
On the Cell Probe Complexity of
Membership and Perfect Hashing ∗

Rasmus Pagh

BRICS
†

, Department of Computer Science
Ny Munkegade Bldg. 540, 8000 Aarhus C

University of Aarhus, Denmark

pagh@brics.dk

ABSTRACT
We study two fundamental static data structure problems,
membership and perfect hashing, in Yao’s cell probe model.
The first space and bit probe optimal worst case upper
bound is given for the membership problem. We also give a
new efficient membership scheme where the query algorithm
makes just one adaptive choice, and probes a total of three
words. A lower bound shows that two word probes generally
do not suffice. For minimal perfect hashing we show a tight
bit probe lower bound, and give a simple scheme achieving
this performance, making just one adaptive choice. Linear
range perfect hashing is shown to be implementable with the
same number of bit probes, of which just one is adaptive.
In contrast, we establish that for sufficiently sparse sets,
non-adaptive perfect hashing needs exponentially more bit
probes. This is the first such separation of adaptivity and
non-adaptivity.

1. INTRODUCTION
This paper considers two fundamental static data structure
problems, Membership and Perfect Hashing, in Yao’s
cell probe model [20]. In this model, a data structure is a
numbered sequence of s “cells”, each containing an element
of {0, 1}b, for a positive integer parameter b. The complexity
of a query is the number of cells that a deterministic algo-
rithm needs to probe to answer it. (In the worst case over
all possible data, for the optimal choice of data structure, in
the worst case over all queries.) For positive integer x define
[x] = {1, 2, . . . , x}. We state the problems as follows.

∗Partially supported by the IST Programme of the EU un-
der contract number IST-1999-14186 (ALCOM-FT).
Part of this work was done while the author was visiting
Stanford University.
†Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’01,July 6-8, 2001, Hersonissos, Crete, Greece.
Copyright 2001 ACM 1-58113-349-9/01/0007$5.00

Membership(u, n, s, b): Given a set S ⊆ [u], |S| = n ≤ u/2,
use a data structure with s cells of b bits to accommodate
membership queries: “x ∈ S?”

Perfect Hashing(u, n, r, s, b): Given a set S ⊆ [u], |S| =
n ≤ r ≤ u/2, store a perfect hash function for S, i.e., some
function fS : [u] → [r] that is 1-1 on S, in a data struc-
ture with s cells of b bits, and accommodate function value
queries: “fS(x) =?”

Informally, a membership query determines whether an el-
ement is present in a certain subset of the universe, and a
perfect hashing query can provide a pointer to where asso-
ciated information is located. Frequently, one considers the
“combined” problem, that is, to design a data structure that
on query x answers whether x ∈ S, and if so, returns the
value of a perfect hash function pointing to some “satellite
information” unique to x. This problem will be referred to
as Dictionary(u, n, r, s, b).

We are particularly interested in the cases b = 1, where cell
probes are referred to as bit probes, and b = log u, where
cells are referred to as words. (For simplicity we assume
that u is a power of 2.) We pay special attention to Per-

fect Hashing in the case r = n, referred to as “minimal
perfect hashing”.

Very efficient data structures exist for most instances of the
two problems. Our interest lies in an exact understanding
of how efficient the query algorithms can be. The cell probe
model ignores the cost of computation, but as random mem-
ory accesses in real hardware are becoming orders of mag-
nitude slower than computational instructions, it focuses on
a main practical bottleneck. The precise space usage is of
secondary concern, though our data structures always use
within a constant factor of minimum space.

1.1 Background

Membership
The minimum number of bits with which it is possible en-
code a Membership data structure is sm(u, n) = log

(
u
n

)
=

Θ(n log(u/n)). (When the parameters are understood we
will simply write sm.) We do not consider data structures
of size less than one cell, so a space optimal data structure
is one that occupies O(sm/b+ 1) cells.

The average case bit probe complexity of Membership was
studied by Minsky and Papert in the book Perceptrons [13,
Sect. 12.6], where it is shown that a constant number of
bit probes suffice on average over all queries. The study of
randomized (Monte Carlo) bit probe complexity, where the
query algorithm makes coin flips and is allowed some error
probability, was initiated recently by Buhrman et al. [3]. No-
tably, one can get two-sided error probability ε using one bit
probe and O(n

ε2
log u) bits of space (which is O(sm) for con-

stant ε > 0 and u = n1+Ω(1)). The scheme is non-explicit,
that is, it is not shown that there are efficient (polynomial
time) procedures for constructing the data structure and
carrying out queries.

Buhrman et al. were also the first to study directly the worst
case bit probe complexity of Membership. They showed
a lower bound of Ω(log(u/n)) bit probes for space O(sm),
matching the O(log u) upper bound of Fredman et al. [7]

for u = n1+Ω(1). They also considered the adaptivity of
the query algorithm, that is, the way in which probe lo-
cations depend on the results of previous probes. Surpris-
ingly, adaptivity does not help in general, as space O(n log u)
and O(log u) bit probes can be achieved by a non-adaptive
scheme, i.e., where all probe locations are determined by the
query element. Again, this scheme is not explicit.

Motivated by applications of storing a set of machine words
on real world computers, upper bounds on the RAM (and
hence the word probe) complexity of Membership are of
considerable interest. Two seminal papers dealing with this
subject are among the most cited in the data structures liter-
ature: Carter and Wegman [4] gave a randomized data struc-
ture of O(n) words, that uses O(1) expected word probes
per operation, even permitting dynamic changes to the set
stored. Fredman, Komlós and Szemerédi [7] showed that
O(1) word probes suffice in the worst case for data struc-
tures of O(n) words. If u is sufficiently larger than n, three
word probes suffice, the first one to a fixed location. The
space usage has been lowered to sm + o(sm) bits [2, 14] at
the cost of a large constant number of word probes.

