INFORMATION AND COMPUTATION 107, 171-184 (1993)

Bounds on Shared Memory for Mutual Exclusion*
JAMES E. BURNS

Georgia Institute of Technology, Atlanta, Georgia 30332
AND

NANCY A. LyYNCH

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

The shared memory requirements of Dijkstra’s mutual exclusion problem are
examined. It is shown that » binary shared variables are necessary and sufficient
to solve the problem of mutual exclusion with guaranteed global progress for n
processes using only atomic reads and writes of shared variables for communication.

+ 1993 Academic Press, Inc.

1. INTRODUCTION

The first solution to the mutual exclusion problem was given by Dijkstra
(1965). The original definition of the problem requires that # processes be
synchronized so that no two processes are simultaneously executing
portions of their code that are called “critical sections.” Processes execute
asynchronously; that is, they execute at independent, finite, nonzero rates,
possibly varying over time. A process may halt if it is not executing its criti-
cal section or the part of its code that is devoted to synchronization. To
prohibit trivial solutions, the system of processes is required to make global
progress; that is, if any process is attempting to reach its critical section,
then eventually some process must succeed. In Dijkstra’s paper, and subse-
quent papers by Knuth (1966), de Bruijn (1967), and Eisenberg and
McGuire (1972), communication between processes was required to be
through shared variables. The only actions allowed on shared variables
were reads and writes, which were assumed to be indivisible, and, usually,

* A preliminary version of this paper appeared in the 18th Annual Allerton Conference
on Communication, Control, and Computing, October 1980. The research was supported in
part by Army Research Office Contract DAAG29-79-C-0155, NSF Grants MCS77-15628,
MCS78-01689, CCR-8611442, and CCR-8915206, DARPA Grants N00014-83-K-0125 and
NO0O14-89-J-1988, and ONR Grant N00014-85-K-0168.

171
! 0890-5401/93 $5.00

Copyright < 1993 by Academic Press. Inc.
All rights of reproduction in any form reserved.

172 BURNS AND LYNCH

any number of readers and writers were allowed to access any shared
variable.

Subsequent work has examined the mutual exclusion problem using
more powerful primitive actions for accessing shared variables. One of the
primary concerns in the papers on mutual exclusion by Cremers and
Hibbard (1979), Peterson (1979), Burns (1981b), Burns e a/. (1982), and
others has been the number of shared states required to solve certain varia-
tions of the mutual exclusion problem. (The number of shared states is the
number of distinct values taken on jointly by the set of shared variables.)
In this paper we examine the number of shared states required for
Dijkstra’s original problem, which assumes the communication mechanism
is atomic reads and writes of shared variables.

The mutual exclusion problem has also been explored using communica-
tion primitives weaker than atomic reads and writes. Early work in the
area by Lamport (1974) and Peterson (1983) explored mutual exclusion
under the assumption that a variable can be shared only between the writer
and a single reader. Recently, Lamport (1986¢) has extended this work to
include a much weaker assumption: that only single bit variables can be
shared between a reader and a writer. The theoretical basis for this
investigation can be found in Lamport (1986a, 1986b).

It is interesting to note that although the algorithms in several papers
(Dijkstra, 1965; Knuth, 1966; de Bruijn, 1967; Eisenberg and McGuire,
1972) solve slightly different problems, they all use exactly the same
number of shared states, #n-3" (one n-valued variable and » three-valued
variables). (Dijkstra (1965) uses n pairs of binary variables, but each pair
takes on only three possible values.) We show that » binary variables (and
hence 2" shared states) are necessary and sufficient to solve the problem
posed and solved by Dijkstra: mutual exclusion with global progress (often
referred to as deadlock-free mutual exclusion in the literature). The papers
by Knuth, de Bruijn, and Eisenberg and McGuire are concerned with
starvation-free (also called lockout-free) mutual exclusion, which requires
that every process that tries to enter its critical section eventually succeeds.
Our lower bound applies to this variation of the problem, but our upper
bound algorithm does not.

