
Notes on finite fields

James Aspnes

December 13, 2010

Our goal here is to find computationally-useful structures that act enough
like the rational numbers Q or the real numbers R that we can do arithmetic in
them that are small enough that we can describe any element of the structure
uniquely with a finite number of bits. Such structures are called finite fields.

An example of a finite field is Zp, the integers mod p (see ModularArith-
metic). These finite fields are inconvenient for computers, which like to count
in bits and prefer numbers that look like 2n to horrible nasty primes. So we’d
really like finite fields of size 2n for various n, particularly if the operations of
addition, multiplication, etc. have a cheap implementation in terms of sequences
of bits. To get these, we will show how to construct a finite filed of size pn for
any prime p and positive integer n, and then let p = 2.

1 A magic trick

We will start with a magic trick. Suppose we want to generate a long sequence
of bits that are hard to predict. One way to do this is using a mechanism known
as a linear-feedback shift register (LFSR). There are many variants of LFSRs.
Here is one that generates a sequence that repeats every 15 bits by keeping track
of 4 bits of state, which we think of as a binary number r3r2r1r0.

To generate each new bit, we execute the following algorithm:

1. Rotate the bits of r left, to get a new number r2r1r0r3.

2. If the former leftmost bit was 1, flip the new leftmost bit.

3. Output the rightmost bit.

Here is the algorithm in action, starting with r = 0001:

1

http://pine.cs.yale.edu/pinewiki/ModularArithmetic
http://pine.cs.yale.edu/pinewiki/ModularArithmetic
http://en.wikipedia.org/linear-feedback shift register


r rotated r rotated r after flip output
0001 0010 0010 0
0010 0100 0100 0
0100 1000 1000 0
1000 0001 1001 1
1001 0011 1011 1
1011 0111 1111 1
1111 1111 0111 1
0111 1110 1110 0
1110 1101 0101 1
0101 1010 1010 0
1010 0101 1101 1
1101 1011 0011 1
0011 0110 0110 0
0110 1100 1100 0
1100 1001 0001 1
0001 0010 0010 0

After 15 steps, we get back to 0001, having passed through all possible 4-bit
values except 0000. The output sequence 000111101011001... has the property
that every 4-bit sequence except 0000 appears starting at one of the 15 positions,
meaning that after seeing any 3 bits (except 000), both bits are equally likely to
be the next bit in the sequence. We thus get a sequence that is almost as long
as possible given we have only 24 possible states, that is highly unpredictable,
and that is cheap to generate. So unpredictable and cheap, in fact, that the
governments of both the United States and Russia operate networks of orbital
satellites that beam microwaves into our brains carrying signals generated by
linear-feedback shift registers very much like this one. Similar devices are em-
bedded at the heart of every modern computer, scrambling all communications
between the motherboard and PCI cards to reduce the likelihood of accidental
eavesdropping.

What horrifying deep voodoo makes this work?

2 Fields and rings

A field is a set F together with two operations + and · that behave like addition
and multiplication in the rationals or real numbers. Formally, this means that:

1. Addition is associative: (x + y) + z = x + (y + z) for all x, y, z in F .

2. There is an additive identity 0 such that 0 + x = x + 0 = x for all x in
F .

3. Every x in F has an additive inverse −x such that x+(−x) = (−x)+x =
0.

4. Addition is commutative: x + y = y + x for all x, y in F .

2

http://en.wikipedia.org/Global positioning system
http://en.wikipedia.org/GLONASS


5. Multiplication distributes over addition: x · (y + z) = (x · y + x · z) and
(y + z) · x = (y · x + z · x) for all x, y, z in F .

6. Multiplication is associative: (x · y) · z = x · (y · z) for all x, y, z in F .

7. There is a multiplicative identity 1 such that 1 · x = x · 1 = x for all x
in F .

8. Multiplication is commutative: x · y = y · x for all x, y in F .

9. Every x in F −{0} has a multiplicative inverse x−1 such that x ·x−1 =
x−1 · x = 1.

Some structures fail to satisfy all of these axioms but are still interesting
enough to be given names. A structure that satisfies 1–3 is called a group;
1–4 is an abelian group; 1–7 is a ring; 1–8 is a commutative ring. In the
case of groups and abelian groups there is only one operation +. There are
also more exotic names for structures satisfying other subsets of the axioms; see
AbstractAlgebra.

