
Notes on graph theory

James Aspnes

December 13, 2010

A graph is a structure in which pairs of vertices are connected by edges.
Each edge may act like an ordered pair (in a directed graph) or an unordered
pair (in an undirected graph). We’ve already seen directed graphs as a rep-
resentation for relations; but most work in graph theory concentrates instead
on undirected graphs.

Because graph theory has been studied for many centuries in many lan-
guages, it has accumulated a bewildering variety of terminology, with multiple
terms for the same concept (e.g. node for vertex or arc for edge) and am-
biguous definitions of certain terms (e.g., a “graph” without qualification might
be either a directed or undirected graph, depending on who is using the term:
graph theorists tend to mean undirected graphs, but you can’t always tell with-
out looking at the context). We will try to stick with consistent terminology to
the extent that we can. In particular, unless otherwise specified, a graph will
refer to a simple undirected graph: an undirected graph where each edge
connects two distinct vertices (thus no self-loops) and there is at most one
edge between each pair of vertices (no parallel edges).

Reasonably complete glossaries of graph theory can be found at this site
or at WikiPedia’s glossary of graph theory. See also RosenBook Chapter 9, or
BiggsBook Chapter 15 (for undirected graphs) and 18 (for directed graphs).

If you want to get a sense of the full scope of graph theory, Reinhard Diestel’s
(graduate) textbook Graph Theory can be downloaded from here.

1 Types of graphs

Graphs are represented as ordered pairs G = (V,E), where V is a set of vertices
and E a set of edges. The differences between different types of graphs depends
on what can go in E. When not otherwise specified, we usually think of a graph
as an undirected graph (see below), but there are other variants.

1.1 Directed graphs

In a directed graph or digraph, each element of E is an ordered pair, and we
think of edges as arrows from a source, head, or initial vertex to a sink,
tail, or terminal vertex; each of these two vertices is called an endpoint of

1

http://www-leibniz.imag.fr/GRAPH/english/definitions.html
http://en.wikipedia.org/Glossary of graph theory
http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/download.html

the edge. A directed graph is simple if there is at most one edge from one
vertex to another. A directed graph that has multiple edges from some vertex
u to some other vertex v is called a directed multigraph.

As we saw in the notes on relations, there is a one-to-one correspondence
between simple directed graphs with vertex set V and relations on V .

1.2 Undirected graphs

In an undirected graph, each edge is a two-element subset of V . A simple
undirected graph contains no duplicate edges and no loops (an edge from
some vertex u back to itself). A graph with more than one edge between the
same two vertices is called a multigraph. Most of the time, when we say graph,
we mean a simple undirected graph.

2

Some authors make a distinction between pseudographs (with loops) and
multigraphs (without loops), but we’ll use multigraph for both.

Simple undirected graphs also correspond to relations, with the restriction
that the relation must be irreflexive (no loops) and symmetric (undirected
edges). This also gives a representation of undirected graphs as directed graphs,
where the edges of the directed graph always appear in pairs going in opposite
directions.

1.3 Hypergraphs

In a hypergraph, the edges (called hyperedges) are arbitrary nonempty sets
of vertices. A k-hypergraph is one in which all such hyperedges connected
exactly k vertices; an ordinary graph is thus a 2-hypergraph.

Hypergraphs are usually drawn by representing each hyperedge as a closed
curve containing its members, like so:

3

Hypergraphs aren’t used very much, because it is always possible (though
not always convenient) to represent a hypergraph by a bipartite graph. In
a bipartite graph, the vertex set can be partitioned into two subsets S and T ,
such that every edge connects a vertex in S with a vertex in T . To represent
a hypergraph H as a bipartite graph, we simply represent the vertices of H as
vertices in S and the hyperedges of H as vertices in T , and put in an edge (s, t)
whenever s is a member of the hyperedge t in H. (See also BipartiteGraphs.)

2 Examples of graphs

Any relation produces a graph, which is directed for an arbitrary relation and
undirected for a symmetric relation. Examples are graphs of parenthood (di-
rected), siblinghood (undirected), handshakes (undirected), etc.