2. READ/WRITE SYSTEMS

In order to define precisely what we mean by asynchronous systems
communicating by shared variables, we introduce a formal model suitable
to our purpose. For brevity, we use the following notation throughout:
[#r]1=1{0, 1, .,n—1}, for any positive integer n.

BOUNDS ON SHARED MEMORY 173

A system is a 4-tuple, S=(P, V,q,,¢), where P is a finite set of
n>0 processes, V is a finite set of m>0 variables, ¢, is the initial
configuration of S, and ¢ is the transition function of S. We always let
P=1{py,pis. Py). The possibly infinite set X, of states of p, is parti-
tioned into mutually disjoint sets R,, T;, C,, and E,. which are cailed the
remainder region, trving region, critical region, and exit region, respectively.
The set of values of the jth variable of V' is V,. A configuration of § is an
{(n+m)-tuple, g=1{(x4, X;, .o X, [+ Dgs Uys - U,y 1), Where x, € X, for each
ie[n], and v;eV, for each je [m]; we use X,, V,, and V (ambiguously)
as projection operators defined by X,(g)=x, Vi(g)=v;, and V(g)=
(Los ooy Uy 1)

Let O be the set of all configurations of S. Then ¢ is a total function,
¢: [n] x Q — Q, satisfying the following conditions. Let { be an integer in
[#] and ¢ be a configuration of S. If ¢’ = (i, q) then we write ¢ — ¢’ and
require that

 X,(¢)=X,(q) for all je[n]— {i}.
e HXi(g)eR, T, then X, (¢'VeT,uC;.
« HXi(q)eC,uE, then X,(¢')e E;UR,.

The first condition implies that processes communicate only by the shared
variables, since no process can directly affect the state of another. The latter
two conditions enforce a cyclic order on the regions (remainder, trying,
critical, exit) but allow direct transitions from remainder to critical and
critical to remainder. We suppress any internal structure in the remainder
and critical regions in order to focus on the synchronization protocols. If
we allowed cycling in, say, the remainder region, a process could be
designed to wait for fortuitous circumstances to try for the critical region
while not being counted as competing, contrary to intuition. Effectively,
“internal” steps while in the remainder or critical region are ignored, but
“important” steps, those when a process begins to try for the critical region
or leaves it, are explicitly accounted for.

A system S=(P, V, qq, ¢) is a read/write system if for every ie [n], X,
can be partitioned into 2m disjoint sets Read* and Write* for k € [m] such
that the following conditions hold for every configuration ¢ of S. If
X.(q)e Read® then we say P, is about to read the kth variable at ¢ and
required that

+ V(g q))=V(g) and
» for every configuration ¢’ of S with X, (¢')= X, (¢), if V.(¢')= Vi(q)
then X, (¢(i, ¢')) = X.($(i, ¢)).

We say that the transition g — @(i, g) is a read of the kth variable by p,.
The definition implies that a read does not change any shared variable and

174 BURNS AND LYNCH

that the new state of the reading process depends only on the value of the
variable read. This corresponds to the normal interpretation of a process
reading a variable.

If X,(¢)e Write* then we say P, is about to write the kth variable at ¢
and require that

V(i q))=V,(q) for all je [m]— {k} and
» for every configuration ¢’ of S with X,(¢')=X,(q), V.(d(i.¢')) =
Vi(gli, q)) and X (#(i, ¢')) = X, (i, q)).

We say that the transition g — ¢(i, g) is a write of the kth variable by
process i. Thus, in a write only a single variable is changed and the new
value depends only on the state of the writing process. This implies that a
write overwrites the old value by a new value. Again, our formal definition
of a write corresponds naturally to the normal interpretation.

