
Notes on Linear Programming

James Aspnes

April 4, 2004

1 Linear Programming

Linear programs are a class of combinatorial optimization problems involv-
ing minimizing or maximizing a linear function of a of some real-valued
variables subject to constraints that are inequalities on additional linear
functions of those variables. We will not discuss the details of the stan-
dard algorithms for solving linear programs much, for reasons that will be
explained in more detail later. However, linear programming is a very pow-
erful tool for representing a wide variety of optimization problems, and it
is important to be able to recognize when a problem can be formulated in
terms of a linear program so that it can be solved using these standard tools.

If you want to read more about linear programming, some good refer-
ences are Chvatal’s Linear Programming and Papadimitriou and Steiglitz’s
Combinatorial Optimization: Algorithms and Complexity. More advanced
references are Schrijver’s Theory of Linear and Integer Programming and
Grötschel, Lovasz, and Schrijver’s Geometrical Algorithms and Combinato-
rial Optimization.

1.1 Example

In order to understand the traditional examples of linear programs, it helps
to think like a mid-level apparatchik in a Soviet economic planning bu-
reaucracy of the 1950’s or, equivalently, like a mid-level manager in a large
U.S. manufacturing company of the same period. Imagine that you have a
warehouse full of parts that can be assembled into either tanks or tractors.
Assembling and operating each tank requires 8 wheels, 1 body, 1 turret,
and 1 workers. Each tractor requires 4 wheels, 1 body, no turret, and 3
workers. Under a “guns equal butter” policy, tanks and tractors are equally
valuable to the revolution (or, in the case of the manufacturing company,
to the shareholders). In addition, every worker must be employed, even if

1

maximize
x1 + x2

subject to
8x1 + 4x2 ≤ 272
x1 + x2 ≤ 59
x1 ≤ 48
x1 + 3x2 = 112
x1 ≥ 0

x2 ≥ 0

Figure 1: Guns vs butter optimization problem. The number of tanks pro-
duced is given by x1 and tractors is given by x2. The constraints, in order,
correspond to the limited supply of wheels, bodies, turrets, and workers,
and the restrictions that we can’t produce a negative number of tanks or
tractors.

it means making a suboptimal number of tanks and tractors. In your ware-
house you have 272 wheels, 59 bodies, 48 turrets, and 112 workers. Your
goal is to maximize the total production subject to the limits of what parts
are available in the warehouse.

Written as a linear program, the tanks-and-tractor problem might look
something like the linear program in Figure 1. Feeding this program to your
favorite linear program solver gives the optimal solution of 18.4 tanks and
31.2 tractors.

1.2 The general form of a linear program

The example in Figure 1 illustrates many of the features of a typical linear
program. There is a single objective function x1 + x2 that we would like to
maximize. This objective function is linear; it is of the form

∑
j cjxj where

the xj are the variables of the linear program and the cj are the objective
function coefficients (in this case, 1 and 1). The rest of the program consists
of constraints. Each constraint in a linear programming specifies a linear
function of the variables and requires that that linear function be ≤, ≥, or
= some constant.1

1If you’re wondering where < and > constraints might fit in, they are generally taken
to be equivalent to ≤ or ≥ constraints. The reason is that linear programs are usually
solved using floating-point numbers on real machines with round-off error. When x1 is
really x1 ± ε, the distinction between x1 ± ε > 2 and x1 ± ε ≥ 2 is largely theoretical.

2

1.3 Linear programs in canonical form

People who work in this area sometimes make a distinction between linear
programs in general form, like the one in Figure 1, and those in canonical
form. In canonical form, the objective function is always to be maximized,
every constraint is a ≤ constraint, and all variables are implicitly constrained
to be non-negative. Any linear program can be reduced to canonical form
by simple transformations; for example, the constraint x1 + x2 = 112 can
be replaced by two constraints x1 + x2 ≤ 112 and −x1 − x2 ≤ −112, and
a variable y that is allowed to be negative or not can be replaced by an
expression y+ − y−, where y+ and y− are both non-negative.