Some examples of fields: R, Q, C, Zp where p is prime. We will be particu-
larly interested in Zp, since we are looking for finite fields that can fit inside a
computer.

If (F, +, ·) looks like a field except that multiplication isn’t necessarily com-
mutative and some nonzero elements might not have inverses, then it’s a ring
(or a commutative ring if multiplication is commutative). The integers Z are
an example of a commutative ring, as is Zm for m > 1. Square matrices of fixed
dimension greater than 1 are an example of a non-commutative ring.

3 Polynomials over a field

Any field F generates a polynomial ring F [x] consisting of all polynomials in
the variable x with coefficients in F . For example, if F = Q, some elements
of Q[x] are 3/5, (22/7)x2 + 12, 9003x417 − (32/3)x4 + x2, etc. Addition and
multiplication are done exactly as you’d expect, by applying the distributive law
and combining like terms: (x + 1) · (x2 + 3/5) = x · x2 + x · (3/5) + x2 + (3/5) =
x3 + x2 + (3/5)x + (3/5).

The degree deg(p) of a polynomial p in F [x] is the exponent on the leading
term, the term with a nonzero coefficient that has the largest exponent. Exam-
ples: deg(x2 + 1) = 2, deg(17) = 0. For 0, which doesn’t have any terms with
nonzero coefficients, the degree is taken to be −∞. Degrees add when multiply-
ing polynomials: deg((x2 + 1)(x + 5)) = deg(x2 + 1) + deg(x + 5) = 2 + 1 = 3;
this is just a consequence of the leading terms in the polynomials we are mul-
tiplying producing the leading term of the new polynomial. For addition, we
have deg(p + q) ≤ max(deg(p), deg(q)), but we can’t guarantee equality (maybe
the leading terms cancel).

Because F [x] is a ring, we can’t do division the way we do it in a field like
R, but we can do division the way we do it in a ring like Z, leaving a remainder.
The equivalent of the integer division algorithm for Z is:

3

http://pine.cs.yale.edu/pinewiki/AbstractAlgebra


Division algorithm for polynomials Given a polynomial f and a nonzero
polynomial g in F [x], there are unique polynomials q and r such that f = q ·g+r
and deg(r) < deg(g).

The essential idea is that we can find q and r using the same process of long
division as we use for integers. For example, in Q[x]:

x - 1
_______________

x+2 ) x^2 + x + 5
x^2 + 2x
--------

-x + 5
-x + -5
=======

10

From this we get x2 + x + 5 = (x + 2)(x − 1) + 10, with deg(10) = 0 <
deg(x + 2) = 1. We are going to use this later to define finite fields by taking
F [x] modulo some well-chosen polynomial, analogously to the way we can turn
Z (a ring) into a field Zp by taking quotients mod p.

4 Algebraic field extensions

Given a field F , we can make a bigger field by adding in extra elements that
behave in a well-defined and consistent way. An example of this is the extension
of the real numbers R to the complex numbers C by adding i.

The general name for this trick is algebraic field extension and it works
by first constructing the ring of polynomials F [x] and then smashing it down
into a field by taking remainders modulo some fixed polynomial p(x). For this
to work, the polynomial has to to be irreducible, which mean that p(x) = 0
if and only if x = 0, or equivalently that p can’t be factored as (x + a)p′ for
some a and p′ (which makes irreducibility sort of like being prime, and makes
this construction sort of like the construction of Zp).

The fact that the resulting object is a field follows from inheriting all the
commutative ring properties from F [x], plus getting multiplicative inverses for
essentially the same reason as in Zp: we can find them using the extended
Euclidean algorithm applied to polynomials instead of integers (we won’t prove
this).

In the case of the complex numbers C, the construction is C = R[i]/(i2 + 1).
Because i2 + 1 = 0 has no solution i ∈ R, this makes i2 + 1 an irreducible
polynomial. An element of C is then a degree-1 or less polynomial in R[i],
because these are the only polynomials that survive taking the remainder mod
i2 + 1 intact.