A history of S is a finite or infinite sequence of process indices (elements
of [n]). An occurrence of index i in a history is referred to as a srep of
process i in the history. If ¢, is a configuration of $ and h=ii,- - is a
finite or infinite history of S, then ¢,q¢, - -- is the computation from ¢, by h,
where g;,, =¢(i;, q;) for j=1,2,... If h is finite, then result(q, h) is the
final configuration in the computation from ¢ by h. We say that configura-
tion ¢’ is reachable from configuration g if there exists a finite history /s such
that ¢’ = result(q, h). A configuration is simply reachable if it is reachable
from gq,. A history, h, of S is fair from configuration ¢ if for every finite
prefix, #,, of h and for every ie [n], X (result(q, h,))¢ R, implies that J
occurs in the suffix of /i following A,. A process halts in a history if and
only if it appears only a finite number of times. Thus, halting relates to a
history rather than to the state of a process. If history /4 is fair from ¢, any
process that halts in 4 (does not take an infinite number of steps) is in its
remainder region after its last step in the computation from ¢ by 4. In other
words, once a process begins trying for the critical region, we can depend
on it to continue to interact with the other processes until it has reached
its critical region (if ever) and returned to its remainder region.

3. MutuAaL ExcLUsiION WITH GLOBAL PROGRESS

A configuration g of a system S=(P, V, q,, ¢) violates mutual exclusion
if there are distinct values, i, je [n] such that X (¢)e C; and X,(¢q)e C,
(le., two processes are simultaneously in their critical regions). System S
satisfies mutual exclusion if no reachable configuration ¢ of S violates
mutual exclusion.

Process i is said to change regions from ¢ by h if there exist finite prefixes
h, and h, of h such that X,(result(g, h,)) is in a different region than

BOUNDS ON SHARED MEMORY 175

Xi(result(qg, h,)). A system S has the global progress property if for every
reachable configuration, ¢, and every nonnull history, A, that is fair from
4, some process changes regions from g by /. Note that a system with
global progress can allow a process to starve (never get to the critical
region even though trying forever). The upper bound result below allows
starvation and thus does not solve starvation-free mutual exclusion.

4. THE UprPER BOUND

The algorithm in Fig. 1 is in a Pascal-like notation. (A similar algorithm
was discovered independently by Lamport (1986¢c). We include the
algorithm for completeness and because Lamport’s algorithm has some
additional complications in order to achieve an additional property,
self-stabilization.) Note that, for brevity, three predicates are expressed
using the “for all” notation. It is understood that these would be translated
into separate atomic read operations for each shared variable accessed.
Correctness does not depend on the order in which these variables are
read.

The algorithm begins execution with all shared variables set to down and
with process / executing the program in Fig. 1 for each ie [n].

THEOREM 4.1. For every integer n > Q there exists a read/write-system of
n processes and n binary shared variables that solves the problem of murual
exclusion with global progress.

Proof. For any integer n >0, it is clear (using the natural and obvious
translation from the algorithm to the formal model) that the algorithm in

type flagtvpe = (down, up):
shared var Flag : array [0..n — 1] of flagtype initially {down...., down]:

program Process_i;
local var j:0. .n - |;

begin
while true do begin
remainder; (* Remainder region *)
repeat (* Trying region Entry *)
Flag|i] ~ down;
repeat until vj € {0,...,z — 1} Flagl;] = down; (* Trying region Subentry *)
Flagli] — up;
until ¥j € {0,....7 — 1} Flag{j] = down;
repeat until V; € {z +1,..., n — 1} Flag{;] = down; (* Trying region Gateway *)
critical; (* Critical region *)
Flag[i] « down; (* Exit region *)
end.

F16. 1. The Mutual Exclusion Algorithm.

176 BURNS AND LYNCH

Fig. | defines a read/write system with # processes and » binary shared
varaibles. We must show that the system has the global progress property
and satisfies mutual exclusion.

Suppose the system lacks the global progress property. Then we
can reach a configuration, ¢, at which at least one process is not in its
remainder region and a history A, fair from ¢, such that no process changes
region from ¢ by /A Since the only looping in each process’s program
occurs in the trying region, we observe that for each ie[n], either
X,(¢)e R, and i does not occur in h, or X,(¢q)e T, and i occurs infinitely
often in h. We call the processes that are not in their remainder regions at
g “active.”

For each ie [n], define the following subsets of 7;:

e Entry,=the sets of states of p, corresponding to the (entire) first
repeat loop.

e Subentry, = the set of states of p, corresponding to the inner repeat
loop of Entry,.