Graphs often arise in transportation and communication networks. Here’s a
(now somewhat out-of-date) route map for Jet Blue airlines, taken from http:
//www.jetblue.com/travelinfo/routemap.html:

4

http://pine.cs.yale.edu/pinewiki/BipartiteGraphs
http://www.jetblue.com/travelinfo/routemap.html
http://www.jetblue.com/travelinfo/routemap.html

Such graphs are often labeled with edge lengths, prices, etc. In computer
networking, the design of network graphs that permit efficient routing of data
without congestion, roundabout paths, or excessively large routing tables is a
central problem.

The web graph is a directed multigraph with web pages for vertices and
hyperlinks for edges. Though it changes constantly, its properties have been
fanatically studied both by academic graph theorists and employees of search
engine companies, many of which are still in business. Companies like Google
base their search rankings largely on structural properties of the web graph.

Peer-to-peer systems for data sharing often have a graph structure, where
each peer is a node and connections between peers are edges. The problem of
designing efficient peer-to-peer systems is similar in many ways to the problem
of designing efficient networks; in both cases, the structure (or lack thereof) of
the underlying graph strongly affects efficiency.

3 Graph terminology

• Incidence: a vertex is incident to any edge of which it is an endpoint
(and vice versa).

• Adjacency, neighborhood: two vertices are adjacent if they are the end-
points of some edge. The neighborhood of a vertex v is the set of all
vertices that are adjacent to v.

• Degree, in-degree, out-degree: the degree of v counts the number edges
incident to v. In a directed graph, in-degree counts only incoming edges
and out-degree counts only outgoing edges (so that the degree is always
the in-degree plus the out-degree). The degree of a vertex v is often abbre-
viated as d(v) or δ(v); in-degree and out-degree are sometimes abbreviated
as d−(v) and d+(v), respectively (or δ−(v) and δ+(v) by people who prefer
Greek).

5

4 Some standard graphs

• Complete graph Kn. This has n vertices, and every pair of vertices has
an edge between them.

• Cycle graph Cn. This has vertices {0, 1, . . . n− 1} and an edge from i to
i + 1 for each i, plus an edge from n − 1 to 0. Here n must be at least 3
to get a simple graph.

• Path Pn. This has vertices {0, 1, 2, . . . n} and an edge from i to i+ 1 for
each i. Note that n counts the number of edges rather than the number
of vertices; we call the number of edges the length of the path.

• Complete bipartite graph Km,n. This has a set A of m vertices and
a set B of n vertices, with an edge between every vertex in A and every
vertex in B, but no edges within A or B.

• Star graphs. These have a single central vertex that is connected to n
outer vertices, and are the same as K1,n.

• The cube Qn. This is defined by letting the vertex set consist of all n-bit
strings, and putting an edge between u and u′ if u and u′ differ in exactly
one place. It can also be defined by taking the n-fold square product of
an edge with itself (see below).

• Cayley graphs. The Cayley graph of a group G with a given set of
generators is a labeled directed graph. The vertices of this graph are the
group elements, and for each g in G and s in S there is a directed edge
from g to gs labeled with s. Many common graphs are Cayley graphs
with the labels (and possibly edge orientations) removed; for example, a
directed cycle on m elements is the Cayley graph of Zm, an n ×m torus
is the Cayley graph of Zn × Zm, and the cube Qn is the Cayley graph of
(Z2)n.

Graphs may not always be drawn in a way that makes their structure obvi-
ous. For example, here are two different presentations of Q3, only one of which
looks much like a cube:

5 Operations on graphs

• Set-like operations

6

– Subgraphs: G is a subgraph of H, written G ⊆ H, if VG ⊆ VH and
EG ⊆ EH .

∗ One can get subgraphs by deleting edges or vertices or both.
Note that deleting a vertex also requires deleting any edges in-
cident to the vertex (since we can’t have an edge with a missing
endpoint).

∗ The maximal subgraph of a graph H whose vertex set is S is
called the induced subgraph of H with vertices S. The intu-
ition is that all edges are left in whose endpoints lie in S.

∗ We will sometimes say that G is a subgraph of H if it is iso-
morphic to a subgraph of H, which is equivalent to having an
injective homomorphism from G to H.