The advantage of making all the constraints less-than-or-equal constraints
is that we can write the entire constraint set succinctly using matrix nota-
tion. If we similarly use vector notation to represent the variables x and the
object coefficients c, even huge linear programs turn into nice little expres-
sions like

max{cx|x ≥ 0, Ax ≤ b},

where c is a row vector with n elements, x is a column vector with n elements,
b is a column vector with m elements, and A is an m×n matrix. Note that
vectors are compared componentwise; x ≤ y if and only if xi ≤ yi for all
indices i.

Having a simple standardized representation for linear programs is useful
when we want to state theorems about linear programs without having to
wade through a lot of special cases. However, for the purposes of reducing
an algorithmic problem to a linear program, it’s not necessary to go all the
way to canonical form. Anything that is clearly a linear program is fine.

1.4 Infeasibility and unboundedness

Not all linear programs have solutions. The linear program in Figure 2 has
an inconsistent set of constraints: there is no assignment to x1 and x2 that
makes all the constraints simultaneously true. Such linear programs are
called infeasible.

An equally troublesome difficulty is illustrated by the linear program in
Figure 3. Here there exist solutions that satisfy the constraints, but there
still does not exist an optimum solution. The reason is that the objective
function x1 + x2 can be made arbitrarily large. Such linear programs are
called unbounded.

Infeasibility and unboundedness are, fortunately, the only things that can
go wrong in a linear program. Any linear program that is neither infeasible

3

maximize
x1 + x2

subject to
x1 + x2 ≤ 9
x1 ≥ 7

x2 ≥ 5

Figure 2: An infeasible linear program.

maximize
x1 + x2

subject to
x1 ≥ 7

x2 ≥ 5

Figure 3: An unbounded linear program.

nor unbounded has at least one optimum. A good linear programming
algorithm should find this optimum, or, if no optimum exists, report whether
the problem is infeasibility or unboundedness.

1.5 Duality

Let’s suppose we have a linear program in canonical form:

max{cx|x ≥ 0, Ax ≤ b} (1)

and suppose further that we have a candidate solution x∗ that we think is
optimal. How do we prove this?

We’d like to combine the inequalities in Ax ≤ b to get a new inequality
of the form cx ≤ z. We can combine inequalities in the usual way by
adding them together, possibly after scaling each one by a non-negative
ratio (negative ratios would reverse the sign of the inequality, which we
don’t want). In matrix notation, this corresponds to multiplying each side
of Ax ≤ b from the left by a row vector y; yA is a linear combination of the
rows of A and yb is the corresponding linear combination of the rows of b.
If y ≥ 0, we have yAx ≤ yb. So now we just need to arrange for yA to equal
c, while making yb as small as possible.

4

This is a linear program, the dual of our original program (1):

min{yb|y ≥ 0, yA = c}. (2)

Linear programming duality says that the solution to the dual and the
solution to the original, or primal program match exactly:

max{cx|x ≥ 0, Ax ≤ b} = min{yb|y ≥ 0, yA = c}. (3)

Linear programming duality shows how to prove that x is an optimal solu-
tion; we just exhibit the corresponding y with cx = by, and we know we can’t
do better. This relationship is the basis of a family of linear programming-
based algorithms called primal-dual algorithms that solve problems by al-
ternating between improving separate primal and dual solutions.

An important feature of the relationship between the primal and dual
is called complementary slackness. Complementary slackness says that any
constraint corresponding to a nonzero element of y is tight; or, conversely,
that slack constraints are assigned zero weight by y. This is not entirely
surprising if we think if the dual as a way to find the best bound on cx by
combining constraints; those constraints that are not tight will not give the
best bound, so we want to leave them out by multiplying them by zero.

1.6 Fractional vs integral solutions

Sometimes we write a linear program that we hope will give us an integer
solution, and it gives us fractional glop instead. Unfortunately, insisting on
integral solutions may make finding an optimum much harder.