¢ Guateway,; = the sets of states of p, corresponding to the the second
(unnested) repeat loop.

We note that if p; reaches Gateway,, then it remains there for the rest
of the computation and Flag[i] is continuously equal to up. Let
k=min{ie[n]:p, is active at ¢}. Since p, eventually detects that all
Flag[il=down for ie [k —1], p, reaches Gatewar, after a finite prefix
of h. After an appropriate extension of this prefix, every active p, will
either be in Gateway; or will begin cycling forever in Subentry, with
Flag[i] = down, since all processes that do not reach Gateway, will detect
Flag[k]=up. Let ¢’ be the configuration reached after this extended prefix
of h, and let /=max{ie[n]:X,(¢')€ Gateway,} (which is defined since
the Gateway is not empty). Now p, will find Flag[i]=down for all
ie{l+1,..,n—1}, so p, will change regions from ¢ by the remaining
suffix of A, contradicting our supposition. Therefore, global progress is
guaranteed.

Suppose that mutual exclusion can be violated. Then there are values i,
Jje {n] such that i#j and a finite history / such that ¢ =result(g,, h),
Xi(g)e C; and X,(q)e C,. Although p, might cycle in Entry, several times
before reaching its critical region at ¢, there must be a configuration at
which p; sets Flag{i]=up for the last time before going critical. Let ¢, be
this configuration for p,, and ¢, be a similar configuration for p, in the
computation ¢,¢, - -- ¢, from g, by 4 (¢ =q,). We may assume without loss
of generality that @ < b. But then for every ¢, a <c¢ <k, Flag[i]l=up at ¢, .
(See Fig. 2.) Since p, must test Flag[i] after ¢,, say at g, it either repeats
another cycle in Entry,, or loops in Gatewav, during g,q,, - 4.

BOUNDS ON SHARED MEMORY 177

o Qa G G Gk

Flagli] = up

FiG. 2. The execution showing why mutual exclusion cannot be violated.

contradicting our supposition. Therefore, the algorithm also satisfies
mutual exclusion and the theorem is proved. ||

5. THE Lower BounD

The main result of this section is the following theorem, which shows
that any mutual exclusion algorithm using atomic reads and writes for
communication must use at least one variable per process, regardless of
how large the variables are. Note that our shared variables are available for
reading and writing by all processes. If variables were restricted to allow
only one specific writer for each variable the lower bound would be trivial,
since it is easy to see that every process must write something before
entering the critical region.

THEOREM S.1. If S is a read/write system with at least two processes and
S solves mutual exclusion with global progress, then S must have at least as
many variables as processes.

Since this result applies to all possible algorithms, it really says some-
thing about limitations on communication in read/write systems. Our
preliminary definitions and lemmas give us the rigorous tools we need for
the main result. Throughout, we let S=(P, V, q4, #) be a read/write
system. The “looks like” equivalence relation defined below formally relates
configuration’s that are indistinguishable by a given process.

DEeriNITION 5.1, Let g and ¢’ be configurations of S, and p; be a process
of S. If V(g)=V(q') and X;(q)= X,(g’) then ¢ looks like ¢’ to p, (or q and
g look alike to p)).

The following lemma merely states that the behavior of a set of processes
1s identical beginning from either of two configurations that look alike
to them.

LEMMA S5.2. Let q and g’ be configurations of S, P’ be a subset of P, and
h be a finite history of S consisting only of steps of processes in P'. If g looks
like q' to every process in P', then V(result(q, h)) = Viresult(q', h)) and for
each p,e P', X (result(q, h))= X, (result(q’, h)).

178 BURNS AND LYNCH

Proof. From the definitions by induction on the length of 4. ||

The next definitions have to do with the communication of information
between processes and how such communication can be blocked.

DEerFiNITION 5.2, Let ¢, be a configuration of S, 4 be a history of S,
ie[n], veV, and ¢,¢q,--- be the computation from ¢, by 4. Let j>0 be
an integer such that ¢, — ¢, , , is a write of v by p,. If there exists a positive
integer A > j such that ¢, — ¢, ,, 1s a write of v, and if for all /, j</<k,
q,—¢,, 1s not a read of v by any process other than p;, then we say that
the write of ¢ by p, at ¢, is obliterated from ¢, by h.