– Intersections and unions are defined in the obvious way. The only
tricky part is that with intersections we need to think a bit to realize
this doesn’t produce edges with missing endpoints.

– Products. There are at least five different definitions of the product
of two graphs used by serious graph theorists. In each case the vertex
set of the product is the Cartesian product of the vertex sets, but the
different definitions throw in different sets of edges. Two of them are
used most often:

∗ The square product or graph Cartesian product G�H. An
edge (u, u′)(v, v′) is in G�H if and only if (a) u = v and u′v′ is an
edge in H, or (b) uv is an edge in G and v = v′. It’s called the
square product because the product of two (undirected) edges
looks like a square. The intuition is that each vertex in G is
replaced by a copy of H, and then corresponding vertices in the
different copies of H are linked whenever the original vertices
in G are adjacent. For algebraists, square products are popular
because they behave correctly for Cayley graphs: if C1 and C2

are the Cayley graphs of G1 and G2 (for particular choices of
generators), then C1 � C2 is the Cayley graph of G1 ×G2.
· The cube Qn can be defined recursively by Q1 = P1 and
Qn = Qn−1 �Q1. It is also the case that Qn = Qk �Qn−k.
· An n-by-m mesh is given by Pn−1 � Pm−1.

∗ The cross product or categorical graph product G × H.
Now (u, u′)(v, v′) is in G×H if and only if uv is in G and u′v′ is in
H. In the cross product, the product of two (again undirected)
edges is a cross: an edge from (u, u′) to (v, v′) and one from
(u, v′) to (v, u′). The cross product is not as useful as the square
product for defining nice-looking graphs, but it can arise in some
other situations. An example is when G and H describe the
positions (vertices) and moves (directed edges) of two solitaire
games; then the cross product G × H describes the combined
game in which at each step the player must make a move in both

7

games. (In contrast, the square product G�H describes a game
where the player can choose at each step to make a move in either
game.)

– Graph powers, transitive closures: see Connectivity below.

• Minors.

– A minor of a graph G is some other graph H obtained from G by
deleting edges and/or vertices (as in a subgraph) and contracting
edges, where two adjacent vertices u and v are merged together into
a single vertex that is connected to all of the previous neighbors of
both vertices.

– Minors are useful for recognizing certain classes of graphs. For ex-
ample, a graph can be drawn in the plane without any crossing edges
if and only if it doesn’t contain K5 or K3,3 as a minor (this is known
as Wagner’s theorem).

• Functions from one graph to another.

– Isomorphisms: If f : VG → VH is a bijection and uv ∈ EG if and only
if f(u)f(v) ∈ EG, then G and H are said to be isomorphic and f is
an isomorphism. Isomorphism is an equivalence relation—using it,
we can divide graphs into equivalence classes and effectively forget
the identities of the vertices. We don’t currently know how to test
whether two graphs are isomorphic (the graph isomorphism prob-
lem); at the same time, we also don’t know that testing isomorphism
is hard, even assuming P 6= NP . Graph isomorphism is a rare exam-
ple of a natural problem for which we have neither a good algorithm
nor a (conditional) hardness proof.

– Automorphism: An isomorphism from G to G is called an automor-
phism of G. Automorphisms correspond to internal symmetries of a
graph. For example, the cycle Cn has 2n different automorphisms (to
count them, observe there are n places we can send vertex 0 to, and
having picked a place to send vertex 0 to, there are only 2 places to
send vertex 1; so we have essentially n rotations times 2 for flipping
or not flipping the graph). A path Pn has only 2 automorphisms
(reverse the direction or not). Many graphs have no automorphisms
except the identity map.

– Homomorphisms: A homomorphism f from a graph G = (VG, EG)
to a graph H = (VH , EH) is a function f : VG → VH such that, for
all uv in EG, f(u)f(v) is in EH . (This definition assumes no parallel
edges, but otherwise works for both directed and undirected graphs.)
These are probably only of interest to category theorists.

∗ Intuition: a homomorphism is a function from vertices of G to
vertices of H that also maps edges to edges.