If you’ve used complex numbers before, you were probably taught to multiply
them using the rule i2 = −1, which is a rewriting of i2+1 = 0. This is equivalent
to taking remainders: (i+1)(i+2) = (i2 +3i+2) = 1 ·(i2 +1)+(3i+1) = 3i+1.

4



The same thing works for other fields and other irreducible polynomials. For
example, in Z2, the polynomial x2 + x + 1 is irreducible, because x2 + x + 1 = 0
has no solution (try plugging in 0 and 1 to see). So we can construct a new
finite field Z2[x]/(x2 + x + 1) whose elements are polynomials with coefficients
in Z2 with all operations done modulo x2 + x + 1.

Addition in Z2[x]/(x2 + x + 1) looks like vector addition:1 (x + 1) + (x +
1) = 0 · x + 0 = 0, (x + 1) + x = 1, (1) + (x) = (x + 1). Multiplication in
Z2[x]/(x2 + x + 1) works by first multiplying the polynomials and taking the
remainder mod (x2 + x + 1): (x + 1) · (x + 1) = x2 + 1 = 1 · (x2 + x + 1) + x = x.
If you don’t want to take remainders, you can instead substitute x + 1 for any
occurrence of x2 (just like substituting −1 for i2 in C), since x2 + x + 1 = 0
implies x2 = −x− 1 = x + 1 (since −1 = 1 in Z2).

The full multiplication table for this field looks like this:

0 1 x x + 1
0 0 0 0 0
1 0 1 x x + 1
x 0 x x + 1 1

x + 1 0 x + 1 1 x

We can see that every nonzero element has an inverse by looking for ones in
the table; e.g. 1 · 1 = 1 means 1 is its own inverse and x · (x + 1) = x2 + x = 1
means that x and x + 1 are inverses of each other.

Here’s the same thing for Z2[x]/(x3 + x + 1):

0 1 x x + 1 x2 x2 + 1 x2 + x x2 + x + 1
0 0 0 0 0 0 0 0 0
1 0 1 x x + 1 x2 x2 + 1 x2 + x x2 + x + 1
x 0 x x2 x2 + x x + 1 1 x2 + x + 1 x2 + 1

x + 1 0 x + 1 x2 + x x2 + 1 x2 + x + 1 x2 1 x
x2 0 x2 x + 1 x2 + x + 1 x2 + x x x2 + 1 1

x2 + 1 0 x2 + 1 1 x2 x x2 + x + 1 x + 1 x2 + x
x2 + x 0 x2 + x x2 + x + 1 1 x2 + 1 x + 1 x x2

x2 + x + 1 0 x2 + x + 1 x2 + 1 x 1 x2 + x x2 x + 1

Note that we now have 23 = 8 elements. In general, if we take Zp[x] modulo
a degree-n polynomial, we will get a field with pn elements. These turn out
to be all the possible finite fields, with exactly one finite field for each number
of the form pn (up to isomorphism, which means that we consider two fields
equivalent if there is a bijection between them that preserves + and ·). We can
refer to a finite field of size pn abstractly as GF (pn), which is an abbreviation
for the Galois field of order pn.

1This is not an accident; it can be shown that that any extension field acts like a vector
space over its base field.

5



5 Applications

So what are these things good for?
On the one hand, given an irreducible polynomial p(x) of degree n over

Z2(x), it’s easy to implement arithmetic in Z2[x]/p(x) (and thus GF (2n)) using
standard-issue binary integers. The trick is to represent each polynomial

∑
aix

i

by the integer value a =
∑

ai2i, so that each coefficient ai is just the i-th bit of
a. Adding two polynomials a + b represented in this way corresponds to com-
puting the bitwise exclusive or of a and b: a^b in programming languages that
inherit their arithmetic syntax from C (i.e., almost everything except Scheme).
Multiplying polynomials is more involved, although it’s easy for some special
cases like multiplying by x, which becomes a left-shift (a<<1) followed by XOR-
ing with the representation of our modulus if we get a 1 in the n-th place. (The
general case is like this but involves doing XORs of a lot of left-shifted values,
depending on the bits in the polynomial we are multiplying by.)