An obliterated write communicates no information to the other processes
in a particular execution because after obliteration no trace of the write is
left. A more severe constraint on communication occurs if a// the writes of
a process are obliterated. This is captured by the following definition.

DeriNITION 5.3, Let ¢ be a configuration of S, /1 be a history of S, and
ie[n]. We say p, is hidden from ¢ by h if there exist histories /1, and #,,
h, finite, such that h=h h,, X,(result(gq, h,)) € R,, and every write by p, in
the computation from result(y4, h1,) by h, 1s obliterated from result(q, h,) by
f1,. When ¢ is understood from context, we simply say “p, is hidden by 4.”

The importance of the remainder region in the above definition is that a
process can legitimately be halted in the remainder region by a fair history.
Therefore, no other process can wait until a hidden process takes some
action, because a hidden process looks just like one halted in the remainder
region. Also, note that if p; is in its remainder region at ¢, then p, is hidden
from ¢ by any history that excludes /.

LeMMA 5.3, Ler S be a read/write system, g be a configuration of S, h be
a finite history of S and P be a subset of processes of P such that each
process in P’ is hidden from g by h. Let ¢’ =result(q, h). Then there is a
reachable configuration q” of S such that everv p,e P’ is in its remainder
region at q", and q" looks like q' to each process in P— P'.

Proof. For every pe P, there is some longest prefix A, of & such that
p is in its remainder region at result(q, h,). Let k, be the number of steps
of p in the suffix of 4 after i1, (we refer to these steps as hidden steps). We
prove the lemma by induction on 4, defined by

k=Y k,

pe P’

The basis with & =0 holds trivially.

BOUNDS ON SHARED MEMORY 179

Suppose k > 0. Let p, be the process in P’ that takes the last hidden step
in the computation from ¢ by A. Then A can be written as %, ih,, where the
i corresponds to the last step of p,. Let ' be h,h,. (See Fig. 3). We first
show that the processes of P’ are hidden by A" There are two cases to
consider.

If the last step by p, is a read, then clearly 4’ still hides all the processes
in P’ from ¢, since no write after this read will be affected.

Suppose that the last step by p, is a write. If some process in P’ is not
hidden by #', then there is a write w, by some p,e P’ to some variable ¢
such w; is not obliterated in the computation from g by A’ Since w, is
obliterated from g by A, the last write p, must be to the same variable, v.
But since p, is hidden by A, there must be some write that obliterates p,’s
last write before any process other than p, reads v. But since p, has no
more steps, this same write will obliterate w, before any other process reads
v, contradicting the assumption. Thus, all processes in P’ are hidden from
g by h'.

By the induction hypothesis, there is a reachable configuration ¢” which
looks like ¢" = result(q, k') to all processes in P— P’, and such that every
process in P’ is in its remainder region at ¢”. Since the last step of p, in
h is either a read or an obliterated write, we also have that ¢’ and ¢”, and
hence ¢’ and g”, look alike to all processes in P — P’. This establishes the
lemma. |

If some variable is about to be written, any other process writing that
variable is in danger of having its write obliterated. We say that the
variable is “covered,” as described formally in the next definition.

DeFmNiTION 5.4. Let S be a read/write system, ¢ be a configuration of
S, and ie[n]. If p; is about to write ve V at ¢, then we say v is covered

at g by p,.
Suppose a process only writes variables covered by other processes

entering its critical region; then other processes will be unaware that the
process is critical in an execution in which all the covered variables are

h

g —= =g —= .- —=¢q P hidden

look alike to P — P’

q" - P’ still hidden

FiG. 3. ID’s ¢ and ¢’ look alike to all processes other than p,.

180 BURNS AND LYNCH

written one after the other, obliterating all the information that the critical
process left behind. Indeed, the following lemma shows that a process must
leave behind information in a variable that is not covered before going to
its critical region.