For example, suppose we want to solve the maximum independent set
problem. An independent set is a set of vertices in a graph such that no two
vertices in the set are adjacent. A maximum independent set (MIS for short)
is just an independent set containing the largest possible number of vertices.
Figure 4 gives a linear program for finding a maximum independent set in
a graph G = (V,E).

Maximum independent set is a well-known NP-complete problem, so we
don’t really expect this to work. To see what goes wrong, let G be a triangle.
Since all the vertices are adjacent to one another, any MIS consists of a single
vertex. But the linear program of Figure 4 has a slightly better solution: let
x1 = x2 = x3 = 1

2 . This dubious MIS has a suspicious total size of 3
2 , and

each vertex is half in and half out of it. Erwin Schroedinger might buy it,
but graph theorists will not be impressed.

5

maximize∑
v∈V xv

subject to
xu + xv ≤ 1 ∀uv ∈ E

xv ≥ 0 ∀v ∈ V
xv ≤ 1 ∀v ∈ V

Figure 4: Maximum independent set as a linear program. Each variable xv

indicates whether the corresponding vertex v is or is not in the independent
set. Independence is enforced by the xu + xv ≤ 1 constraints.

Insisting on integer solutions, even if they are worse than some fractional
solution, gives integer linear programming problem. This problem is in gen-
eral NP-hard, since it solves NP-hard problems like maximum independent
set.

1.6.1 Total unimodularity

It is sometimes possible to show that a particular linear program or class of
linear programs will always have integral solutions. A general way to do this
is to show that the matrix A of constraint coefficients is totally unimodular,
which means that the determinant of every square submatrix is −1, 0, or
+1. If A is totally unimodular and b is integral, then for any c there is some
integral solution x that maximizes cx while satisfying Ax ≤ b.

Totally unimodular matrices are not always easy to recognize by inspec-
tion, though there exists a (complicated) general polynomial-time algorithm
that determines whether a given matrix is totally unimodular. It is usually
easier to detect when a matrix is not totally unimodular. Since the square
submatrices of A include individual elements, this means that all individual
coefficients must themselves be −1, 0, or +1. Similarly, if one can find a
submatrix with a determinant other than −1, 0, or +1 then A is not totally
unimodular. An example of a matrix that is not totally unimodular is the
constraint coefficient matrix for the linear program in Figure 4 when G is a
triangle.

A criterion that is handy for recognizing some easy cases that arise from
graph problems is the following:

Lemma 1 If every row (alternatively, every column) of a matrix A contains
either no nonzero entries or exactly one −1 and exactly one +1, then A is

6

totally unimodular.

The usefulness of Lemma 1 is that such matrices naturally arise from
directed graphs, where the coefficient Aij is −1 when vertex i is the source
of edge j, +1 when it’s the sink, and 0 otherwise.

When applying Lemma 1, remember to put the linear program in canon-
ical form first. For some problems one may have to remove duplicate rows or
columns first; this does not affect total unimodularity since any submatrix
containing parts of two duplicate rows or columns has determinant 0.

1.7 Optimization problems that are not linear programs

A common trap is to write a would-be linear program that is not quite
linear. Suppose that the leadership of our communist dictatorship and/or
large manufacturing corporation decides to measure the productivity of our
factory by multiplying the number of tanks by the number of tractors. The
objective function is then x1x2, which is a perfectly good objective func-
tion, only it’s not linear. Because the objective function isn’t linear, we
can’t use linear programming to solve this problem. Similarly, a constraint
like x2

1 + x2 ≤ 312 would violate the requirement that the constraints be
linear. Allowing quadratic constraints is a sneaky way to permit integer
linear programming, since we can force a variable x to be 0 or 1 by setting
x2−x = 0 and can build bigger integers out of 0-1 variables by representing
them in binary. So we can expect that deviating from linearity eliminates
any guarantee that the problem can be solved efficiently.

2 Algorithms for linear programming

There are many algorithms for solving linear programs, some of which are
practical, and some of which run in polynomial time in the worst case. Sadly,
these two sets are (at the moment) disjoint. This split requires considering
the possibility that asymptotic worst case analysis might not always be the
best tool for identifying algorithms that are useful in practice, a possibility
so horrifying that we will concentrate on reducing other problems to linear
programming and skip over most of the details of how these linear programs
are actually solved.