On the other hand, knowing that we can multiply 7 ≡ x2+x+1 by 5 ≡ x2+1
and get 6 ≡ x2 + x quickly using C bit operations doesn’t help us much if this
product doesn’t mean anything. For modular arithmetic, we at least have the
consolation that 7 · 5 = 6 (mod 29) tells us something about remainders. In
GF (23), what this means is much more mysterious. This makes it useful—
not in contexts where we want multiplication to make sense—but in contexts
where we don’t. These mostly come up in random number generation and
cryptography.

5.1 Linear-feedback shift registers

Let’s suppose we generate x0, x1, x2, . . . in Z2/(x4 + x3 + 1), which happens to
be one of the finite fields isomorphic to GF (24). Since there are only 24−1 = 15
nonzero elements in GF (24), we can predict that eventually this sequence will
repeat, and in fact we can show that p15 = 1 for any nonzero p using essentially
the same argument as for Fermat’s Little Theorem. So we will have x0 = x15 =
x30 etc. and thus will expect our sequence to repeat every 15 steps (or possibly
some factor of 15, if we are unlucky).

To compute the actual sequence, we could write out full polynomials: 1, x, x2, x3, x3+
1, x3 + x + 1, . . . , but this gets tiresome fast. So instead we’d like to exploit our
representation of

∑
aix

i as
∑

ai2i.
Now multiplying by x is equivalent to shifting left (i.e. multiplying by 2)

followed by XORing with 11001, the binary representation of x4 + x3 + 1, if we
get a bit in the x4 place that we need to get rid of. For example, we might do:

1101 (initial value)
11010 (after shift)
0011 (after XOR with 11001)

or

0110 (initial value)

6

http://pine.cs.yale.edu/pinewiki/ModularArithmetic


01100 (after shift)
1100 (no XOR needed)

If we write our initial value as r3r2r1r0, the shift produces a new value
r3r2r1r00. Then XORing with 11001 has three effects: (a) it removes a leading
1 if present; (b) it sets the rightmost bit to r3; and (c) it flips the new leftmost
bit if r3 = 1. Steps (a) and (b) turn the shift into a rotation. Step (c) is the
mysterious flip from our sequence generator. So in fact what our magic sequence
generator was doing was just computing all the powers of x in a particular finite
field.

As in Zp, these powers of an element bounce around unpredictably, which
makes them a useful (though cryptographically very weak) pseudorandom num-
ber generator. Because high-speed linear-feedback shift registers are very cheap
to implement in hardware, they are used in applications where a pre-programmed,
statistically smooth sequence of bits is needed, as in the Global Positioning Sys-
tem and to scramble electrical signals in computers to reduce radio-frequency
interference.

5.2 Checksums

Shifting an LFSR corresponds to multiplying by x. If we also add 1 from time
to time, we can build any polynomial we like, and get the remainder mod m;
for example, to compute the remainder of 100101 mod 11001 we do

0000 (start with 0)
00001 (shift in 1)
0001 (no XOR)

00010 (shift in 0)
0010 (no XOR)

00100 (shift in 0)
0100 (no XOR)

01001 (shift in 1)
1001 (no XOR)

10010 (shift in 0)
1011 (XOR with 11001)

10111 (shift in 1)
1110 (XOR with 11001)

and we have computed that the remainder of x5 + x3 + 1 mod x4 + x3 + 1
isx3 + x2 + x.

This is the basis for cyclic redundancy check checksums, which are used to
detect accidental corruption of data. The idea is that we feed our data stream
into the LFSR as the coefficients of some gigantic polynomial, and the checksum
summarizing the data is the state when we are done. Since it’s unlikely that a
random sequence of flipped or otherwise damaged bits would equal 0 mod m,
most non-malicious changes to the data will be visible by producing an incorrect
checksum.

7

http://en.wikipedia.org/Cyclic redundancy check


5.3 Cryptography

GF (2n) can also substitute for Zp in some cryptographic protocols. An example
would be the function f(s) = xs (mod m), which is fairly easy to compute in
Zp and even easier to compute in GF (2n), but which seems to be hard to invert
in both cases. Here we can take advantage of the fast remainder operation
provided by LFSRs to avoid having to do expensive division in Z.

8