8

http://en.wikipedia.org/Planar graph
http://en.wikipedia.org/Graph isomorphism problem
http://en.wikipedia.org/Graph isomorphism problem

∗ Example: There is a unique homomorphism from the empty
graph (∅, ∅) to any graph.

∗ Example: Let G = (V,E) be an undirected graph. Then there
are exactly 2 homomorphisms from P1 to G for each edge in G.

∗ Example: There is a homomorphism from G to P1 if and only if
G is bipartite. In general, there is a homomorphism from G to
Kn if and only if G is n-partite (recall P1 = K2).

∗ Comment: For multigraphs, one must define a homomorphism
as a pair of functions fV : VG → VH and fE : EG → EH with
appropriate consistency conditions.

6 Paths and connectivity

A fundamental property of graphs is connectivity: whether the graph can be
divided into two or more pieces with no edges between them. Often it makes
sense to talk about this in terms of reachability, or whether you can get from
one vertex to another along some path.

• A path of length n in a graph is the image of a homomorphism from Pn.

– In ordinary speech, it’s a sequence of n+1 vertices v0, v1, . . . , vn such
that vivi+1 is an edge in the graph for each i.

– A path is simple if the same vertex never appears twice (i.e. if the
homomorphism is injective). If there is a path from u to v, there is
a simple path from u to v obtained by removing cycles.

• If there is a path from u to v, then v is reachable from u: u ∗→ v. We
also say that u is connected to v.

– It’s easy to see that connectivity is reflexive (take a path of length 0)
and transitive (paste a path from u to v together with a path from v
to w to get a path from u to w). But it’s not necessarily symmetric
if we have a directed graph.

• Connected components

– In an undirected graph, connectivity is symmetric, so it’s an equiv-
alence relation.

∗ Equivalence classes of ∗→ are called the connected components
of G.

∗ G itself is connected if and only if it has a single connected
component, i.e., if every vertex is reachable from every other
vertex.

∗ Note that isolated vertices count as (separate) connected com-
ponents.

9

– In a directed graph, we can make connectivity symmetric in one of
two different ways:

∗ Define u to be strongly connected to v if u ∗→ v and v
∗→ u.

I.e., u and v are strongly connected if you can go from u to v
and back again (not necessarily through the same vertices).
· It’s easy to see that strong connectivity is an equivalence

relation.
· The equivalence classes are called strongly-connected com-

ponents.
· A graph G is strongly connected if it has one strongly-

connected component, i.e., if every vertex is reachable from
every other vertex.

∗ Define u to be weakly connected to v if u ∗→ v in the undirected
graph obtained by ignoring edge orientation.
· Intuition is that u is weakly connected to v if there is a path

from u to v if you are allowed to cross edges backwards.
· Weakly-connected components are defined by equivalence classes;

a graph is weakly-connected if it has one component.
· Weak connectivity is a “weaker” property that strong con-

nectivity in the sense that if u is strongly connected to v,
then u is weakly connected to v; but the converse does not
necessarily hold.

• Power of a directed graph: The k-th power Gk has the same vertices as
G, but uv is an edge in Gk if and only if there is a path of length k from
u to v in G.

• Transitive closure of a directed graph: G∗ =
⋃∞

k=0G
k. I.e., there is an

edge uv in G∗ if and only if there is a path (of any length, including zero)
from u to v in G, or in other words if u ∗→ v. This is equivalent to taking
the transitive closure of the adjacency relation.

7 Cycles

The standard cycle graph Cn has vertices {0, 1, . . . , n − 1} with an edge from
i to i + 1 for each i and from n − 1 to 0. A cycle of length n in a graph G is
an image of Cn under homomorphism which includes each edge at most once.
A simple cycle is a cycle that includes each vertex at most once. Cycles are
often written by giving their sequence of vertices v0v1v2 . . . vkv0, where there is
an edge from each vertex in the sequence to the following vertex. Unlike paths,
which have endpoints, no vertex in a cycle has a special role.