LEMMA 5.4. Let S be a read/write system with at least two processes that
solves mutual exclusion with global progress, h be a finite history of S,
g=result(g,y, h), and i€ [n]. Suppose p, is hidden from g, by h. If p, goes
to its critical region on its own from g by a history hy=1ii---i, then p; must
write some variable in the computation from g by h, that is not covered by
any other process at g.

Proof. By contradiction. First note that since p, is hidden from ¢, by A,
there is a point in the computation from ¢, by # at which p, is in its
remainder region and such that all of its following writes have been
obliterated in reaching q. Suppose p, reaches its critical region from g by
history A, without writing any non-covered variable. Let /i, be a history
consisting of exactly one step of each process in P— {p;} that is about to
write at g. Then every write of p, from ¢ is obliterated from ¢ by A4, 4,, so
p; is hidden from ¢, by hh h,.

Now we use Lemma 5.3: there is a reachable configuration ¢” that
looks like ¢'=result(q, h,h,) to all the other processes, but has p, in its
remainder region. Let 4, be a non-null fair history from ¢” that excludes
steps of p,. (History /, exists because there are at least two processes and
p, is in its remainder region at ¢”.) Since the system has the global progress
property, some other process p;# p; reaches its critical region in the
computation from ¢” by some finite prefix &, of h;. But then A, applied to
g’ also makes p; critical (by Lemma 5.2 since ¢’ and g” look alike to
P— {p,}). But then result (¢', hy) has both p, and p;, critical, a violation of
mutual exclusion. |

Combining the definitions of “covered” and *“hidden” will give us our
goal. We call a variable “nullified” by a process if the process does not
“communicate” with the other processes and covers the variable.

DEerFINITION 5.5. Let S be a read/write system, ¢ be a configuration of
S, h be a finite history of S, and v be a variable in V. We say that v is
nullified from g by h if there is a process that is hidden from ¢ by 4 and
that covers v at result(q, h).

For any reachable configuration g of S let ret(q) be the history defined
as follows: give each process that is not in its remainder region at g one
step in turn, then repeat in round-robin fashion until one goes to the
remainder region---this must happen by the global progress property.
Repeat this procedure from the resulting configuration until all processes

BOUNDS ON SHARED MEMORY 181

are in their remainder regions. A configuration with all processes in their
remainder regions is quiescent.

It should be clear that, for any reachable ¢, ret(g) exists and that
result(q, ret(q)) is quiescent. In particular, result(g,. ret(q,)) is quiescent
(and might very well be ¢,). Thus, Theorem 5.1 follows immediately from
the following lemma, which implies there is a finite history from g, yielding
n distinct nullified variables.

LEMMA 5.5. Let S be a read/write-system with n 2 2 processes that solves
mutual exclusion with global progress. For every k, | <k<n, and every
reachable, quiescent configuration q, of S, there is a finite history h of S
using only processes py, Dy, Pir., such that k distinct variables are
nullified from q, by h.

Proof. Let ¢, be any reachable, quiescent configuration of S. We
proceed by induction on k.

For the basis, let K =1. By the global progress property, there must be
a finite history A’ consisting only of 0’s such that p, goes critical at
result(q,, h'). Since g, is quiescent, p, is trivially hidden by the empty
history from ¢,, Lemma 5.4 applies and p, must write some variable in the
computation from ¢, by #’. Let & be the shortest prefix of #” in which p,
does not write a variable, but is about to write some variable, namely w-.
Since it writes nothing, p, is hidden from ¢, by # and covers w at
result(q,, h). Thus, {w} is nullified from ¢, by 4, and the lemma holds for
k=1

We now show the inductive step (k=-k + 1). Assume the lemma holds
for k, 0<k<n. Then there is a finite history /4, from ¢, using only
processes pg, Py, .- Pi_ such that a set of k variables is nullified from ¢,
by h,. Let W, be the set of these variables and ¢, = result(q,, i1,).

Note that ret(g,) begins with one step by each of p,, p,, .., p, , and
then puts these processes back into their remainder regions, reaching a
quiescent configuration. Applying the induction hypothesis again from
result(q,, ret(q,)), we can get another history A, such that k distinct
variables are nullified from result(q,, ret(q,)) by h3. Let W; be this set of
variables, h, =ret(q,) - by, and g+ =resuli(q,, h,).

