
THE LOAD, CAPACITY AND AVAILABILITY OF QUORUMSYSTEMS�MONI NAORy AND AVISHAI WOOLzAbstract.A quorum system is a collection of sets (quorums) every two of which intersect. Quorum systemshave been used for many applications in the area of distributed systems, including mutual exclusion,data replication and dissemination of informationGiven a strategy to pick quorums, the load L(S) is the minimal access probability of the busiestelement, minimizing over the strategies. The capacity Cap(S) is the highest quorum accesses ratethat S can handle, so Cap(S) = 1=L(S).The availability of a quorum system S is the probability that at least one quorum survives,assuming that each element fails independently with probability p. A tradeo� between L(S) and theavailability of S is shown.We present four novel constructions of quorum system, all featuring optimal or near optimalload, and high availability. The best construction, based on paths in a grid, has a load of O(1=pn),and a failure probability of exp(�
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has exited (and released the permission-granting quorum from its lock) will be refusedpermission by at least one member of any quorum it chooses to access.In this work we consider three criteria of measuring how good a quorum systemis: 1. Load - A strategy is a rule giving each quorum an access frequency (so thatthe frequencies sum up to 1). A strategy induces a load on each element, which is thesum of the frequencies of all quorums it belongs to. This represents the fraction of thetime an element is used. For a given quorum system S, the load L(S) is the minimalload on the busiest element, minimizing over the strategies. The load measures thequality of a quorum system in the following sense. If the load is low, then each elementis accessed rarely, thus it is free to perform other unrelated tasks.2. Capacity - We would like the system to handle as many requests as possible.For this purpose we de�ne a(S; k), the number of quorum accesses that S can handleduring a period of k time units. This is the maximal t for which there exists a way toschedule t quorum accesses, to quorums S1; : : : ; St (allowing repetitions), such thatno element is accessed more than k times. The capacity Cap(S) is then the limit ask!1 of a(S; k) normalized by k.3. Availability - assuming that each element fails with probability p, whatis the probability, Fp, that the surviving elements do not contain any quorum? Thisfailure probability measures how resilient the system is, and we would like Fp to beas small as possible.Our goal is to investigate these criteria and �nd quorum systems that performwell according to all three of them.1.2. Related Work. The �rst distributed control protocols using quorum sys-tems [42, 14] use voting to de�ne the quorums. Each processor has a number of votes,and a quorum is any set of processors with a combined number of votes exceedinghalf of the system's total number of votes. The simple majority system is the mostobvious voting system.The availability of voting systems is studied in [4]. It is shown that in terms ofavailability, the majority is the best quorum system when p < 12 . In [35] the failureprobability function Fp is characterized, and among other things it is shown that thesingleton has the best availability when p > 12 . The case when the elements fail withdi�erent probabilities pi, all less than 12 , is addressed in [41].The �rst paper to explicitly consider mutual exclusion protocols in the contextof intersecting set systems is [13]. In this work the term coterie and the concept ofdomination are introduced. Several basic properties of dominated and non-dominatedcoteries are proved.Alternative protocols based on quorum systems (rather than on voting) appearin [28] (using �nite projective planes), [1] (the Tree system), [5, 25] (using a grid) and[23, 24, 38] (hierarchical systems). The triangular system is due to [26, 9]. The Wheelsystem appears in [29]. The CWlog system appears in [37, 36]. The motivation forseveral of these alternative systems was to �nd constructions with high availabilityand low load (which is referred to in most of these papers as quorum systems withsmall quorums).In [19], the question of how evenly balanced the work load can be is studied.Tradeo�s between the potential load balancing of a system and its average load areobtained, and it is shown that in some quorum systems it is impossible to have aperfect load balance, in which all the elements have an equal load.A concept of capacity in voting systems is de�ned in [21] and some voting systems2