A graph with no cycles is acyclic. Directed acyclic graphs or DAGs
have the property that their reachability relation ∗→ is a partial order; this
is easily proven by showing that if ∗→ is not anti-symmetric, then there is a

10

cycle consisting of the paths between two non-anti-symmetric vertices u ∗→ v
and v

∗→ u. Directed acyclic graphs may also be topologically sorted: their
vertices ordered as v0, v1, . . . , vn−1, so that if there is an edge from vi to vj ,
then i < j. The proof is by induction on |V |, with the induction step setting
vn−1 to equal some vertex with out-degree 0 and ordering the remaining vertices
recursively. (See also TopologicalSort.)

Connected acyclic undirected graphs are called trees. A connected graph
G = (V,E) is a tree if and only if |E| = |V | − 1; we’ll prove this below.

A cycle that includes every edge exactly once is called an Eulerian cy-
cle or Eulerian tour, after Leonhard Euler, whose study of the Seven bridges
of Königsberg problem led to the development of graph theory. A cycle that
includes ever vertex exactly once is called a Hamiltonian cycle or Hamil-
tonian tour, after William Rowan Hamilton, another historical graph-theory
heavyweight (although he is more famous for inventing quaternions and the
Hamiltonian). Graphs with Eulerian cycles have a simple characterization: a
graph has an Eulerian cycle if and only if every vertex has even degree. Graphs
with Hamiltonian cycles are harder to recognize.

8 Proving things about graphs

Suppose we want to show that all graphs or perhaps all graphs satisfying certain
criteria have some property. How do we do this? In the ideal case, we can
decompose the graph into pieces somehow and use induction on the number of
vertices or the number of edges. If this doesn’t work, we may have to look for
some properties of the graph we can exploit to construct an explicit proof of
what we want.

8.1 The Handshaking Lemma

This lemma relates the total degree of a graph to the number of edges. Observe
that δ(v) = |{u :uv∈ E}| =

∑
uv∈E 1. So

∑
v δ(v) =

∑
v

∑
uv∈E 1 = 2|E| since

each edge uv is counted both as uv and as vu.
One application of the lemma is that the number of odd-degree vertices in

a graph is always even.

8.2 Trees

A tree is an acyclic connected graph. We can show by induction on the number
of vertices in G that G is a tree if and only if it is connected and has exactly
|V | − 1 edges.

We’ll start with a lemma that states that G is connected only if it has at
least |V |−1 edges. This avoids having to reprove this fact in the main theorem.

Lemma 1. Any connected graph G = (V,E) has |E| ≥ |V | − 1.

Proof. By induction on |V |. The base cases are |V | = 0 and |V | = 1; in either
case we have |E| ≥ 0 ≥ |V | − 1.

11

http://pine.cs.yale.edu/pinewiki/TopologicalSort

For a larger graph G = (V,E), suppose that |E| < |V | − 1; we will show
that in this case G is not connected. From the handshaking lemma we have∑

v∈V δ(v) = 2|E| < 2|V | − 2. It follows that there is at least one vertex u
with δ(u) ≤ 1. If δ(u) = 0, we are done: G is not connected. If δ(u) = 1,
consider the graph G−{u} obtained by removing u and its incident edge. This
has |EG−{u}| = |E| − 1 < |VG−{u}| − 1 = |V | − 2; by the induction hypothesis,
G−{u} is not connected. But since G−{u} is not connected, neither is G: if v
and w are nodes with no path between them in G−{u}, then adding u doesn’t
help.

Now we can prove the full result:

Theorem 1. Let G be a nonempty connected graph. Then G is acyclic if and
only if it has exactly |V | − 1 edges.

Proof. 1. We’ll prove that a nonempty connected graph with |V | − 1 edges
is a tree by induction on |V |. The base case is |V | = 1 and |E| = 0; this
single-vertex graph is easily seen to be acyclic. For larger |V |, from the
Handshaking Lemma we have that

∑
d(v) = 2|E| = 2|V | − 2. So from

the Pigeonhole Principle there exists a vertex v with d(v) < 2. We can’t
have d(v) = 0, or G wouldn’t be connected, so d(v) = 1. Now consider
the graph G− v; it has |V | − 1 vertices and |E| − 1 = |V | − 2 edges, and
by the induction hypothesis, it’s acyclic. Adding back v can’t create any
new cycles because any cycle that enters v has no edge to leave on. So G
is also acyclic.