Perfect hashing
A space optimal data structure for Perfect Hashing uses
sph(u, n, r) = Θ(n2/r + logn + log logr u) bits. (When the
parameters are understood we will simply write sph.) Apart
from the trivial logn lower bound, a proof of this can be
found in e.g. [12, III.2.3]. In this paper we will be concerned
mainly with the case r = O(n), for which sph = Θ(n +
log log u). It is optimal to use O(sph/b+ 1) cells of memory.

The data structure of Fredman et al. [7] is in fact a hash ta-
ble along with a solution to Perfect Hashing(u, n,O(n),
O(n), log u) requiring (for u large enough) two cell probes,
one of which is to a fixed location. An efficient scheme for
Perfect Hashing(u, n, n,O(n), O(logn + log log u)) (i.e.,
minimal perfect hashing) using two cell probes was pre-
sented in [15], where it was also shown that one cell probe
schemes are impossible unless b = Ω(n

1+n2/u
). Schmidt and

Siegel [17] presented a coding scheme for essentially the per-
fect hash function in [7], using space O(sph) for r = n.
The construction can be extended to give space O(sph) for
r ≤ n2/ log2 n. A space bound of sph + o(sph), still with

constant evaluation time, was obtained for minimal perfect
hashing by Hagerup and Tholey in [9]. The number of cell
probes, as well as the constant hidden in the order notation,
is quite high for these space optimal schemes, so they are
mainly of theoretical interest.

The bit probe complexity of perfect hashing does not seem
to have been studied directly before. An upper bound of
O(logn + log log u) bit probes was given by the Schmidt-
Siegel construction [17].

In a relaxation of perfect hashing considered by Schmidt and
Siegel [17], an “oblivious k-probe hash function” computes
a set of k values, one of which (for appropriate arrangement
of the set in a table) is the location of the input if it is in the

set. It was shown that n/2O(k) bits are needed to represent
such a function, in the case r = n. However, it is mentioned
that there is a probabilistic argument showing O(logn +
log logm) bits to suffice when r = (1 + Ω(1))n, for some
constant k. Such probabilistic arguments appear explicitly
in [1, 5], in the context of “balanced allocations”. In our
context, a result of [5] implies a probabilistic construction
for k = 4 in which the hash table has size 2n.

1.2 This paper
This paper contains a collection of results pertaining to the
cell probe complexity of membership and perfect hashing,
as summarized in the remainder of this section.

Membership
We prove in Section 2.1 that the bit probe lower bound
of Buhrman et al. [3] is tight, by giving an explicit Mem-

bership scheme using O(log(u/n)) bit probes and space
O(sm). The construction makes use of a bounded concen-
trator, which is a weak expander graph.

As for word probe complexity, we show in Section 2.2 that
if one wants to use O(n) words of space, and if u is not
too small in terms of n, schemes probing two words essen-
tially require a perfect hash function with linear range to
be storable in the first word probed. In particular, such
schemes are only possible when u = 2Ω(n). Thus, there is no
hope of improving the word probe count of three achieved
by the scheme of Fredman et al. [7].

In Section 2.3 we investigate the previously mentioned com-
ment of Schmidt and Siegel [17] in the case k = 2, for which
the results in [1, 5] do not say anything. The result is a
scheme that is an improvement of the scheme in [7] in that
it allows for parallelism in the word probes: After the first
(fixed) probe, the two last probes can be determined and
carried out in parallel. Additionally, our scheme works also
in the case where u is not much larger than n, and uses
space O(sm). The improved parallelism seems interesting
from a practical point of view, as CPU pipelining could po-
tentially decrease the time relative to the case of adaptive
probes by a factor of nearly two. In case the data structure
resides in external memory, split to multiple disks, any item
can be retrieved in one parallel I/O, using minimal internal
memory. Our scheme is explicit when u ≥ nc logn, for a con-
stant c, in which case the first probe can be used to read a
function from a (nearly) O(logn)-wise independent family.
By increasing the number of fixed word probes to O(logn),

which can be argued to be practical, for example in the case
of external memory, we get an explicit scheme in all cases.

Perfect hashing
We show in Section 3.1 that the bit probe complexity of the
Schmidt–Siegel scheme is optimal for Perfect Hashing(u,
n, r = n,O(sph), 1), i.e., the bit probe complexity of minimal
perfect hashing, using optimal space, is Θ(logn+ log log u).

In Section 3.2 we give an alternative space optimal scheme,
conceptually much simpler than that of Schmidt and Siegel,
that can be implemented with just one adaptive cell probe
reading O(logn) bits. The scheme is non-explicit, but can
be made explicit using (nearly) O(logn)-wise independence,
increasing the number of bits read in fixed cell probes from
O(logn+ log log u) to O(log2 n+ log log u).

In Section 3.3 we turn the attention to range r > n, show-
ing that one adaptive bit probe suffices for r = O(n), us-
ing minimal space and O(logn+ log log u) fixed bit probes.
Again, this scheme is non-explicit, but can be made explicit
at the cost of increasing the number of fixed bit probes by
O(log2 n). The explicit scheme is much simpler than previ-
ous perfect hash functions using minimal memory. We also
show that such a scheme is not possible for r < (log e −
Ω(1))n, no matter how much space is used. If one wants
range r = n, Ω(log logn) adaptive bit probes are required.