are compared. The analysis does not distinguish between properties of the quorumsystem and properties of the strategy that chooses which quorum to access.A good reference to percolation theory is [15]. Two successful applications ofpercolation to questions of computer science are [30] and [8].While the majority quorum system is the best in terms of availability, and the�nite projective planes construction have excellent load, they fail miserably accordingto the other criteria: the load of majority is 1=2 and the failure probability of theprojective planes (FPP) goes to 1 (quickly) as the number of elements grows. Infact, all of the existing constructions are less successful than ours in the simultaneousachievement of high availability and low load.1.3. New Results. We start by de�ning the concepts of load and capacity, andshowing that they can be formulated as linear or integer linear programs. Thenusing results of hypergraph theory we show that Cap(S) = 1=L(S): Therefore all theinformation regarding the capacity is captured by L(S).We obtain several lower bounds on the load L(S). We show that if the minimalquorum size is c(S) then L(S) � maxf1=c(S); c(S)=ng, hence L(S) � 1=pn. We alsoobtain a tradeo� between the load and failure probability, i.e., Fp � pnL(S). In somecases the linear program formulation of load also allows us to e�ciently compute theload of a given quorum system, even if the quorums are not represented explicitly,using the Ellipsoid algorithm adaptation of [16]. The behavior of the load when theelements may fail is also studied. We assume the commonmodel that the elements failindependently with probability p. The load then becomes a random variable Lp(S).Next we show some conditions that prove that a given strategy w induces theoptimal load. This enables us to �nd optimal strategies and to calculate L(S) of somequorum systems, without actually solving the linear program.The major contributions of this work are four novel quorum system construction,all of which have optimal or near optimal load, and high availability i.e., a failureprobability that tends to 0 exponentially fast when p < 12 , or at least when p < � < 12 .Our best construction is the Paths system, which is based on a percolation grid. It hasa load of O(1=pn), and a failure probability of exp(�
(pn)) when the elements failwith probability p < 12 . Moreover, even in the presence of faults, with exponentiallyhigh probability the load of this system is still O(1=pn). Two other constructionsresemble the Grid construction, but enhanced so their failure probability tends to 0.The B-Grid system has L(B-Grid) = O(1=pn) and if p < 13 then Fp(B-Grid) =O(exp(�n1=4=2)). The SC-Grid system has L(SC-Grid) = O(p(lnn)=n), and if p <12 � � for some � > 0 then Fp(SC-Grid) � exp(�
(pn lnn)). The AndOr system usesthe AND/OR trees of [43]. It has L(AndOr) = O(1=pn), Fp(AndOr) � exp(�
(pn))when p < 14 , and Fp � exp(�
(n0:19)) if p � 0:38 � 
(n�0:19). The three latterconstructions also enjoy the property that their quorums are all of size O(pn).Finally, we analyze the load of some known quorum system constructions. Weshow that all voting systems have a load of at least 12 , which is very high. We alsoshow that non-dominated coteries have lower load than dominated ones.The paper is organized in as follows. In Section 2 we present some basic de�ni-tions. In Section 3 we de�ne the load and the capacity, their linear programs, and therelationship between them. In Section 4 we prove the basic properties of the load. InSection 5 we present the new constructions. In Section 6 we analyze the load of somequorum systems.2. Preliminaries. 3



2.1. De�nitions and Notation.Definition 2.1. A Set System S = fS1; : : : ; Smg is a collection of subsets Si � Uof a �nite universe U . A Quorum System is a set system S that has the Intersectionproperty: S \R 6= ? for all S;R 2 S.Alternatively, quorum systems are known as intersecting set systems or as in-tersecting hypergraphs. The sets of the system are called quorums. The number ofelements in the underlying universe is denoted by n = jU j. The number of quorums inthe system is denoted by m. The cardinality of the smallest quorum in S is denotedby c(S) = minfjSj : S 2 Sg.The degree of an element i 2 U in a quorum system S is the number of quorumsthat contain i: deg(i) = jfS 2 S : i 2 Sgj.Definition 2.2. Let S be a quorum system. S is s-uniform if jSj = s for allS 2 S.Definition 2.3. A quorum system S is (s; d)-fair if it is s-uniform and deg(i) =d for all i 2 U . S is called