;’s access procedures,

namely, Apply(pz, op, 0) for all op c OP, and (iii)

pi’s program counter.

A process pi executes an access procedure

Apply(p~, op, 0) in steps. Each step consists of

the following actions, all of which occur together

atomically:

●

●

pi tosses a coin. Let toss-outcome E

~‘O IN SPACE denote the outcome of this toss.

toss-outcome and pi’s present state uniquely

determine an operation oper and a base ob-

ject Oj that oper should be applied to. Ac-

cordingly, pi applies oper to Oj.

●

●

A

(q,

Oj changes state and returns a response. The

new state of Oj and the response are uniquely

determined by the sequential specification of

Oj.

The response from Oj, together with toss-

outcorne and pi’s present state, uniquely de-

termine the new state of pi. It is also possible

for the procedure Apply(pi, op, 0) to termi-

nat e, ret urning some response.

configuration of (pl, pn; 0) is a tuple

. . . ,on, reml,remn. ~1,... , Tin), where o,

is the state of p; and ~j is the state of base ob-

ject Oj. Notice that the initial configuration is

uniquely determined by an assignment of infinite

sequences of operations to the input variables op-

Iisti (1 < i < n). An ezecution of (Pi,..., pqz; O)

is a sequence Co, Cl, C’2, . . . of configurations such

that Co is an initial configuration and C~+l is the

configuration that results when some process per-

forms a step in configuration C~.

A schedule is a finite or an infinite se-

quence ~il, tl], ~iz, tz],. . . where each pi, is frc)m

{PI> . . . ,Pn} and each tj is from COINSPACE. If

C is a configuration and a = ~il, tl], [pi,, tz],. . .

is a schedule, EXEC (C, a) denotes the unique se-

quence C = Co, Cl, C2, . . . of configurations such

that each Ck+l results from Ck when pi~ takes a

step in which the outcome of p~k’s toss is tk. A

configuration C is reachabie if there is some initial

configuration Co and a finite schedule a such that

the configuration at the end of EXEC(CO, cx) is C’.

3.3 Linearizability

An implementation of 0 is /inearizable if in each

execution of (pl, p~; 0), each operation on 0

appears to take effect at some “instant” between

its invocation and response [HW90]. In this pa-

per, we restrict our attention to linearizable im-

plementations.

3.4 Solo-finish: a progress property

An implementation whose access procedures never

terminate is trivially linearizable. Such an imple-

ment ation, however, can hardly be useful. Thus,

in addition to linearizability, implementations of-

ten guarantee certain progress properties. lVait-

freedom and non-blocking are the progress coln-

259

ditions that received the most attention recently.

Here we state a new, weaker progress property

that we call “solo-finish”. Informally, an im-

pler;,ent ation has solo-finish property if for each

configuration C’ and each process p the following

holds: if p runs alone from configuration C, then

there is at least one sequence of outcomes for p’s

coin tosses that will enable p to complete an op-

eration on the implemented object.

More formally, a randomized implementation oj

0 is solo-finish if, for all reachable configurations

C and all processes pi, there is some finite schedule

c1 = ~i, tl], 1.Pi>~21,. . . . ~i, tk] such that p; com-

pletes an operation on 0 during EXEC(C, a).

The lower bounds proved in this paper apply

to solo-finish (and therefore to non-blocking and

wait free) implement ations.

3.5 Deterministic time complexity

A deterministic implementation is a special

case of a randomized implementation for which

COINSPACE, the set of possible outcomes for a

coin toss, is a singleton set. The solo-finish time

complexity of a deterministic implementation of

O is at least k if for some reachable configura-

tion C’ and process pi the following holds: for all

schedules a of length k — 1 that contain only pi,

pi does not complete an operation on 0 during

Ex?.c(c, a).

3.6 Notation

For a schedule a, [al denotes its length. We say

a contains process p if, for some t,~, t]is in the

sequence a. PSET(CI) denotes the set of all pro-

cesses p such that a contains p. If X is a set, E*

denotes the set of all finite sequences of elements

from E. The empty sequence, denoted by c, is a

member of X“ for all sets E (even if Z = 0, the

empty set).