Finally, in Section 3.4, we consider query schemes with no
adaptivity, and show that for u = 2Θ(n), a constant frac-
tion of any space minimal Θ(n)-bit data structure must be
read to determine the function value. Recall that O(logn+
log log u) = O(logn) bit probes, of which just one is adap-
tive, is enough. This appears to be the first problem for
which an exponential separation between adaptive and non-
adaptive query schemes has been shown. Note that no
super-exponential separation can exist, as any adaptive t
bit probe scheme can be converted to a non-adaptive 2t − 1
bit probe scheme. It is interesting to compare this to the fact
that Membership has efficient non-adaptive query schemes.

1.3 Notation
For convenience, we introduce a notation for expressing the
adaptivity of a query algorithm. An (a0, a1, . . . , ak)-probe
query scheme is one that:

1. Starts by performing a0 fixed cell probes, not depend-
ing on the input (this is the 0th round).

2. In the ith round, for i = 1, . . . , k, makes ai probes to
cells determined by the input and by the outcomes of
probes in previous rounds.

2. MEMBERSHIP
2.1 Tight bit probe bound
In this section we present an explicit Membership scheme
that has optimal space and bit probe complexity. It can
be thought of as a “generalization” of bit vectors that is
space efficient even for sparse sets. For r/n larger than some
constant, the data structure also allows Perfect Hashing

queries in O(log(u/r)) bit probes, that is, it solves the Dic-

tionary problem.

Theorem 1. There is an explicit Dictionary(u, n, r =
O(n), O(sm), 1) scheme with cell probe complexity O(log(u/n)).

Proof. Our scheme consists of O(log(u/n)) steps, each
reducing the size of the universe considered by a constant
factor, or producing an answer to the query. Each step uses
a data structure of O(n) bits that specifies a superset of S
and a 1-1 mapping from this superset to the smaller universe.
A constant number of bit probes suffice to determine if the
query element is not in the superset, in which case we can
immediately return a valid answer. If the query element is in
the superset, its mapping that can be computed by probing
O(1) bits. At the end of the recursion we have u = O(n), and
a bit vector can be used to determine membership. A perfect
hash function value can be determined after O(log(u/r))
levels when the universe has reached size r. (This happens
if r/n is a sufficiently large constant.)

The essential ingredient in our solution is a family of bounded
concentrators, which are constant degree bipartite graphs
with v vertices on the left, at most θv vertices on the right,
for constant θ < 1, having the property that any set V
of up to v/2 left hand vertices can be matched to |V | ver-
tices on the right hand side. Simple, explicit constructions
of bounded concentrators exist [8]. We denote left hand
vertices by s1, . . . , sv and right hand vertices by t1, . . . , tw,
where w ≤ θv, and assume some fixed ordering of the neigh-
bors of each vertex.

If u ≤ 4n
1−θ the recursion is stopped. Otherwise we con-

struct a data structure as follows: Split [u] into v = 2n
parts U1, . . . , U2n of size at most du/2ne, and consider the
set V = {si | S ∩ Ui 6= ∅} which has size at most n = v/2.
By definition of a bounded concentrator, the vertices of V
can be matched to a set W ⊆ {t1, . . . , tθv}. Suppose that
si ∈ V is matched to its kth neighbor. Then we write the
O(1) bit number k as entry i of a 2n-element table T . Table
entries of vertices not in V are set to a special value.

An element x ∈ Ui is in the abovementioned superset if and
only if si ∈ V . In this case we map x to an element in the
reduced universe as follows: If si is matched to tj , map x to
h(x) = jdu/2ne − zx, where zx is the number of x in some
fixed numbering 0, . . . , du/2ne − 1 of Ui. By the matching
property, no other element of [u] maps to h(x). The reduced
universe is [wdu/2ne], which has size at most 1+θ

2
u.

Corollary 2. The cell probe complexity of Member-

ship(u, n,O(sm), 1) is Θ(log(u/n)).

It can be noted that a constant fraction of all possible queries
are resolved at each step. Thus, O(1) probes suffice on av-
erage over all queries, so our scheme is optimal also with
respect to average case complexity.

2.2 Two word probes do not suffice
Yao [20] studied Membership in a model where the query
algorithm first looks up b = log u fixed bits, and then, in a
table of length s, probes a single word containing some ele-
ment of S, answering “yes” if it is equal to the input. He ob-
served that for this problem to be solvable there has to be a

size u perfect family of hash functions with range [s]. Hence,

such two-probe schemes are possible only if u ≥ 2sph(u,n,s).
Here, we look at a more general class of schemes, without
restriction on the contents of the second word probed, or on
how it is interpreted. For the case where u is not too close
to n or s, we show that again, such a scheme is not possible
unless u = 2Ω(sph(u,n,s)). The lower bound carries over to
the case where the first word probe is not necessarily fixed,
meaning that the Membership scheme of Fredman et al. [7],
that probes three words, is in general word probe optimal
among schemes using O(n) words.

Theorem 3. For constants ε > 0 and k ∈ N, if u >
s1+ε2εb, s ≥ n, and Membership(u, n, s, b) has a (k, 1)-
probe query scheme, then b = Ω(sph(u, n, s)).

Proof. We employ a “volume bound” similar to the lower
bound for the program size of perfect hash functions in [12].
More specifically, we bound the number of sets that be ac-
commodated for each of the 2kb possible bit patterns read
in the k fixed probes. This turns out to be a very small
fraction of all n-subsets, giving a lower bound on kb.