s-fair if it is (s; d)-fair for some d.Definition 2.4. A Coterie is a quorum system S that has the Minimality prop-erty: there are no S;R 2 S, S � R.Definition 2.5. Let R;S be coteries (over the same universe U). Then Rdominates S, denoted R � S, if R 6= S and for each S 2 S there is R 2 R such thatR � S. A coterie S is called dominated if there exists a coterie R such that R � S.If no such coterie exists then S is non-dominated (ND). Let NDC denote the class ofall ND coteries.2.2. The Probabilistic Failure Model. We use a simple probabilistic modelof the failures in the system. We assume that the elements (processors) fail indepen-dently with probabilities pi. We assume that the failures are transient. We assumealso that the failures are crash failures, and that they are detectable.Definition 2.6. A con�guration is a vector x 2 f0; 1gn in which xi = 1 i� theelement i 2 U has failed.Notation: For a con�guration x let dead(x) = fi 2 U : xi = 1g denote the setof failed elements, and let live(x) = fi 2 U : xi = 0g denote the set of functioningelements.Notation: We use qi = 1� pi to denote the probability of survival of element i.Definition 2.7. For every quorum S 2 S let ES be the event that S is hit, i.e.,at least one element i 2 S has failed (or, xi = 1 for some i 2 S). Let fail(S) be theevent that all the quorums S 2 S are hit, i.e., fail(S) = TS2S ES .When the failure probabilities are equal, i.e., p = (p; : : : ; p), we use the de�nitionof [35] of the global system failure probability of a quorum system S, as follows.Definition 2.8. Fp(S) = Pp(fail(S)) = Pp�TS2S ES�:When we consider the asymptotic behavior of Fp(Sn) for a sequence Sn of quorumsystem over a universe with an increasing size n, we �nd that for many constructionsit is similar to the behavior described by the Condorcet Jury Theorem [6]. Hence, thefollowing de�nition of [35].Definition 2.9. A parameterized family of functions gp(n) : N ! [0; 1], forp 2 [0; 1], is said to be Condorcet i� limn!1 gp(n) = � 0; p < 12 ,1; p > 12 , and g1=2(n) = 12 forall n. If gp(n) has this behavior for p 6= 12 but g1=2(n) 6= 12 , then it is said to be almostCondorcet. 4



3. Load and Capacity.3.1. Strategies and Load. A protocol using a quorum system (for mutual ex-clusion, say) occasionally needs to access quorums during its run. A strategy is aprobabilistic rule that governs which quorum is chosen each time. In other words, astrategy gives the frequency of picking each quorum Sj .Definition 3.1. Let a quorum system S = (S1; : : : ; Sm) be given over a uni-verse U . Then w 2 [0; 1]m is a strategy for S if it is a probability distribution overthe quorums Sj 2 S, i.e.,Pmj=1 wj = 1.For every element i 2 U , a strategy w of picking quorums induces the frequencyof accessing element i, which we call the load on i. The system load, L(S), is the loadon the busiest element induced by the best possible strategy. Formally,Definition 3.2. Let a strategy w be given for a quorum system S = (S1; : : : ; Sm)over a universe U . For an element i 2 U , the load induced by w on i is `w(i) =PSj3iwj. The load induced by a strategy w on a quorum system S isLw(S) = maxi2U `w(i):The system load on a quorum system S isL(S) = minw fLw(S)g;where the minimum is taken over all strategies w.Remarks:(i) The load L(S) should be viewed as a \best case" de�nition. A load of L(S)is achieved only if the quorums are chosen according to an optimal strategy. Howevera protocol using the quorum system may use some other strategy (for instance ifcomputing an optimal strategy is too costly), hence the actual load might be higherthan L(S). This also means that L(S) is a property inherent to the combinatorialstructure of the quorum system, and not to the protocol using the system.(ii) In the de�nition of L(S) we are assuming that all the elements of the uni-verse are functioning, so all the quorums of the system are usable. In the sequel thede�nition is extended to the case where the elements may fail.3.2. A Linear Programming Formulation of the Load. An alternative wayto de�ne the load is via a Linear Programming formulation. This formulation showsthat the load L(S) can be computed in polynomial time using Linear Programmingalgorithms (cf. [40]) if S is given explicitly.Definition 3.3. Let a quorum system S = (S1; : : : ; Sm) be given over a uni-verse U of size n. De�ne a variable wj for each quorum Sj 2 S and an additionalvariable L. Then the system load L(S) is de�ned by the following linear program.LP : L(S) = minL; s:t: 8<: Pmj=1wj = 1; (i)PSj3iwj � L; for all i 2 U; (ii)wj � 0; L � 0: (iii)Notation: We use (w;L) to denote a tuple of a strategy and a possible load,that together constitute a point in the problem domain [0; 1]m+1.Remark: The program LP is always feasible, since for any quorum system S andstrategy w, the point (w; 1) is trivially feasible. Clearly, LP is also a bounded linearprogram, so L(S) is always �nite. 5