This section gives enough detail about the two methods to win the “Lin-
ear Programming” category on Jeopardy, but not really enough to under-
stand what is actually going on at the level you might need, say, to imple-
ment the algorithms. If you don’t want to read about linear programming

7

Method Typical cost Worst case cost
Simplex O(n2m) Very bad
Ellipsoid O(n8) O(n8)

Table 1: Everything you need to know about solving linear programs.

trivia, skip to the convenient summary in Table 1. If you want to really un-
derstand these algorithms, see the references at the beginning of Section 1.

2.1 The Simplex Method

The simplex method, invented in 1951 by Dantzig, has the desirable property
of running in time comparable to Gaussian elimination for typical inputs.
It has the undesirable property of running in exponential time for carefully
constructed pathological inputs.

The key idea of the simplex method is that the set of points that satisfy
the constraints of a feasible linear program form a body in n-dimensional
space called a polytope, which is a convex body with flat faces. These flat
faces are shaved off by the constraints ax ≤ b, each of which cuts the space
in half along the hyperplane {x|ax = b}. A solution to the linear program
is the corner of the polytope that is farthest in the c direction, where cx
is the objective function. To find this corner, the simplex method starts at
some corner (any one will do), and walks uphill along edges until it can’t
go any further. The current location at each step is represented by a set of
n constraints for which ax = b (called the basis), which uniquely identify
some corner (since we can solve for x by solving a system of n equations in
n unknowns). Moving from one corner to the next involves swapping a new
constraint for one of the constraints in the basis, a process called pivoting.
There are many variants of the simplex algorithm based on different choices
of pivoting rules, which determine which of the constraints to swap into and
out of the basis, but the essential idea is that as long as we can avoid going
in circles, we eventually reach the top of the polytope.

In the worst case we may talk a long spiraling path that hits every vertex
of the polytope; there are examples of linear programs with n variables and
m = n constraints in which simplex runs for 2n steps. However, for good
pivoting rules and typical inputs simplex tends to take O(n) steps, each of
which costs O(mn) time. So in practice simplex behaves like an O(n2m)
algorithm most of the time.

8

2.2 The Ellipsoid Method

The ellipsoid method, invented in 1979 by Khachian, is an algorithm for
solving linear programs that runs in polynomial time in the worst case.
Sadly, the polynomial is no better than O(n5) even with very generous cost
assumptions, such as being able to do arithmetic with Θ(n3) bits of precision
in constant time. Since we usually assume constant-time arithmetic only for
numbers of reasonable size (no more than O(log n) bits), a more accurate
asymptotic running time would be O(n8). Because the running time is
usually much larger than the typical running time of simplex (and other
similar algorithms), the ellipsoid method is not used much in practice. But
it does mean that any problem that can be expressed as a linear program
can be solved in polynomial time.

The key idea of the ellipsoid method is similar to binary search. An el-
lipsoid, which is a sphere that has been run through a linear transformation,
is constructed that contains the solution of the linear program somewhere
in its interior. At each step, one of the constraints of the linear program is
used to slice off a piece of the ellipsoid that does not contain the solution,
and a new ellipsoid is found that contains all the points in the remaining
part of the old ellipsoid (plus a few more points, since it’s bulgy). Since
the volume of the ellipsoid shrinks by a guaranteed amount at each step,
after O(n2) steps the ellipsoid converges to the corner corresponding to the
optimal solution.

3 Applications of linear programming

Now that we know how to solve linear programs, let’s see what we can do
with them.

3.1 Max flow

Recall that in the maximum flow problem we are given a graph G = (V,E),
a designated source vertex s and sink vertex t, and a capacity cuv for each
edge uv ∈ E. We want to maximize the flow from s to t where the net flow
into each other vertex is 0 and the flow across any edge uv is between 0 and
cuv.

This problem has a natural representation as a linear program, as shown
in Figure 5. To simplify the presentation we treat missing edges as edges
with capacity 0.