Without loss of generality we assume that s ≥ 2n. Fix a
kb-bit pattern, and let S1, . . . , Sl ⊆ [u] be the n-subsets for
which this bit pattern is used. For each i ∈ [s], let Ui ⊆ [u]
be the set of elements for which the query algorithm uses
the adaptive probe to probe cell i. Since a cell can contain
2b different bit patterns, the set {Ui ∩ Sj | j ∈ [l]} can have
size at most 2b. We will use this fact to get an upper bound
on l.

For a positive integer m to be determined later, let F be

the family of functions f : [s]→ {0, . . . ,m} for which σf
def
=∑s

i=1 f(i) ≤ n. It is easily shown by induction on m that
there are at most

(
s
n

)
nm functions in F . For any Sj , j ∈ [l],

there is a function in F for which f(i) = |Sj∩Ui| if |Sj∩Ui| ≤
m and f(i) = 0 otherwise. We bound the number of sets
by summing over all functions in F , and the number a of
indices i ∈ [s] for which |Sj ∩ Ui| > m.

l <
∑

0≤a≤ n
m

∑
f∈F

σf≤n−ma

(
s

a

)
2ba

s∏
i=1

|Ui|f(i)

<
∑

0≤a≤ n
m

sa
(
s

n

)
nm 2ba

(u
s

)n−ma

< nm
(
s

n

)(u
s

)n∑
a≥0

(
sm+12b

um

)a
.

The second inequality uses convexity, i.e., that the sum is
maximized when the |Ui| are equal. For suitablem = O(1/ε)
the last sum is bounded by 2. In conclusion, we must have
kb > log

(
u
n

)
− log

(
2nm

(
s
n

) (
u
s

)n)
= Ω(n2/s − logn), where

the last bound is derived as in [12]. By the bit probe lower
bound of [3], we must have kb = Ω(log u). Together, these
bounds give the desired bound on b.

Corollary 4. For any constant δ > 0, if u > s2+δ, s ≥
n, and Membership(u, n, s, log u) has a (0, 1, 1)-probe query

scheme, then u = 2Ω(sph(u,n,s)).

Proof. For some set of queries U ⊂ [u] of size at least
u/2s > s1+δ/2, and size a power of two, the query algo-
rithm probes the same first word. We can apply Theorem 3
with ε = Ω(δ) to this set. Finally note that sph(|U |, n, s) =
Θ(sph(u, n, s)).

2.3 Two parallel adaptive word probes suffice
In this section we show the existence of a Membership

scheme whose query algorithm on input x probes one fixed
word, containing a description of two functions f and g, and
then probes indices f(x) and g(x) independently in two lin-
ear size tables. The set contains x if and only if it is found
in one of the two adaptively probed words. The locations
of elements also define a perfect hash function, so we have a
scheme for Dictionary. Our hash functions will be taken
from families that are “nearly k-wise independent” in the
sense of (c, k)-universality.

Definition 1. A family {fi}i∈I , fi : [u] → [r], is (c, k)-
universal if, for any k distinct elements x1, . . . , xk ∈ [u],
any y1, . . . , yk ∈ [r], and i ∈ I chosen uniformly at random,
Pr[fi(x1) = y1, . . . , fi(xk) = yk] ≤ c/rk.

Let c be any constant, and let f, g : [u] → [r] be functions
chosen independently at random from a (c, k)-universal fam-
ily. (For some constructions of such families see, e.g., Siegel’s
paper [19].) We claim that for any ε > 0, range r = (1 + ε)n
and k = O(logn) suffice to make it possible, with high prob-
ability, to arrange the elements of S in two tables such that
x ∈ S resides in either cell number f(x) of table number one,
or cell g(x) of table number two. Our argument is quite dif-
ferent from those in [1, 5], which do not seem to go through
with less than n-wise independence. On the other hand it
shares some features with an analysis of Karp et al. [11] that
looks at the same random structure, with slightly different
parameters, in connection with PRAM simulation.

Suppose that no arrangement is possible. By Hall’s theo-
rem [10] this means that there is a subset S′ ⊆ S such that
|f [S′]| + |g[S′]| < |S′|. Assume S′ to be a set of minimum
size for which the inequality is satisfied, and consider the bi-
partite graph with left vertices labelled by [r], right vertices
labelled by [r], and edges {f(x), g(x)} for x ∈ S′. (There
may be parallel edges.) As the number of edges is greater
than the number of non-isolated vertices, there are at least
two vertices of degree 3 or one of degree at least 4, and by
minimality of S′ there can be no vertex of degree one. Thus,
starting and ending in a vertex of degree more than two, we
can form a path of v edges through at most v − 1 vertices.
Even in the graph with edges {f(x), g(x)} for x ∈ S, such a
path is unlikely to exist for any v. We first bound the ex-
pected number of paths of length v ≤ k, using the fact that
any configuration of v edges has probability at most c2/r2v:

k∑
v=3

v2rv−1nvc2r−2v =
c2

r

k∑
v=3

v2(n/r)v <
13 c2

εr
.

For v > k > 2 log(r)/ε even a sub-path of k edges through at
most k+ 1 vertices is not very likely. The expected number
of such paths is bounded by:

rk+1nkc2r−2k = c2r(n/r)k < c2/r .