The next de�nition and lemma show that the load L(S) is closely related to thewell known fractional matching number of a hypergraph (cf. [12], p. 149).Definition 3.4. The fractional matching number of a quorum system, denotedby ��, is FM : ��(S) = max mXj=1 fj ; s:t: � PSj3i fj � 1; for all i 2 U;fj � 0:Lemma 3.5. L(S) = 1=��(S) for any quorum system SProof. Let w be an optimal strategy for program LP , attaining L(S). Then fde�ned by fj = wj=L(S) is feasible in program FM . Since FM is maximizing itfollows that ��(S) �Pj fj = 1=L(S).On the other hand, consider f which optimizes programFM , withPj fj = ��(S).Then w de�ned bywj = fj=�� is a strategy (sincePj wj = 1), and (w; 1=��) is feasiblefor program LP . Since L(S) is minimal it follows that L(S) � 1=��(S).Notation: For a vector y 2 [0; 1]n and a set S � U , let y(S) =Pi2S yi.Fact 3.6. Let S be a quorum system as in De�nition 3.3. De�ne a variable yifor each element i 2 U , and an additional variable T . The dual of program LP isDLP : t(S) = maxT; s:t: 8>><>>: Pni=1 yi � 1; (iv)y(Sj) � T; for all Sj 2 S; (v)yi � 0; (vi)T 7 0: (vii)Remarks:(i) Formally the variable T is unconstrained (vii). However at the optimumt(S) = T is positive, since T = 0 is feasible for any vector y 2 [0; 1]n and DLP is amaximization problem.(ii) The value of t(S) does not change if we require equality in (iv), since we canincrease the yi values without violating any inequality in (v) and without changing T .Using the dual program DLP allows us in some cases to compute L(S) evenwhen S is given implicitly, using the Ellipsoid algorithm of [16, 27] (see Section 4.3).3.3. The Capacity of a Quorum System. Each time that a distributed pro-tocol generates an access to a quorum S 2 S, it causes work to be done by theelements of S. During the time that the elements of S are busy with one quorumaccess, they cannot handle another. However other elements may be used in the nextquorum access, making use of the parallelism in the system. We want to �nd what isthe maximal rate of quorum access that the system allows.Assume that it takes one unit of time for an element to complete the work requiredfor a single quorum access. Now consider a period of k time units, and some scheduleof quorum accesses that need to take place during this period. Let the integers rjcount the number of times that each quorum Sj 2 S is accessed, with the total numberof accesses being a =PSj2S rj. Ignoring the order in which the quorum accesses arescheduled, a necessary condition for the system to handle all a accesses within thisperiod of k time units is that every element i 2 U be accessed at most k times. Thefollowing de�nition formalizes this condition using an integer linear program.Definition 3.7. The maximum number of quorum accesses which a quorum6



system S can handle within k units of time isIP : a(S; k) = max mXj=1 rj; s:t: 8<: PSj3i rj � k; for all i 2 U;rj � 0;rj 2 N:The capacity of the system S is de�ned to be the maximal rate at which thesystem handles quorum accesses. In other words, the capacity is the number ofaccesses a(S; k) that the system can handle, normalized by k. Since we are interestedin the behavior over long time periods, we let the period k tend to in�nity.Definition 3.8. The capacity of a quorum system S isCap(S) = limk!1 a(S; k)k :In hypergraph theory the quantity a(S; k) is known as the k-matching numberof S, and is usually denoted by �k (cf. [12] p. 154). Furthermore, Proposition 5.12 of[12] shows that limk!1�k=k = ��, hence by the de�nition of the capacity and Lemma3.5we obtain:Corollary 3.9. Cap(S)= 1/L(S). Therefore all the information regarding thecapacity is captured by L(S). In [33] we gave a direct proof of Corollary 3.9 (withoutusing the hypergraph machinery), which indicates how to schedule the quorum ac-cesses so the capacity tends to 1=L(S): select the quorums independently at randomusing a strategy w which optimizes the load.3.4. The Load with Failures. In this section we extend our de�nition of theload to the case where the elements may fail. We use the simple probabilistic failuremodel of Section 2.2, namely that the elements fail independently with probabilitiesp = (p1; : : : ; pn).Definition 3.10. Let x 2 f0; 1gn be the