4 The lower bound

We illustrate our lower bound technique by prov-

ing that the space complexity of any randomized

solo-finish implement ation and the time complex-

ity of any deterministic solo-finish implementa-

tion of an increment object, shared by processes

PI,. . ., Pn, are both at least n — 1 if base objects

are restricted to be (any combination of) regis-

ters, swap registers, and resettable consensus ob-

jects. (The specifications of these various objects

are presented in the appendix.) In the next sec-

tion, we explain how this technique generalizes to

implement ations of other types of objects.

Theorem 1 Let O be a randomized implementa-

tion of an increment object, initialized to O, from

registers, swap registers, and resettable consensus

objects. Let pl,. . . . p. be the processes that may

access D. If the implementation is linearizable

and solo-finish:

1. Its space complexity is at least n – 1.

2. If the implementation is deterministic, its

solo-finish time complexity is at least n – 1.

Below, we prove a key lemma from which both

parts of the theorem will be immediate.1 Let Co

be the initial configuration of (P1,. . . . p~; 0) cor-

responding to the following assignment of oper-

ation sequences to the input variables: for 1 <

i<n — 1, op-listi is an infinite sequence of in-

crement operations, and op-listn is an infinite se-

quence of read operations. Let COINSPACE be any

non-empty set.

Lemma lLetnzl. Forallk, O< k<n–1,

Statement Sk, described in Figure 1, is true.

Proof By induction. Below, we let sk : j denote

the jt~ part of Statement sk.

Base case. We show that SO is true.

Let Ao=Zo=IIo =eandlet$O =0. Itis

easy to verify that all of So : 1 – 7 are true. Hence

the base case.

Induction step. Suppose O < k < n – 2 and

sk iS true. We now show that Sk+l is true.

Let Ak, ~k, ~k, t$/c be so defined as to make

Statement S~ true. We will demonstrate the ex-

istence of schedules ~k+l, ~k+l, tk+l] ~~k+I and a

base object B~+l such that for Ak+l = Ak~k+l,

~k+l = bk+l, tk+l]% ~k+l = ~kmk+~ and

$~+1 = Sk U {B/$+1}, Statement Sk+l is true. We

will do this through the following steps.

1There is a simpler proof if we are interested only in the

space complexity.

260

There are schedules Ak, ~k, Hk, and a set $~ of base objects such that the following hold:

1. The schedules, Ak and ~~ do not contain pn: i.e., Ak, ~k c ({pi, pz, . , ., pn–l} x CoIN SPACE)*.

2. For k = O, Ek = c. For k ~ 1, ~k is of the form ~~~, tk]/J%~_l ,tk-1] . . .[p~l, tl], where p~,,. . . ,p~~ are

distinct processes.

3. ~k ~ ({~n} X COINSPACE)*.

4. Ic$kl = k.

5. Sk is exactly the set of base objects that p. accesses in EXEC(CO, Ak2~IIk).

6. In EXEC(C’O, &,X&), pn’s first operation on O has either not completed or just completed.

7. Let pk = {pi, pz,... , P~-1 } – PSET(~k). Let 7 be any Schedule in (~k x COIN SPACE)*. The state

of each base object in Sk at the end of EXEC(Co, AkZk) is the same as its state at the end of

EXEc(C(), A~~~k).

Figure 1: Statement sk

1. By sk : 6, in EXEC(Co, A@@k), pn’s first

operation on 0 has either not completed or

just completed. Let m G ({pn} x COINSPACE)*

be such that pn just completes its first opera-

tion on 0 in EXEC(CO, AkXkIIkr), returning

some value Tes. Since the implementation is

solo-finish, r exists.

2. Claim 1 In EXEC(CO, A@@k7r), pn ac-

cesses a base object not in Sk.

Proof Suppose the claim is false. Let pl

be any process in pk = {Pi, P2,. . . ,Pn-1} –

PSET(~k). Since [PSET(~k)l = k and k <

n – 2, Pk is non-empty and we can pick pl.

Let -y c ({Pi} x COINSPACE)* be such that

there are at least res + 1 more completed in-

crement operations on ~ in EXEC(Co, Ak~)

than in EXEC(CO, Ak). Since the implemen-

tation is solo-finish, -y exists. We now have

the following facts.

i 1. The state of each base object in

Sk at the end of EXEC(CO, A@k) iS

the same as its state at the end of

EXEC(CC), Ak~~k).