Thus, for r larger than some constant (dependent on c and
ε), the probability that the randomly chosen pair of func-
tions does not work for a particular set is smaller than 1/3.
Now consider a family of u independently and randomly cho-
sen function pairs. For any set, the probability that no pair
works is less than 3−u. Hence, with overwhelming probabil-
ity there is a good pair for any set. Enumerating the pairs
of any good family, the appropriate pair can be described
in one word. (In fact, a family of size log

(
u
n

)
≤ n log u,

and hence logn + log log u fixed bits, would suffice.) For
constant n, one can easily get a (1, 1)-probe query scheme,
using universal hashing [4] to a table of size O(n2).

As stated, the scheme does not use O(sm) bits of space.
However, this can be remedied using quotienting [14]: Rather
than explicitly storing elements of [u] in the hash tables, the
element in cell i is represented relative to the subset of [u]
hashing to i. To benefit from the decrease in the number of
bits needed, one packs the largest possible number of table
elements into each cell. If the hash functions used have the
property of mapping [u] evenly to [r], this saves an optimal
logn − O(1) bits per cell. Known constructions of (c, k)-
universal families map O(ku/r) elements to each value in
[r], giving a savings of log(n/k) bits per cell. In particular,
for k = O(logn) this yields a space usage of O(n log logn)
bits more than the information theoretical minimum. By
using a different family of hash functions, essentially a dou-
ble Feistel permutation based on the family used above, we
can in fact save logn−O(1) bits per cell, obtaining optimal
space. Details appear in the full version of this paper.

Theorem 5. There is a (1, 2)-probe query scheme for
Dictionary(u, n, r = O(n), O(sm/ log u), log u).

If one is willing to increase space to n1+ε words, the analysis
goes through with O(1)-wise independent hash functions,
giving explicit constant time schemes using slightly super-
linear space.

We have not described how to compute the positions of set
elements in the tables. As it is a matching problem, it can
clearly be done in polynomial time. However, there are only
two possibilities for each element, so the problem can be
solved in expected linear time by a simple reduction to 2-

sat: Create one variable per element, and clauses stating
that there is no collision for each pair of elements with the
same value under f or g. (There are O(n) such pairs, ex-
pected.) A linear time 2-sat algorithm is outlined in [6].
In fact, the data structure supports efficient dynamic up-
dates. Using Siegel’s hash function family [19] with con-
stant evaluation time, insertions can be done in constant
amortized expected time, employing a simple greedy inser-
tion scheme [16].

It is interesting to compare our scheme to closed hashing
schemes. These are schemes that evaluate a fixed sequence
of hash functions to determine which cells to probe. Dy-
namic insertions are done greedily, i.e., by inserting the el-
ement in the first available cell probed. It was shown by
Yao [21] that for such schemes, under the assumption of
truly random hash functions, the expected average number
of probes to perform a lookup of an element in the table is at

least 1
α

ln 1
1−α −o(1), where α denotes the ratio between the

number of elements and the table size. In our case α ≈ 1
2
,

so for large enough n and small ε, the expected number of
probes is at least 2/ ln(2)− ε ≥ 1.38. By randomly deciding
which table to look in first, we can get an expected probe
count of 1.5, and at the same time guarantee that no more
than two probes are needed, as opposed to the Ω(logn) ex-
pected worst case for closed hashing.

Our scheme is related to another dynamic hashing strategy
called 2-way chaining [1]. It is a variant of chained hashing
in which two hash functions are used, call them h1 and h2.
Insertion of an element x is performed in the shortest of
chain number h1(x) and chain number h2(x). Under the
assumption of totally random hash functions it was shown
in [1] that the expected maximal chain length for this scheme
is O(log logn), with a low constant. This can also be shown
to be true for O(logn)-wise independent families.

3. PERFECT HASHING
3.1 Tight bit probe bound for minimal range
A natural question is whether Theorem 1 can be extended to
Dictionary(u, n, r = n,O(sm), 1), i.e., to supply a minimal
perfect hash function. We answer this question negatively
by showing that, no matter how much space is used, blognc
bits must be probed. In fact, we show that the bit probe
complexity achieved in [17] is optimal.

Theorem 6. The cell probe complexity of Perfect Hash-

ing(u, n, r = n, s = O(sph), 1) is Θ(logn+ log log u).

Proof. As mentioned, the upper bound was shown in [17].
As for the lower bound, we first show that the cell probe
complexity is at least blognc. Suppose to the contrary that
Perfect Hashing(u, n, r, s, 1) has cell probe complexity
t ≤ log(n) − 1. Each element x ∈ [u] can map to at most
2t different values in [r], and there can be no set of n ele-
ments that map only to a set of n− 1 values in [r]. As each

set of 2t values lies within
(
r−2t

n−1−2t

)
sets of size n − 1, the

size of the universe must be less than n
(
r

n−1

)
/
(
r−2t

n−1−2t

)
=

n r/(n − 2t) ≤ 2r. But this can not be the case by the
problem definition.

Now we turn to a lower bound in terms of u. For each x ∈ [u]
there is a “query strategy” specifying how to perform the
sequence of probes and which hash value to return in every

case. There are at most s2t different ways of performing the

probes, and n2t ways in which the hash value can depend
on the t bits probed. There cannot be two elements with
the same query strategy, as these would hash to the same

value for any data structure. Hence, u ≤ (sn)2t , and as we
need consider only the case u > 2n, this yields the desired
bound.

3.2 Minimal range using one adaptive cell probe
A simple non-explicit scheme, seemingly not described in
the literature, achieves optimal space and bit probe perfor-
mance, looking only at bits from one fixed and one adap-
tively determined word. We use the following properties of
random functions.