current con�guration. Then Sx is thesubcollection of functioning quorums, Sx = fS 2 S : S � live(x)g.Definition 3.11. The load of a quorum system S over a con�guration x 2f0; 1gn is de�ned as follows. If Sx = ? then L(Sx) = 1. If there are functioningquorums, i.e., Sx 6= ?, thenL(Sx) = minL; s:t: 8<: PSj2Sx wj = 1;PSx3Sj3iwj � L; for all i 2 live(x);wj � 0; L � 0:Remark: When there are no functioning quorums in the current con�guration,there is no natural concept of load. We choose to de�ne L(Sx) = 1 for such acon�guration to capture the intuition of a monotonic load; as more elements fail, theload increases. The intuition behind this de�nition is justi�ed in Proposition 3.16.Definition 3.12. Let the elements fail with probabilities p = (p1; : : : ; pn). Thenthe load is a random variable Lp(S) de�ned byP�Lp(S) = L� = XxL(Sx)=L Yi2dead(x)pi Yi2live(x) qi:7



If the probabilities p = (p; : : : ; p) are all equal, we denote the random load by Lp(S).Let ELp(S) denote the expectation of Lp(S).Fact 3.13. For any quorum system S, if the elements never fail then EL0(S) =L(S) and if the elements fail with probability 1 then EL1(S) = 1.Lemma 3.14. Let S be a quorum system. Then ELp(S) � Fp(S) for any p 2[0; 1].Proof. By De�nition 3.11, in a con�guration x that causes a system failure (i.e.,all the quorums are hit) the load is 1. Since Fp(S) is the probability of a systemfailure, we get ELp(S) = [1� Fp(S)] � g(S; p) + Fp(S) � 1for some g(S; p) � 0, and we are done.The following examples show that although the FPP quorum system and theGrid system have optimal or near optimal load of O(1=pn) when all the elements arefunctioning (see Example 4.11), this load is not stable.Example 3.15. In [35] it is shown that Fp(FPP) �!n!1 1 and Fp(Grid) �!n!1 1for any p > 0. Therefore Lemma 3.14 gives that ELp(S) �!n!1 1 for both systems.The next proposition shows the correctness of the intuition that if the elementsare more fail prone then the load is higher. For the proof we need some notation andtwo lemmas.Proposition 3.16. ELp(S) is a monotone non-decreasing function of p 2 [0; 1]for any S.Notation: For con�gurations x and z, denote x � z if xi � zi for all i 2 U .Notation: For a vector z = (z1; : : : ; zn), let (1i; z) denote the vector z with a 1plugged into the i'th coordinate: (1i; z) = (z1; : : : ; zi�1; 1; zi+1; : : : ; zn), and similarlyfor (0i; z).Lemma 3.17. Consider the function L(x) : f0; 1gn 7! [0; 1] de�ned by L(x) =L(Sx) for some quorum system S. If x � z then L(x) � L(z).Proof. If x � z then every element that is functioning in con�guration x (withxi = 0) is also functioning in z. Therefore Sx � Sz. If Sx = ? then by De�nition 3.11L(x) = 1 and we are done. Otherwise, any strategy w that only uses quorums of Sxis a valid strategy for Sz as well, and by the minimality of L(Sz) the claim follows.Lemma 3.18. Let S be a quorum system, let the elements fail with probabilitiesp = (p1; : : : ; pn) and let L(x) = L(Sx) be the load over con�guration x. Consider themulti-linear function h(p) : [0; 1]n 7! [0; 1] de�ned byh(p) = Xx2f0;1gn L(x) Yxk=1 pk Yxk=0 qk = E[L(x)]:Then @h@pi = h(1i;p)� h(0i;p) = E[L(1i ;x)� L(0i;x)]:Proof. Sum h(p) separately for con�gurations in which element i is failed (xi = 1)or is functioning (xi = 0).h(p) = pi Xx:xi=1L(x) Yxk=1k 6=i pk Yxk=0 qk + qi Xx:xi=0L(x) Yxk=1 pk Yxk=0k 6=i qk= pih(p1; : : : ; pi�1; 1; pi+1; : : : ; pn) + qih(p1; : : : ; pi�1; 0; pi+1; : : : ; pn)= pih(1i;p) + qih(0i;p): 8



Taking partial derivatives we get @h@pi = h(1i;p)� h(0i;p). Having element i failwith probability 1 is the same as having a constant 1 in the random con�guration x,so h(1i;p) = E[L(1i ;x)]. Linearity of the expectation completes the lemma.Proof of Proposition 3.16: Consider the case where the elements fail withprobabilities p = (p1; : : : ; pn), and let L(x) and h(p) be as before. By Lemma 3.17L(x) is non-decreasing, so L(1i;x) � L(0i;x) for every i. Therefore by Lemma 3.18,@h@pi � 0 as an expectation of non-negative terms, so h(p) is non-decreasing in everycoordinate. Plugging p = (p; : : : ; p) shows that ELp(S) = h(p; : : : ; p) is a non-decreasing function.3.5. Other Measures of Load. In order to measure an intuitive notion of\load" of a quorum system, our de�nition of L(S) (De�nitions 3.2 and 3.3) is not theonly one that comes to mind. Here we discuss the shortcomings of some alternatives.Several authors (e.g., [28, 1] have emphasized the criterion of having small quo-rums. This is an important parameter since it captures the message complexity of aprotocol using the quorum system. However