2. Now we need to show that if we have more than |V | − 1 edges, some cycle
exists. We’ll do this by showing that an acyclic connected graph has at
most |V | − 1 edges, by induction on |V |. For |V | = 1 we have at most
|V |−1 = 0 edges whether we are acyclic or not; this gives us the base case
for free. Now consider an acyclic connected graph with |V | > 1 vertices.
Choosing some vertex v0 and construct a path v1, v2, . . . by choosing at
each step a node vi+1 that is a neighbor of vi and that is not already in
the path. Eventually this process terminates (we only have |V | vertices
to work with) with some vertex vk. If vk is adjacent to some vertex vj

already in the path, where j 6= k − 1, then we have a cycle vj . . . vk. If vk

has a neighbor that’s not in the path, then we could have added it. So it
follows that vk is adjacent only to vk−1 and has degree 1. Delete vk to get
G− vk, an acyclic graph with |V |−1 vertices and |E|−1 edges. From the
induction hypothesis we have |E| − 1 = |V | − 2 implying |E| = |V | − 1 for
G.

For an alternative proof based on removing edges, see BiggsBook Theorem
15.5. This also gives the useful fact that removing one edge from a tree gives
exactly 2 components.

12

8.3 Spanning trees

Here’s another induction proof on graphs. A spanning tree of a nonempty
connected graph G is a subgraph of G that includes all vertices and is a tree
(i.e., is connected and acyclic).

Theorem 2. Every nonempty connected graph has a spanning tree.

Proof. Let G = (V,E) be a nonempty connected graph. We’ll show by induction
on |E| that G has a spanning tree. The base case is |E| = |V |−1 (the least value
for which G can be connected); then G itself is a tree (by the theorem above).
For larger |E|, the same theorem gives that G contains a cycle. Let uv be any
edge on the cycle, and consider the graph G−uv; this graph is connected (since
we can route any path that used to go through uv around the other edges of
the cycle) and has fewer edges than G, so by the induction hypothesis there is
some spanning tree T of G− uv. But then T also spans G, so we are done.

8.4 Eulerian cycles

Let’s prove the vertex degree characterization of graphs with Eulerian cycles.
As in the previous proofs, we’ll take the approach of looking for something to
pull out of the graph to get a smaller case.

Theorem 3. Let G be a connected graph. Then G has an Eulerian cycle if and
only if all nodes have even degree.

Proof. • (Only if part). Fix some cycle, and orient the edges by the direction
that the cycle traverses them. Then in the resulting directed graph we
must have δ−(u) = δ+(u) for all u, since every time we enter a vertex we
have to leave it again. But then δ(u) = 2δ+(u) is even.

• (If part). Suppose now that δ(u) is even for all u. We will construct an
Eulerian cycle on all nodes by induction on |E|. The base case is when
|E| = 2|V | and G = C|V |. For a larger graph, choose some starting node
u1, and construct a path u1u2 . . . by choosing an arbitrary unused edge
leaving each ui; this is always possible for ui 6= u1 since whenever we reach
ui we have always consumed an even number of edges on previous visits
plus one to get to it this time, leaving at least one remaining edge to leave
on. Since there are only finitely many edges and we can only use each
one once, eventually we must get stuck, and this must occur with uk = u1

for some k. Now delete all the edges in u1 . . . uk from G, and consider
the connected components of G− (u1 . . . uk). Removing the cycle reduces
δ(v) by an even number, so within each such connected component the
degree of all vertices is even. It follows from the induction hypothesis that
each connected component has an Eulerian cycle. We’ll now string these
per-component cycles together using our original cycle: while traversing
u1 . . . , uk when we encounter some component for the first time, we take
a detour around the component’s cycle. The resulting merged cycle gives
an Eulerian cycle for the entire graph.

13

Why doesn’t this work for Hamiltonian cycles? The problem is that in a
Hamiltonian cycle we have too many choices: out of the δ(u) edges incident to
u, we will only use two of them. If we pick the wrong two early on, this may
prevent us from ever fitting u into a Hamiltonian cycle. So we would need some
stronger property of our graph to get Hamiltonicity.

14