• A random function ρ : [u] → [2n2] is 1 − 1 on S with
probability more than 3/4.

• For some r = O(n/ logn), the following holds for a
random function h : [2n2]→ [r].

– h maps no more than 1
6

logn elements of ρ[S] to
each value in [r], with probability at least 7/8.

– The number of elements of ρ[S] mapping to [i] is

within n2/3 of the expectation in/r for all i ∈ [r]
with probability at least 7/8.

In fact, picking ρ from a universal family, and h from an
O(logn)-wise independent family also achieves the above,
by results in [7] and [18, Theorem 2.5].

As a randomly chosen pair of functions has all the above
properties for fixed S with probability more that 1/2, there
is a family of log

(
u
n

)
pairs of functions so that for any set S of

size n there is a pair with the properties. A query algorithm
can thus read the description of such a pair using one word
probe. For i ∈ [r], let Bi = {ρ(x) | x ∈ S, h(ρ(s)) = i}. In
the second probe, the query algorithm reads cell j = h(ρ(x))
of a table that contains:

• The deviation of
∑
i<j |Bi| from bin/rc, using d 2

3
logne

bits.

• A minimal perfect hash function hj : [2n2]→ [|Bj |] for
Bj , using at most b 1

3
lognc bits. (This can be done for

large enough n by Mehlhorn’s bound [12, III.2.3].)

Clearly this information fits one word and suffices to com-
pute a minimal perfect hash function value for x. Sets of
constant size can be handled using universal hashing to a
quadratic size table containing function values.

If log u is much larger than logn, the space usage of the
scheme as described is not very good. Again, by “compress-
ing” the largest possible number of table entries into each
word, we can make sure that a constant fraction of the bits
in each cell is utilized. With this modification a space opti-
mal scheme is obtained.

Theorem 7. There is a (1, 1)-probe query scheme for
Perfect Hashing(u, n, r = n,O(sph/ log u+ 1), log u).

As is easily seen, only O(logn + log log u) bits of the two
words probed are looked at. In this sense the scheme is also
bit probe optimal.

3.3 Linear range using one adaptive bit probe
We now describe a strengthening of Theorem 5 to the fol-
lowing effect: Not only is it possible to probe just O(logn+
log log u) fixed bits and get a choice of two cells in one of
which the query element must be, if present — it is possible
to look up a single bit in a table of size O(n) telling which of
the two choices is the right one. This defines a perfect hash
function. The range of the perfect hash function we achieve
is linear, but the constant needed in the present analysis is
large.

Again, we choose f, g : [u] → [r] independently at ran-
dom from a (c, k)-universal family, where c ≥ 1 is any con-
stant, and k is specified later. Additionally we choose a
random function h : [u]→ [s] from a (c, k)-universal family,
where parameter s is essentially the space to be used. For
a bit string a = a1 . . . as we consider the function ρa where
ρa(x) = f(x) if ah(x) = 0, and ρa(x) = g(x) otherwise.
We will show that with constant probability, for r = 64c n,
s = n, and k = O(logn), there exists a string a for which ρa
is 1-1 on S. Our proof is similar to that of Theorem 5, but
is more complicated. It uses a characterization of satisfiable
2-sat instances rather than Hall’s theorem.

The requirements on a for ρa to be 1-1 on S can be expressed
as an instance of 2-sat. Let a0

i denote the negation of ai, and
let a1

i be synonymous with ai. The 2-sat instance can be
expressed by the following (redundant) set of implications,
for x1, x2 ranging over all pairs of distinct elements in S:

a0
h(x1) → a0

h(x2), if f(x1) = g(x2)

a1
h(x1) → a0

h(x2), if g(x1) = g(x2)

a0
h(x1) → a1

h(x2), if f(x1) = f(x2)

a1
h(x1) → a1

h(x2), if g(x1) = f(x2)

A well known characterization of satisfiable 2-sat instances
states that the requirements can be satisfied if and only if
there is no sequence of implications of the form a1

i → · · · →
a0
i → · · · → a1

i . So if the requirements cannot be satisfied,
there is some shortest sequence of implications witnessing
this, a1

i1 → az2i2 → · · · → azviv → a1
i1 , where zi ∈ {0, 1}. By

minimality, variables can occur only twice in the sequence,
once negated and once unnegated, except ai1 which occurs
three times. Corresponding to the sequence there are el-

ement pairs (x
(1)
1 , x

(2)
2), (x

(2)
1 , x

(3)
2), . . . , (x

(v)
1 , x

(1)
2) ∈ S × S

with h(x
(j)
1) = h(x

(j)
2) = ij , giving rise to the implications

by the above rules. For example, if z2 = 1 and z3 = 0

then we have g(x
(1)
1) = f(x

(2)
2) and g(x

(2)
1) = g(x

(3)
2). An

element x occurs only in equations corresponding to impli-
cations involving ah(x). For each occurrence of ah(x) there is
one equation involving f(x) and and one equation involving
g(x). Thus, there are either zero, one, or two occurrences of
f(x) and g(x).

First assume k ≥ v. Consider a particular sequence of el-

ements x
(1)
1 , x

(2)
2 , x

(2)
1 , x

(3)
2 , . . . , x

(v)
1 , x

(1)
2 and bits z2, . . . , zv.