it does not tell us how to use the quo-rums so each element is used as infrequently as possible. Moreover, our lower bounds(Propositions 4.1 and 4.2) show that if the quorum size is small (i.e., c(S) < pn)then decreasing it any further actually increases the load. We therefore argue thatwhen analyzing a quorum system, one should consider both its quorum size and load(and of course its availability) since each measures a di�erent aspect of the system'squality. Having a small quorum size does not give us the whole picture.Looking for systems with small average quorum size can also be misleading. Forinstance, the average quorum size in the Wheel system [29] is very small (� 3) butthe load is high: L(Wheel) � 1=2.Another tempting de�nition is that of an average load, rather than the maximum,i.e., AvL(S) = minw 1nPi2UPSj3iwj; minimizing over strategies w. An equivalentnotion is that of the total load, which is the same as the average except for thescaling factor of 1=n. However by changing the summation order it follows thatAvL(S) = minw 1nP1�j�mwjjSj j: A strategy that minimizes this expression is thetrivial strategy that always uses the smallest quorum Smin (with probability 1), soAvL is an uninteresting measure.4. Properties of the Load.4.1. Lower Bounds and a Tradeo� of the Load. In this section we presentthree lower bounds on the load L(S), in terms of the smallest quorum cardinalityc(S) and the universe size n. Two of these can be found in the hypergraph literatureas upper bounds for the fractional matching number ��, and we present them hereusing our terminology. We also show a tradeo� between the availability of a quorumsystem, quanti�ed by the failure probability Fp, and the load.Proposition 4.1. ([12], p. 150): L(S) � c(S)n for any quorum system S.Proposition 4.2. L(S) � 1c(S) for any quorum system S.Proof. Let Smin 2 S be a quorum such that jSminj = c(S) and let y be de�ned byyi = 1c(S) for i 2 Smin and yi = 0 otherwise. Then (y; 1=c(S)) is feasible for programDLP so the claim follows by the weak duality of linear programming.Proposition 4.3. ([2], cf. [12] p. 170): Let m(S) be the number of quorums in S.Then L(S) � 1pns1 + c(S) � 1m(S) � 1pn:9



Example 4.4. The following examples show that both Propositions 4.1 and 4.2give meaningful lower bounds on the load of some quorum systems.(i) Over an odd-sized universe, all the quorums of the simple majority systemMaj are of size (n+ 1)=2, therefore by Proposition 4.1, L(Maj) � (n + 1)=2n > 12 .(ii) In the Tree system [1], the smallest quorums have cardinality log(n + 1).Therefore by Proposition 4.2, L(Tree) � 1= log(n+ 1).The following proposition shows a tradeo� between the failure probability andthe load.Proposition 4.5. Fp(S) � pnL(S) for any quorum system S and any p 2 [0; 1].Proof. Consider a quorum Smin with jSminj = c(S). If all the elements of Sminfail then by the Intersection property the system fails, therefore Fp(S) � pc(S). Theclaim follows since c(S) � nL(S) by Proposition 4.1.Definition 4.6. An in�nite family of quorum systems Sn over universes ofincreasing size n is said to have a tight tradeo� ifL(S) � C � � logFp(Sn)nfor some constant C = C(p) > 0 that depends only on 0 < p < 12 .Remark: It is pointless to consider values of p � 12 since in [35] it is proved thatFp(S) � 12 for such p and any quorum system S, so Proposition 4.5 is meaninglessasymptotically in this case.4.2. Conditions for Optimality of the Load. In this section we present sev-eral conditions that guarantee the optimality of a strategy w. The �rst condition,which can be applied to any system S, is an immediate consequence of Linear Pro-gramming duality.Proposition 4.7. Let a quorum system S be given, and let w be a strategyfor S with an induced load of Lw(S) = L. Then L is the optimal load i� there existsy 2 [0; 1]n such that y(U ) = 1 and y(S) � L for all S 2 S.Proof. By the premise, (w;L) is a feasible point of LP , with an objective functionvalue of L. Therefore by duality, L is the optimum i� there exists a feasible pointof the dual problem DLP with an objective function value of L as well. By thede�nition of DLP , this implies that L is optimal i� there exists y such that (y;L) isdual-feasible, which is guaranteed by the conditions on y.One way to search for a good strategy w is to try to �nd a balancing strategy. Wecan try to do this by constructing a feasible point (w;L) for the following balanced loadLinear Program, in which the inequalities (ii) of LP are replaced by equalities (ix).BLP :8<: Pmj=1 wj = 1; (viii)PSj3iwj = L; for all i 2 U; (ix)wj � 0; L � 0: (x)The program BLP is not always feasible, since �nding a solution would imply that Scan be perfectly balanced, which cannot be done for all quorum systems [19]. Nev-ertheless, one could hope that such a balancing strategy (if found) would induce theoptimal load. The next proposition shows that this is true for a certain subclass ofquorum systems.Proposition 4.8. Let S be an s-uniform quorum system. Let w be a strategyand L � 0 be such that (w;L) is a feasible point to program BLP . Then the optimalload is L(S) = L = s=n. 10