This follows from part sk :7 of the in-

duction hypothesis.

F2. The exe-

CUtiOIIS El = EXEC(CO,, Ak~k~k?r) and

J?2 = EXEC(CO, Ak’y~k~kT) are indis-

tinguishable to pn. (That is, pn’s state

is the same at the end of 111 and 122.)

This follows from: (i) the schedules

Ak~k and Ak’y~k do not contain p.,

(ii) the schedule ~k= contains only p~,

(iii) the only base objects accessed by

pn in El are the ones in $k (by our as-

sumption that Claim 1 is false), and (iv)

the states of base objects in Sk are the

same at the end of EXEC(CO, Ak~k) and

EXEC(Co, Ak-yXk) (this is Fl).

F3. In ExEc(Co, Ak~~k~km), pn’s first op-

eration on O completes and returns res.

This follows from F2 and the definition

of x in Step 1.

F4. In EXEC(CO, Ak7~k~kr), pn’s first op-

eration on 0 cannot return res.

By definition of ~, the number of com-

pleted increments in EXEC(CO, Ak7~~)

is at least res + 1. Since the implemen-

t ation is linearizable, it follows that pn’s

first operation on 0 (which is a read op-

eration) cannot return res.

261

3.

4.

F3 and F4 are contradictory. Hence the

claim. ❑

Let ~k+~ be the shortest prefix of K such that

in EXEC(~o, Ak~k~k7Tk+l) f3n aCCWSW a base

object not in ~~. (By Claim 1, Xk+l exist s.)

Let ~k+l denote this base object. Define

~~+1 = $k U {~k+l} and ~~+1 = H~?r~+l .

Since \~kl = k and ~k+l @ $k, we have

I$k+l[= k + 1. Since ~k and ~k+l are

both from ({p.} x COINSPACE)*, we have

Hk+~ E ({p.} x COINSPACE)*. Thus, we have

established parts Sk+l :3 and S’k+l :4 of the

induction step.

CONSTRUCTION We will now define sched-

des ~k+l and ~~,+,, fk+l] based on the type

of ~k+l .

~.;ase 1 B~+l is a register or a swap register.

Subcase la There is some non-empty

schedule ~ E (?k x COINSPACE)* such

that the last step in EXEC(CO, Ak~) is a

write to l?~+l.

Define ~k+l and [pi~+,, t~+l] so that ~ =

~k+l .[Pi,+, , h+ll.

Subcase lb There is no such A.

Define ~~+1 to be e and ~~,+,, t~+l] to

be any element of ~k X COINSPACE.

Case 2 Bk+l is a resettable consensus object.

Sub case 2a There is some non-empty

schedule ~ E (~k x COINSPACE)* such

that the last step in EXEC(Co, Ak~) is a

reset operation on l?~+l.

Define ~k+l and [p~,+,, tk+l] so that ~ =

~k+l.bi,+l , ~k+l].

Subcase 2b There is no such A. How-

ever, there is some non-empty schedule

A’ E (~k x COINSPACE)* such that the

bt Step in EXEC(CO, Ak~’) kI a propose

operation on llk+l.

Define }k+l to be ~’ and ki,+l, %+1] to

be ally &3111eIIt Of ~k X COINSPACE.

Subcase 2C Neither ~ nor At exists.

Define ~k+l to be c and ~i,+l, tk+l] to

be any element Of ~k X COINSPACE.

5.

6.

7<

8.

Define Ak+l as Ak~k+l and define ~~+1

as [p;~+j, tk+l]~k. By definition, ~~+1 G

(Tk x COINSPACE)* and [p~,+l, tk+l] ● ~k x

COINSPACE. From this and the induc-

tion hypothesis, we have A~+l, ~k+l E

({P17Pz>”” .?Pw-1} x COINSPACE)*. This es-
tablishes part S~+l :1 of the induction step.