There is a set D of the v resulting equations that necessar-
ily hold if all previous equations hold. (In the order cor-
responding to the sequence of implications.) For example,

in our previous example if x
(1)
1 = x

(3)
2 then the equation

f(x
(2)
2) = g(x

(2)
1) must hold. Let d = |D|. For any x, each

of f(x) and g(x) can occur in the equations at most twice,
so we must have d ≤ v/2. By (c, k)-universality the proba-
bility of f and g satisfying the equations is at most cr−v+d.

Denote by D′ the set of indices j for which x
(j)
1 = x

(j)
2 , and

let d′ = |D′|. The probability that h(x
(j)
1) = h(x

(j)
2) for

all j is at most cs−v+d′ . Given the sets D and D′, only
2v − d − d′ elements of S need to be specified to deter-
mine all 2v elements in the above sequence. This is be-
cause any equation in D is determined uniquely by one side
of the equation and the previous equations. So for any D

and D′ there are at most n2v−d−d′ possible sequences of

elements, and the expected number of witnesses of length

v is bounded by c2(n2/rs)v(r/n)d(s/n)d
′
. Since s = n and

d ≤ v/2 this is no more than c2(
√
n/r)v = c2(2c)−3v. There

are at most 4v ways of choosing D and D′, so the expected
number of witnesses, for all D, D′ and v ≥ 2, is bounded by
c2
∑
v≥2 4v(2c)−3v ≤ 1/2. In particular, with probability at

least 1/2 there is no witness of length up to k.

In case k < v we bound the probability that k succes-
sive implications exist. Again, consider a particular se-

quence of elements x
(1)
1 , x

(2)
2 , x

(2)
1 , x

(3)
2 , . . . , x

(k)
1 , x

(k+1)
2 and

bits z1, . . . , zk+1. As above, let d ≤ k/2 be the number of
equations that hold if the previous ones do, and let d′ be the

number of indices 1 < j ≤ k for which x
(j)
1 = x

(j)
2 . The prob-

ability of satisfying the equations is bounded by cr−k+d, and
the choice of h is consistent with the sequence with proba-

bility at most cs−k+1+d′ . Similarly to before, given d and d′

there are nk−d−d
′
4k possible sequences of elements. Hence,

the probability of k successive implications is bounded by

c2s(4n2/rs)k(r/n)d(s/n)d
′
≤ c2n/2k. For k ≥ log(c2n) + 2

this is at most 1/4.

To sum up, randomly chosen hash functions yield a perfect
hash function with probability at least 1/4. The theorem
now follows by arguments like those concluding the proof of
Theorem 5.

Theorem 8. There is a (O(logn+log log u), 1)-probe que-
ry scheme for Perfect Hashing(u, n, r = O(n), O(sph), 1).

We conclude this section by showing that there is no hope
of improving the range of the above perfect hash function to
(nearly) minimum: One needs either r > (log(e) − o(1))n
or Ω(sph) fixed bit probes, regardless of the size of the data
structure.

Lemma 9. For u = n2+Ω(1), if there is a (k, 1)-probe
query scheme for Perfect Hashing(u, n, r, s, 1) then k ≥
(1− o(1)) sph − n.

Proof. For every set S ⊆ [u] of size n, there must be at
least one data structure that encodes a perfect hash function
for S. The set of bit positions probed by the query algorithm
on inputs in S has size at most k+n. Since bits outside these
positions can be set arbitrarily, a fraction 2−(k+n) of {0, 1}s
can encode a perfect hash function for S. Hence, there is a
function that is perfect for a fraction 2−(k+n) of all n-subsets
of [u]. The basis of Mehlhorn’s lower bound [12, III.2.3] is
that this can only be true for k + n ≥ (1 − o(1)) sph ≥
(log e− o(1))n.

Corollary 10. For any constant ε > 0 and u = n2+Ω(1),
if Perfect Hashing(u, n, r, s, 1) has a (k, 1)-probe query
scheme then k = Ω(sph) or r ≥ (log e− ε)n.

While the above lower bound depends heavily on the fact
that only one bit is probed adaptively, slightly increasing

the number of adaptive probes does not help with respect to
implementing minimal perfect hashing: It follows from [17]
that one needs Ω(log logn) adaptive bit probes or Ω(n) fixed
bit probes.

3.4 Adaptivity yields exponential speedup
All good upper bounds for Perfect Hashing have used
adaptive cell probes. We show that this is no coincidence,
by exhibiting the largest possible gap between adaptive and
non-adaptive schemes.

Proposition 11. There is a constant c such that for s =
O(sph) and u > cs, there is no (0, o(s))-probe scheme for
Perfect Hashing(u, n, r, s, 1).

Proof. Suppose there is a non-adaptive scheme using,
without loss of generality, exactly t probes. On input x ∈ [u]
the scheme probes bit positions Bx ⊆ [s] where |Bx| = t.

Let H
def
= sph(b

√
uc, n, r). Note that H = Ω(sph) for c

large enough. It is sufficient to show that we must have
t > H/2; so assume to the contrary that t ≤ H/2. Each
set Bx is contained in

(
s−t

H−1−t

)
sets of size H − 1. Since(

s
H−1

)
=
(

s−t
H−1−t

)(
s
t

)
/
(
H−1
t

)
and u ≥ b

√
uc
(
s
t

)
/
(
H−1
t

)
when

c is sufficiently large, there must be a set U ′ ⊆ [u] of b
√
uc

elements such that | ∪x∈U′ Bx| < H. But the bit positions
∪x∈U′Bx can encode a perfect hash function for any n ele-
ments of U ′, contradicting the definition of H.