9

maximize∑
v∈V fsv

subject to∑
u∈V fuv −

∑
u∈V fvu = 0 ∀v ∈ V − {s, t}

fuv ≤ cuv ∀u, v ∈ V
fuv ≥ 0 ∀u, v ∈ V

Figure 5: Max flow as a linear program.

maximize∑
v∈V fsv −

∑
uv∈E muvfuv

subject to∑
u∈V fuv −

∑
u∈V fvu = 0 ∀v ∈ V − {s, t}

fuv ≤ cuv ∀u, v ∈ V
fuv ≥ 0 ∀u, v ∈ V

Figure 6: Max flow as a linear program, with edge charges.

maximize∑
v∈V fsv −

∑
uv∈E muvfuv

subject to∑
u∈V fuv −

∑
u∈V fvu = 0 ∀v ∈ V − {s, t}

fuv ≤ cuv ∀u, v ∈ V
fuv ≥ 0 ∀u, v ∈ V
fe ≥ 1

Figure 7: Max flow as a linear program, with edge charges and starving
cousin constraint.

10

From this linear program we can conclude that maximum flow can be
solved in polynomial time (which we probably already knew). However,
having max flow as an LP allows us to do a few more tricks. Suppose we
are charged a fixed rate muv for sending each unit of flow over uv, and we
want to maximize the net flow minus all the edge charges. This just involves
changing the objective function, as shown in Figure 6.

Or, perhaps, our cousin runs the trucking company that carries flow over
a particular edge e and we want to guarantee that she gets at least one unit
of business to keep her children from starving. The linear program for this
problem is shown in Figure 7.

We could probably achieve similar results by tinkering with the standard
max-flow algorithms, but by using a linear programming approach we can
get these results with much less mental effort.

3.1.1 Integer solutions

It follows from Ford and Fulkerson’s algorithm that if all the capacities of
a graph are integral that there is a maximum flow that is also integral.
Another way to get this result is to observe that the constraint coefficient
matrix in Figure 5 is totally unimodular, by removing duplicate rows and
applying Lemma 1 to the columns. A similar observation applies to the
problems in Figures 6 and 7.

3.2 Shortest paths

Figure 8 gives a linear program for computing distances from a single source.
All-pairs shortest paths can be solved using the linear program in Figure 9.
Both constraint matrices are totally unimodular by Lemma 1 after removing
duplicate rows; this is not surprising since we expect all shortest paths in
an integral world to have integral length. Neither approach is as efficient as
using a specialized algorithm. What happens with disconnected vertices or
negative cycles?

3.3 Sorting

No algorithm can claim to be universal if it can’t sort. But linear program-
ming can! In the linear program in Figure 10, xij = 1 if item i is placed in
location j. The key of each item is assumed to be a fixed value ki (that is
used in constructing the linear program). If all items have different keys, the
unique optimum is the one in which larger items appear in larger locations,
with all xij equal to 0 or 1. If two or more items have the same key, it is

11

maximize∑
v∈V dv

subject to
ds = 0

du + `uv − dv ≤ 0 ∀uv ∈ E

Figure 8: Single-source shortest paths as a linear program.

maximize∑
v∈V duv

subject to
dvv = 0 ∀v

duv + `vw − duw ≤ 0 ∀u ∈ V,∀vw ∈ E

Figure 9: All-pairs shortest paths as a linear program.

possible to get a fractional solution in which the items are spread between
two adjacent locations.

It is left as an exercise to the reader to adapt this program to do some-
thing more useful, like computing a maximum-value matching in a bipartite
graph.

12

maximize∑
i,j j · ki · xij

subject to∑
j xij = 1 ∀i∑
i xij = 1 ∀j
xij ≥ 0 ∀i, j

Figure 10: LP-sort, the world’s second worst sorting algorithm. Sorting is
mostly done by the objective function. Object i is in location j if xij = 1.
The constraints make sure that no location gets more than one object, no
object appears in more than one location, and no location contains a negative
fraction of some object.

13