Proof. First let us show that L = s=n. Using the equalities (ix) we getXi2U XSj3iwj = nL:(1)By switching the summation order and using the s-uniformity of S and equality (viii)we get Xi2U XSj3iwj = mXj=1wj Xi2Sj 1 = s mXj=1wj = s:(2)By equating (1) and (2) we conclude that L = s=n.Now let y = (1=n; : : : ; 1=n) be a weight vector for the elements. Clearly y(U ) = 1,and y(S) = jSj=n = s=n = L for any quorum S 2 S, since S is s-uniform. Therefore(y;L) is dual-feasible, so by Proposition 4.7, L(S) = L.Remark: The proof does not use the fact that S is a quorum system in any way,and holds for non intersecting set systems as well.The condition that Proposition 4.8 places on a strategy w is a very weak one.It su�ces to show that w is a feasible balancing strategy for it to induce the uniqueoptimal load, if S is uniform. The following example shows that the uniformityis crucial; non-uniform quorum systems can have several balancing strategies, withdi�erent induced loads.Example 4.9. Consider the quorum systemS = f f1; 4; 6g; f2; 4; 7g; f3; 5; 6;7g;f1;2;3;5g;f1; 2; 3; 4g; f2; 3; 4;5g; f3; 4;5;6g;f4;5;6; 7g; f5; 6; 7;1g; f6; 7;1;2g;f7;1;2; 3g g:The strategy w = (0; 0; 0; 0; 17 ; 17 ; 17 ; 17 ; 17 ; 17 ; 17 ) is balancing with a load of Lw(S) = 4=7.However the strategy w0 = (14 ; 14 ; 14 ; 14 ; 0; 0; 0; 0;0;0;0) is also balancing, with a loadof Lw0(S) = 1=2.If S is a fair system, then the next proposition shows that we can compute theload and optimal strategy immediately. This is a restatement of Proposition 5.1 of[12] using the fact that L(S) = 1=��.Proposition 4.10. Let S be an (s; d)-fair quorum system. Then L(S) = s=n =d=m.Example 4.11. The following examples demonstrate the use of Proposition 4.10.The �rst shows that the lower bound of Example 4.4 is tight, and the other two showthat the optimal load of Proposition 4.3, 1=pn, can be attained.(i) Over an odd-sized universe, Maj is an n+12 -fair quorum system, so L(Maj) =n+12n � 12 .(ii) The FPP system [28] is a (t + 1)-fair quorum system over n = t2 + t + 1elements, so L(FPP) = t+1t2+t+1 � 1pn . In fact equality holds in the tighter lowerbound of Proposition 4.3 for this system.(iii) The Grid system [5] is a (2h � 1)-fair system over n = h2 elements, soL(Grid) = 2h�1h2 � 2pn .4.3. E�ective Calculation of the Load. If a quorum system S is given ex-plicitly, as a list of all m quorums, then program LP of De�nition 3.3 can be solved inpoly(n;m) time using Linear Programming (cf. [40]). However often S is given implic-itly, say, via some data structure containing the elements coupled with a polynomial-time procedure to produce a quorum on demand. In such a case just writing program11



Input a point (y;T ).The rows are U1; : : : ; Ud.Q ?; s 0for i = d to 1 // bottom to topr Pj2Ui yjif r + s < T thenreturn Ui [Q // y(Ui [Q) < Telse j  argmink2Uifykg // min weight in row is s + yjQ Q [ fjgend-forreturn TRUE // (y;T ) is dual-feasibleFig. 1. An oracle for a Crumbling Wall quorum system.LP could be an exponential task since typically m = 2
(n). Calculating the loadquickly is especially important when failures may occur, since the computation needsto be done repeatedly after each con�guration change.Instead we make use of the adaptation of the Ellipsoid algorithm of [16]. Let ddenote the dimension of the problem at hand. The Ellipsoid algorithm uses an oracle,which receives a point x 2 Rd and performs the following action.(i) If x is a feasible point, then return TRUE.(ii) Otherwise, return a hyperplane separating x from the feasible region (i.e.,return a violated constraint).Given such an oracle, that works in time � , the algorithm solves the linear programin time poly(�; d).We achieve nothing by applying this algorithm to problem LP since its dimensionis m + 1. However we can apply this algorithm to the dual problem DLP , whosedimension is n + 1. Translated to our terminology, we need to provide an oraclewhose input is a point (y;T ). If (y;T ) is feasible in DLP then the oracle returnsTRUE, otherwise it returns a quorum S 2 S such that y(S) < T . If this oracle worksin poly(n) time then the algorithm calculates the load in poly(n) time.Remark: Solving problem DLP gives us the optimal value of the load, but doesnot �nd a strategy that induces this load. Just writing down a strategy would causea time complexity of 