By induction hypothesis, Z. is c and 2~

is of the fOrm ~~~, tk][pik_l, tk–1] . . . ~il, tl]

(for k > 1), where pi,,... ,pik are distinct

processes. Furthermore, since [pik+l, ~k+l] G

Pk X COINSPACE and pk does not include any

process frOm PS ET(~k), it fOllOWS that ~k+l

w+,, tk+l] . . .bil, tl], whereis of the form ~

pil, . . . , pi~+l are distinct processes. This es-

tablishes part S~+l :2 of the induction step.

Claim 2 Let Pk+l = {pi, p2,. . . ,p._l} –

PsET(~k+l). Let ~ be any schedule from

(P~+l x COINSPACE)*. Z’herz we have:

(a) The state of Bk+l is the same at

the end of EXEC(CO, Ak~k+lki,+l, tk+l])

and EXEC(CO, Ak~k+17[Pi~+l >tk+l]).

(b) The state of Bk+l is the same at the end

of EXEC(CO, Ak~k+l~ik+l , tk+l]~k) and

EXEC(CO, Ak~k+17k&+,, tk+l]~k).

(c) For each base object B E Sk, B‘s state is

the same at the end of EXEC(CO, AkZk),

EXEC(CO, Ak~k+l~ik+l , tk+l]~k), and

EXEC(6’0, Ak~k+17~&+,, tk+l]~k).

Proof The proof is based on the construc-

tion. See [JTT96] for details. •1

part Sk+l :7 of the induction step is immedi-

ate from parts (b) and (c) of Claim 2 and our

earlier definitions of A~+l, ~k+l, and ~k+l

as Ak&+l, bi~+l, tk+l]~k, and Sk U {Bk+l},

respectively.

Recall the definition of ~k+l from Steps 1 and

3, and the statement of Claim 1.

claim 3 (a,) sk U {Bk+~ } is ezactiy the

(b)

set of base objects that pn accesses in

EXEC(CI), Ak+l~k+l~k7Tk+l).

h EXEC(@ &+l~k+l~kKk+l), P. ‘S

jirst operation on 0 has either not com-

pleted or just completed.

262

9.

l%oo.f Observe that (1) EXEC(CO, A~X~) and

EXEC(CO, ffk+l ~k+l) are indistinguishable to

p. (SinCe neither Ak~~ nor Ak+l ~k+l con-

tains pn), and (2) For all ~ 6 Sk, ~’s state

is the same at the end of EXEC(CO, A@k)

and EXEC(C’O, &+l~k+l) (this is part (c)

of Claim 2). By definition of ~k+l, in

ExEC(Co, Ak~~Hk~k+l), it iS Only in the laSt

step that pn accesses a base object not in Sk,

and pn’s first operation on 0 has either not

completed or just completed. This, together

with Observations (1) and (2) stated above,

implies the claim. ❑

The parts Sk+l :5 and S~+l :6 of the induc-

tion step are immediate from Claim 3 and our

earlier definition of ~k+l as Hkrk+l.

We have proved all the seven parts of St atement

Sk,.“ parts 1 and 2 in Step 5, parts 3 and 4 in

Step 3, parts 5 and 6 in Step 9, and part 7 in Step

7. This completes the induction step. Hence the

lemma. •1

The first part of Theorem 1 is immediate from

part 4 of Statement S’._l. To obtain the second

part of the theorem, observe that a deterministic

implementation can be viewed as a randomized

implement ation for which co I Ns PAC E is a single-

ton set. Since Lemma 1 holds for any non-empty

COIN SPACE, Statement Sri-l is true for any de-

terministic implementation. By parts 4, 5, and 6

of Statement Sri-l, in EXEC(CO, An_lXn_lII~_l),

we have: (i) [Sn–l I = n – 1, (ii) pn accesses all

objects in Sn_l, and (iii) pn has either not com-

pleted or just completed its first operation on 0.

This implies that the solo-finish time complexity

is at least n – 1.

5 Generalization to implemen-

tations of other objects

In the proof of Lemma 1, the following were the

,ml: places where we used the fact that the ob-

~.~.f !;~~ngimplemented is an increment object: (i)

in ,,he initial assignment of operation sequences

to Lhe input variables op-listi, (ii) In defining

schedule ~ in the proof of Claim 1 (see the first

paragraph of that proof just before Fact F1 was

stated), and (iii) in proving Fact F4 in Claim 1.