We can repeat this construction ad infinitum, finding successive histories
hy, hy, ... and sets W,, Wi, ... (See Fig. 4.) Note that by the way each A,
is constructed, each of the processes in pg, p;, .., pi , is hidden from ¢, by
h, for i>0.

h] ‘Vg hg W3 ”/: hi w”i-&-l

Qo S — g3 > e T R L (TR R

FiG. 4. The unbounded nullification sequence.

182 BURNS AND LYNCH

hi—l hi

e i i — = Qi —

\'.

\ .

FiG. 5. The construction of side branches. Note that s, only involves process p,.

- Pk covers w; € W,

In order to extend the induction to k& + 1 processes, we need to bring p,
into the computation. To this end, we construct “side branches,” histories
s, for each i>1 such that s, proceeds from ¢, and involves only p,. By
Lemma 5.3, for each /> 1 there is some state ¢, reachable from ¢; | such
that

* Pag, - Pi i are in their remainder regions, and

» g/ looks like ¢, to p;.

From g¢;, p, must be able to reach its critical region on its own by some
finite history s; =kk ---k, and hence also by s/ from ¢,. Note that p, is
trivially hidden from ¢, by the empty history, since it is in its remainder
region at ¢,. By Lemma 5.4, p, must write some variable w; during the
computation from g, by s/, where w; is not covered by any process in
Pos o P 1. Thus, w ¢ W, Let s, be the shortest prefix of s; where (from
q;) p. covers some variable w, ¢ W,. (See Fig. S.)

We are almost done, since at result(q;, s;) each of p,, ..., p, covers a dis-
tinct variable. We still need to find a computation in which the covering
processes are hidden. We use a combinatorial trick. Choose i and j, i<,
such that w,=w,; we know that these / and /j exist by a pigeonhole
argument, since the chain of g,s we constructed is infinite but there are
only a finite number of variables. Create a history (see Fig. 6)

h=hhy---h, ysihih o ---hy .

Note that any writes by p, in s, are to the variables in W,. Since /, begins
with a series of writes to each of the variables in W, all writes by p,

hi—l hx h]—l

e T e e e () e e

AN
s;’-
h; hi_y

i '
g — - — qi+1~,“.._.,....._.qj

FiG. 6. The construction of the history A

BOUNDS ON SHARED MEMORY 183

are obliterated from g, by Ah,, and p, takes no steps thereafter. Now p, is
hidden by 4, but we must also check that p, ..., p, .| are hidden.

Let ¢/, =result(q,, i hy---h; |s.h;). Since any writes by p, by p, are
obliterated, ¢/, , looks like ¢,, , to py, ... px |, s0O these processes behave
the same in the original computation reaching ¢, and in the computation
from ¢, by h. Therefore, p,,. ..., p, , are hidden from ¢, by /& and cover W,
at g, =result(q,, h).

Since py, pi, . Px are hidden from g, by A, the variables they cover at
g, are nullified. Now w,¢ W), since w,=w; ¢ W,. Since in the computation
from ¢, by h, po,p,,...p, nullify & distinct variables in W, and p,

nullifies w, ¢ W,, the k + 1 processes nullify k + 1 different variables. J

6. FURTHER REMARKS

It is possible that the techniques used in the proof of Lemma 5.5 could
be used to prove similar theorems for other exclusion problems. In order
to apply the method, the following characteristics appear to be needed:

* A basis for the induction. It must be possible to show that some
number of variables can be covered by a set of hidden processes.

« For the inductive step, a lemma similar to Lemma 54 must
be proved. This requires that a subset of #— 1 processes of a system of n
processes forms a system of the type required.

Note that the second condition does not hold for the dining philosophers
problem, for example.