Thus, a constant fraction of the data structure must be
probed if O(sph) space is to be used. This should be com-
pared to the upper bound of Theorem 8 that uses O(logn+
log log u) = O(log sph) bit probes, of which just one is adap-
tive.

Using more space does not help much, e.g., for space s =
O(n log u) we still have a lower bound of Ω(s) when u =

2Θ(n logn). This particular case is interesting, as a Member-

ship data structure of O(n log u) bits allows queries using

O(log u) = O(
√
s/ log s) non-adaptive bit probes [3]. So for

these parameters, Membership is strictly easier than Per-

fect Hashing among non-adaptive schemes.

4. OPEN PROBLEMS
An apparent open problem is whether our non-explicit data
structures can be efficiently implemented on a RAM with
a standard instruction set. In particular, explicit versions
of Theorems 5 and 7 could be interesting from a practical
point of view.

From a theoretical perspective we lack a tight bit probe
bound for perfect hashing. The lower bound technique in
the first part of the proof of Theorem 6 breaks down for
range just slightly larger than n. On the other hand, the
upper bound of Theorem 1 shows that very few bit probes
suffice when the universe is small compared to the set.

Acknowledgement. The author would like to thank Moni
Naor for insightful discussions during the course of this work.

5. REFERENCES
[1] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli

Upfal. Balanced allocations. SIAM J. Comput.,
29(1):180–200 (electronic), 1999.

[2] Andrej Brodnik and J. Ian Munro. Membership in
constant time and almost-minimum space. SIAM J.
Comput., 28(5):1627–1640 (electronic), 1999.

[3] Harry Buhrman, Peter Bro Miltersen, Jaikumar
Radhakrishnan, and S. Venkatesh. Are bitvectors
optimal? In Proceedings of the 32nd Annual ACM
Symposium on Theory of Computing (STOC ’00),
pages 449–458. ACM Press, New York, 2000.

[4] J. Lawrence Carter and Mark N. Wegman. Universal
classes of hash functions. J. Comput. System Sci.,
18(2):143–154, 1979.

[5] Arthur Czumaj and Volker Stemann. Randomized
allocation processes. In Proceedings of the 38th Annual
Symposium on Foundations of Computer Science
(FOCS ’97), pages 194–203, Los Alamitos, CA, 1997.
IEEE Comput. Soc. Press.

[6] Shimon Even, Alon Itai, and Adi Shamir. On the
complexity of timetable and multicommodity flow
problems. SIAM J. Comput., 5(4):691–703, 1976.

[7] Michael L. Fredman, János Komlós, and Endre
Szemerédi. Storing a sparse table with O(1) worst case
access time. J. Assoc. Comput. Mach., 31(3):538–544,
1984.

[8] Ofer Gabber and Zvi Galil. Explicit constructions of
linear-sized superconcentrators. J. Comput. System
Sci., 22(3):407–420, 1981.

[9] Torben Hagerup and Torsten Tholey. Efficient
minimal perfect hashing in nearly minimal space. In
Proceedings of the 18th Symposium on Theoretical
Aspects of Computer Science (STACS ’01), volume
2010 of Lecture Notes in Computer Science, pages
317–326. Springer-Verlag, Berlin, 2001.

[10] Philip Hall. On representatives of subsets. J. London
Math. Soc., 10:26–30, 1935.

[11] Richard M. Karp, Michael Luby, and Friedhelm Meyer
auf der Heide. Efficient PRAM simulation on a
distributed memory machine. Algorithmica,
16(4-5):517–542, 1996.

[12] Kurt Mehlhorn. Data structures and algorithms. 1,
Sorting and searching. Springer-Verlag, Berlin, 1984.

[13] Marvin Minsky and Seymour Papert. Perceptrons: An
Introduction to Computational Geometry. MIT Press,
Cambridge, MA, 1969.

[14] Rasmus Pagh. Low Redundancy in Static Dictionaries
with O(1) Lookup Time. In Proceedings of the 26th
International Colloquium on Automata, Languages
and Programming (ICALP ’99), volume 1644 of
Lecture Notes in Computer Science, pages 595–604.
Springer-Verlag, Berlin, 1999.

[15] Rasmus Pagh. Hash and Displace: Efficient
Evaluation of Minimal Perfect Hash Functions. In
Proceedings of the 6th international Workshop on
Algorithms and Data Structures (WADS ’99), volume
1663 of Lecture Notes in Computer Science, pages
49–54. Springer-Verlag, Berlin, 1999.

[16] Rasmus Pagh and Flemming Friche Rodler. Cuckoo
hashing. Manuscript, 2001.

[17] Jeanette P. Schmidt and Alan Siegel. The spatial
complexity of oblivious k-probe hash functions. SIAM
J. Comput., 19(5):775–786, 1990.

[18] Jeanette P. Schmidt, Alan Siegel, and Aravind
Srinivasan. Chernoff-Hoeffding bounds for applications
with limited independence. In Proceedings of the 4th
Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA ’93), pages 331–340, New York,
1993. ACM Press.

[19] Alan Siegel. On universal classes of fast high
performance hash functions, their time-space tradeoff,
and their applications. In Proceedings of the 30th
Annual Symposium on Foundations of Computer
Science (FOCS ’89), pages 20–25. IEEE Comput. Soc.
Press, Los Alamitos, CA, 1989.

[20] Andrew C.-C. Yao. Should tables be sorted? J. Assoc.
Comput. Mach., 28(3):615–628, 1981.

[21] Andrew C.-C. Yao. Uniform hashing is optimal. J.
Assoc. Comput. Mach., 32(3):687–693, 1985.