Thus, to show that Lemma 1 also applies to im-

plementations of other types of objects, all that

is required is to specify the initial values for the

input variables op-listi and define -y in Claim 1

so that Fact F4 in that claim is true. In the fol-

lowing, we show that this can be done for modulo

2n counter and n-valued comparet%wap. In the

full paper, we will show this also for load-linked

store-conditional bit and atomic snapshot. It fol-

lows that the space complexity of a randomized

implementation or the time complexity of a de-

terministic implementation of these objects from

registers, swap registers, and resett able consensus

objects is at least n – 1.

5.1 modulo 2n counter

For 1 < i < n – 1, let op-hstj be an infinite se-

quence of increment operations, and op-listn be

an infinite sequence of read operations.

In the proof of Claim 1, let pl be any prcj-

cess in {pi, pz, Pn–1} – pSET(~k). Let 7 ~

({pz} x COINSPACE)* be the shortest schedule such

that there are exactly n more completed incre-

ment operations on 0 in EXEC(CO, Ak~) than in

EXEC(Co, Ak). Since the implementation is SOICE

finish, -y exists.

We now make the following observations:

1.

2.

3.

In EXEC(Co, Ak~k), if a process completes an

increment on ~ in the last I~kl steps, then it

has no pending increment on 0. No process

completes more than one increment on 0 in

the laSt l~kl stepS of EXEC(Co, lfk~k).

This follows from the fact that each process

appears at most once in the schedule ~k.

For any execution ~, let NP(JT) denote the

number of pending increment operations on

~ in ~. The sum of NP(EXEC(Ak~k)) and

the number of increments that completed in

the laSt 1~~[StepS Of EXEC(Ak~k) iS at mO~t

n–l.

Follows from Observation 1 and the fact that

the schedule Ak~k contains at most n – 1

processes.

The sum of NP(EXEC(Aky~k)) and the num-

ber of increments that completed in the last

l~kl Steps Of EXEC(Ak’y~k) iS at nlOSt ?2.-1.

. . . ,....

263

4.

5.

Similar to Observation 2.

For any execution 11, let NCI(13) denote the

number of completed increment operations

on 0 in 12. Let NCI(EXEC(CO, Ak)) = v. In

EXEC(C’O, AkyEkIIkr), the value res that pn’s

first operation on 0 (which is a read) returns

is in the range [v, o + n – 1] mod 2n.

This follows from Proposition 1 and the fol-

lowing two chains of inequalities:

NCI(EXEC(A~Z~)) > NCI(EXEC(A~)) = w

NCI(EXEC(A~Z~)) + NP(EXEC(A~Ek))

= NCI(EXEC(A~)) + NP(ExEc(A&))+

number of increments that completed in

the last]Xkl steps of EXEC(A~x~)

:,v+n–1

fn EXEC(Co, A~-yZ~II~m), pn’s first operation

on 0 returns a value in the range [v + n, v +

2n – 1] mod 2n.

This follows from Proposition 1 and the fol-

lowing two chains of inequalities:

NCI(EXEC(A~~Z~)) > NCI(EXEC(A~~)) = v + n

NCI(EXEC(A~-Y2~)) + NP(ExEc(A~~Z~))

= NCI(EXEC(A~~)) + NP(ExEc(A~vZ~))+

number of increments that completed in

the last lE~l steps of EXEC(A~YX~)

<(v+n)+(n–1)

From the last two observations, we conclude

that, in EXEC(C’O, A~~X~II~m), p~’s first operation

on 0 cannot return Tes. Hence we have Fact F4

of Claim 1. We conclude that Lemma 1 and hence

Theorem 1 also apply to implementations of rnod-

U1O2n counter.

5.2 n-valued comparekswap

See ! !:e definition and the properties of n-valued

compa.re&swap presented in the appendix.

Let aj denote the operation sequence

read, ct%(l, j), c/%(2, j),..., ct?s(n,j). Let ~ de-

note the operation sequence a~a$. . . C# (am de-

notes the sequence a repeated m times). Thus,

each Iaj] = n + 1 and l/31 = n2(n + 1). For

all 1 < i < n – 1, initialize the input variable

op-listi to the infinite sequence /3/3~ and ini-

tialize op-listn to the infinite sequence of read op-

erations.