Although the algorithm presented in this paper does use fewer shared
states than previous solutions, it does not meet one requirement that was
imposed by Dijkstra (1965). Dijkstra states that “The solution must be
symmetrical between the » computers, as a result we are not allowed to
introduce static priority.” The algorithm here does not meet this condition
because p, apparently has the highest priority (it will never be locked out).
The issue of symmetry is explored by Burns (198!a) and Johnson and
Schneider (1985). In Burns (1981a), one definition of symmetry proposed is
so strong that mutual exclusion with global progress is not possible at all.
Under a second, weaker definition, a solution exists, but it requires more
space than the algorithm given here: one variable that can take on n values
1s required in addition to # binary shared variables. This is near-optimal
since it is also shown that some variable must take on at least n values, and
the lower bound of this paper implies that at least n shared variables are
required in all. A new solution by Styer and Peterson (1989) shows that it
is possible to solve the problem under the weaker definition of symmetry
using n shared variables of size O(n).

643 107 2-2

184 BURNS AND LYNCH

ACKNOWLEDGMENT

We thank Mike Fischer and the referees for helpful comment and criticism:.

RECEIVED June 12, 1989; FINAL MANUSCRIPT RECEIVED August 6, 1991

REFERENCES

Burns, J. E. (1978), Mutual exclusion with linear waiting using binary shared variables,
SIGACT NEWS 10, 42-47.

Burns, J. E. (1981a), Symmetry in systems of asynchronous processes, in “Proceedings,
22nd IEEE Symposium on Foundations of Computer Science.” pp. 169-174,

Burns, J E. (1981b), “Complexity of Communication among Asynchronous Parallel
Processes,” Ph.D. thesis, Georgia Institute of Technology.

Burns, J. E., LYNCH, N. A., JACKSON, P., FISCHER, M. J., AxD PETERSON, G. L. (1982), Data
requirements for implementation of N-process mutual cxclusion using a single shared
variable, J. Assoc. Comput. Mach. 29, 183-205.

DE Brunx, N.G. (1967), Additional comments on a problem in concurrent programming
control, Comm. ACM 10, 137.

CREMERS. A., AND HiBBArRD, T. N. (1979), Mutual exclusion of N processors using an O(N)-
valued message variable (extended abstract), in “Lecture Notes in Computer Science,”
Vol. 62, pp. 165-176, Springer-Verlag, Berlin/New York.

DuksTrA, E. W, (1965), Solution of a problem in concurrent programming control. Comm.
ACM 8, 569.

EISENBERG, M. A, AND R. MCGUIRE, M. (1972), Further comments on Dijkstra’s concurrent
programming control problem, Comm. 4CM 18§, 137.

JoHnson, R.E., aNnp ScHNEIDER, F.B. (1985), Symmetry and similarity in distributed
systems, in “Proceedings, Fourth Annual ACM Symposium on Principles of Distributed
Computing,” pp. 13-22.

KnutH, D. E. (1966), Additional comments on a problem in concurrent control, Conmn.
ACM 9, 321-322.

LamporT, L. (1974), A new solution of Dijkstra’s concurrent programming problem, Comm.
ACM 17, 453-455.

LAMPORT, L. (1986a), On interprocess communication. I. Basic formalism, Disirib. Comput. 1,
77-8S.

LaMpPORT, L. {1986b), The mutual exclusion problem. I. A theory of interprocess communica-
tion, J. Assoc. Comput. Mach. 33, 313-326.

LaMmPORT, L. (1986¢), The mutual exclusion problem. II. Statement and solutions. J. Assoc.
Comput. Mach. 33, 327-348.

PETERSON, G. L. (1979), “The Complexity of Parallel Algorithms.,” Ph.D. Thesis, Univ. of
Washington.

PETERSON, G. L. (1983). A new solution to Lamport’s concurrent programming problem using
small shared variables, ACM Trans. Programming Languages Systems §, 56-65.

StYer, E. F., anp PeTERSON, G. L. (1989), “Tight Bounds for Shared Memory Symmetric
Mutual Exclusion Problems. Technical Report GIT-1CS-89/09, School of Information and
Computer Science, Georgia Institute of Technology. (To appear in “Proceedings, Eight
Annual ACM Symposium on Principles of Distributed Computing, August, 1989."}