In the proof of Claim 1, let pl be any process in

{P17P27”””>Pn-1 } - PSET(Zk). If pl has any pend-

ing operation on 0 at the end of EXEC(CO, Ak),

let # E ({pl} x COINSPACE)* be such that P1

just completes that operation in EXEC(CO, A~-y’).

Otherwise let y’ = e. Thus, at the end of

EXEC(CO, A~-y’), P1 has no pending operation on

0, but other processes may. Any such pend-

ing operations have to be from processes in

{PI>... , P~-1} – {Pi} Furthermore, since each
process appears at most once in Ek, if a pro-

cess has a pending operation in EXEC(CO, A~#)

then that process cannot initiate a new operation

on 0 in the last [Zkl steps of EXEC(CO, A~y’Z~).

Thus, the sum of the number of pending opera-

tions on 0 in EXEC(CO, A~#) and the number of

operations on 0 initiated in the last IZk I steps of

EXEC(CO, A~-@~) is at most n – 2. Let V be the

set of all v such that a C6S(V, x) operation on 0

is either pending in EXEC(CO, Ak-y’) or is initiated

in the last 1~~] steps of EXEC(CO, A~-@~). From

the above, IVI < n – 2. Let w E {1,2,..., n}

be such that w # V and w # res. Let ~“ G

({Pi} x ColNsPACE)* be the shortest schedule such

that, in EXEC(CO, Ak-y’-y”), we have: (i) there are

at least n(n + 1) completed operations on 0 (by

P~) in the last Iv”l steps, and (ii) the sequence of

n(n + 1) most recent operations of pl on 0 is a:.

The definition of op-listl and the fact that the im-

plementation is solo-finish imply that ~“ exists.

Let ~ = ~’-/’.

We now make the following observations:

1. In EXEC(CO, Ak~’-/’), consider the sequence

a: of the n(n+ 1) most recent operations of pl

on 0. This sequence has nz c&s operations,

each of the form c&s(*, w). By Proposition 3,

at least one of these c&s operations succeeds,

ret urning true. In the following, we will refer

to this successful c&s operation as OP. Since

OP is of the form o%(x, w), just after the

point where OP is linearized, the state of 0

is w.

2. In EXEC(C’O, ffk~’’y’’~k), the state of 0 never

changes from w after the point at which o P

264

3.

is linearized.

From the previous observation, the state of

0 is w just after the point where OP is lin-

earized. 0’s state can change subsequently

only if some c&s operation is successful and

is linearized after OP. Let OP’ be the first

c&s operation that is linearized after OP and

changes the state of 0 from w. There are

three cases to consider: (i) OP’ is a c&s op-

eration from pl that follows o P, (ii) OP’ is a

c&s operation which is pending at the end

of EXEC(CO, Ak-y’), or (iii) OP’ is a c&s op-

eration which is initiated in the last 1.Zk/

steps of EXEC(L’O, Ak#~’’Zk). In Case (i), by

definition of -y” and OP, OP’ is of the form

.:@s(*, w). So if OP’ is successful, the re-

..tllting state is still W, a contradiction. In

Jases (ii) and (iii), by definition of w, OP’ =

. +%(v, *) for some v # w. Since the state of 0

just before linearizing OP’ is w, it follows that

OP’ cannot be successful, a contradiction.

By the previous observation, the state of 0 at

the end of EXEC(Co, Ak~’-Y’’Xlk) is w. There-

fore, in EXEC(CO, Aky’-I’’X~II~T), 2.%’s first

operation on 0 cannot return res (since by

definition of w, w # res).

Fact F4 that we needed to prove is the same as

the last observation. We conclude that Lemma 1

and hence Theorem 1 also apply to implementa-

tions of n-valued comparei%wap.

A Some types and their prop-

ert ies

The following are the operations and the sequen-

tial specifications associated with the types con-

sidered in this paper.

●

●

register Supports read and write v opera-

tions, where v is any natural number. The

states are natural numbers. A write v opera-

tion changes the state to TJand returns ack,

and a read operation returns the state, with-

out affecting it.

swap register Supports read and write v op-

erations, where v is any natural number. The

●

●

●

states are natural numbers. A write v oper-

ation changes the state to v and returns the

previous value oft he state. A read operation

returns the state, without affecting it.

resettable consensus Supports reset and

propose v operations, where v is any natu-

ral number. The states are {1} U N, where

N is the set of natural numbers. The reset

operation changes the state to 1 and returns

ack. The effect of a propose v operation de-

pends on whether or not the state is 1: if the

state is 1, propose v changes the state to v

and returns v; if the state is w # 1, propose

v returns w without affecting the state.

increment Supports increment and read op-

erations. The states are natural numbers.

The increment operation adds 1 to the state

and returns ack. The read operation returns

the state, without affecting it.

modulo k counter Supports increment and

read operations. The states are O, 1, k –

1. The increment operation adds 1 to the

state (modulo k) and returns ack. The read

operation returns the state, without affecting

it.

Proposition 1 Let E be a jinite execution

of (pi, . . . , p.; 0), where Q is a modulo m

counter initialized to O. Let C be the con-

figuration at the end of E and suppose thai!

process pn, which has no pending operation

(on 0 in E), runs alone from C and per-

forms a read operation. In E, if the number

of completed increments is at least v and the

sum of the number of completed increments

and the number of pending increments is at

most v’, the value returned by the read of p~

is in the range [v, v! mod m.

k-valued comparet%wap Supports the oP-. .
erations read and C8S(U, v) for all u, v 6

{1,2 ,..., k}. The states are 1,2,. ... k. The

effect of c&s(u, v) depends on whether or not

the state is u: if the state is u, ct%s(u, v)

changes the tit ate to v and returns true; oth-

erwise it returns false without affecting the

state.

265

Here are some observations concerning n-

valued compare&swap.

Proposition 2 Let C be any reachable con-

figuration of (pl,..., pn; 0), where 0 is an

n-valued comparel%wap object. Suppose that

process pl has no pending operations on 0

in C’. If pl runs alone from C, completing

the sequence read, c&s(l, w), c&s(2, w),

c&s(n, w) of operations, then one of the fol-

lowing is true:

1. One of the c& operations of pl returns

true.

2. Some operation on 0 that was pending

in C’ is linearized after the read and be-

fore the last C8’S of pl.

Proof Let v be the value returned by the

read operation by pl. ct%(v, w) is one of the

n c&s operations that pl performs following

the read. Clearly, if this does not return true,

some pending operation must have taken ef-

fect after the read and before the c&s(v, w).

❑

Proposition 3 Let C be any reachable con-

figuration of (pl,. . . . pn; 0), where 0 is an

n-valued compare&wap object. Suppose that

[:rocess pl has no pending operations on 0 in

Y. Suppose further that pi runs alone from

L’, completing on 0 the following sequence

cf operations n times: read, c&s(l, w),

c&s(2, w), . . . , c&s(n, w). Then, at least one

of the CBS operations returns true.

Proof Follows by successive application of

Proposition 2 and the observation that there

can be at most n – 1 pending operations on

Q in C. •1

References

[Asp90] J. Aspnes. Time and space efficient

randomized consensus. In Proceedings

of the 9th ACM Symposium on Prin-

ciples of Distributed Computing, 1990.

[FHS93] F. Fich, M. Herlihy, and N. Shavit.

On the space complexity of random-

ized synchronization. In Proceedings of

the 12th Annual Symposium on Prin-

ciples of Distributed Computing, pages

241-249, August 1993.

[HW90] M.P. Herlihy and J.M. Wing. Lineariz-

ability: A correctness condition for

concurrent objects. A Ckf TOPLAS,

12(3):463-492, 1990.

[JTT96] P. Jayanti, K. Tan, and S. Toueg.

Time and space lower bounds for

non-blocking implement at ions. Tech-

nical report, Department of Com-

puter Science, Cornell University,

1996. Also available by anony-

mous ftp from ftp. cs. cornell. edu

in pub/j ayanti/podc96. ps.

[\ \D+93] Y. .k!ek, H. Attiya, D. Dolev, E. Gafni,

M. Merritt, and N. Shavit. Atomic

snapshots of shared memory. Journal

of the ACM, 40(4):873–890, Septem-

ber 1993.

266