(m).Example 4.12. In the systems of the Crumbling Wall class [37] the elementsare arranged in rows of di�erent widths, and a quorum is the union of a full rowand a representative from each row below the full row. The procedure in Figure 1is an oracle of the required kind, with a time complexity of O(n). Therefore we cancompute the load of any CrumblingWall using the Ellipsoid algorithm outlined above.5. Optimal Load, High Availability Quorum Systems.5.1. The Paths System. In this system, the elements constitute a type ofsquare grid, and a quorum is the union of two paths, one connecting the left andright sides and one connecting the top and bottom sides. Our analysis shows thatL(Paths) = O( 1pn ) and that Fp(Paths) � e�
(pn) for p < 12 , so the tradeo� betweenthe load and failure probability is tight. Moreover, we show that even in the presence12



of faults, with exponentially high probability the load is still Lp(Paths) = O( 1pn ) forall p < 12 , which is the best we can hope for. We also give a simple and e�cientalgorithm for computing a strategy which induces an almost optimal load when someelements are faulty. The proofs are based on theorems of Percolation Theory (seeAppendix A).Definition 5.1. Let G(d) be the subgrid ofZ2 with vertex set fv 2Z2 : 0 � v1 �d + 1; 0 � v2 � dg and edge set consisting of all edges joining neighboring verticesexcept those joining vertices u, v with either u1 = v1 = 0 or u1 = v1 = d+ 1.Definition 5.2. Let G�(d), the dual of G(d) be the subgrid with vertex setfv + (12 ; 12) : 0 � v1 � d;�1 � v2 � dg and edge set consisting of all edges joiningneighboring vertices except those joining vertices u, v with either u2 = v2 = �12 oru2 = v2 = d+ 12 .See Figure 2 for a drawing of G(d) and G�(d). Note that every edge e 2 G(d) hasa dual edge e� 2 G�(d) which crosses it. We call such e and e� a dual pair of edges.Note also that G(d) and G�(d) are isomorphic; G�(d) may be obtained by rotatingG(d) at a right angle around the origin and relocating the vertex labeled (0; 0) to thepoint (d+ 12 ;�12 ). Both G(d) and G�(d) contain d2 + (d+ 1)2 = 2d2 + 2d+ 1 edges.
(0,0)Fig. 2. The grids G(3) (full lines) and G�(3) (dotted lines).Definition 5.3. The Paths quorum system of order d has n = 2d2 + 2d + 1elements, and we identify an element in U with a dual pair of edges e 2 G(d) ande� 2 G�(d). A quorum in the system is the union of (elements identi�ed with) theedges of a left-right path in G(d) and the edges of a top-bottom path in G�(d).Proposition 5.4. p2pn / L(Paths) / 2p2pn .Proof. For the lower bound, note that the smallest quorum has size c(Paths) =2d+ 1, and we can apply Proposition 4.1 to get L(Paths) � 2d+12d2+2d+1 . For the upperbound, consider the quorums of the type Sj = fedges joining u; v 2 G(d) : u2 =v2 = jg [ fedges joining u; v 2 G�(d) : u1 = v1 = j + 12g, for j = 0; : : : ; d. Eachelement corresponding to a horizontal edge in G(d) appears in two such quorums,except elements on the diagonal that appear only once. A strategy choosing onlythese quorums with probability 1d+1 induces a load of 2d+1 .We now wish to calculate the failure probability of the Paths system. We assumethat the elements fail with probability p. A failed element corresponds to two closedpercolation edges: an edge e 2 G(d) and its dual edge e� 2 G�(d). We say that a path13



in G(d) is closed if all its edges are closed. De�ne the following events:(i) LR = \there exists an open left-right path in G(d)",(ii) LRC = \there exists a closed left-right path in G(d)",(iii) TB = \there exists an open top-bottom path in G�(d)",(iv) TBC = \there exists an closed top-bottom path in G�(d)".Lemma 5.5. If p > 12 then there exists a positive function ' such that Pp(LR) �e�'(p)d.Proof. Consider the grid G(d), and let � = fv 2 Z2 : v1 = d + 1g be the set ofZ2 vertices on the in�nite vertical line on the right side of G(d). Let R denote thevertices on the right side of G(d). Then summing along the possible starting pointson the left side,Pp(LR) � dXk=0Pp((0; k)$ R) � dXk=0Pp((0; k)$ �) = (d+ 1)Pp(0$ �):A path from the origin to � must exit the ball B(d), so we can apply Theorem A.1to get � (d+ 1)Pp(0$ @B(d)) � (d+ 1)e� (p)d � e�'(p)d:Corollary 5.6. If q > 12 (p < 12) then there exists a positive function ' suchthat Pp(LRC) � e�'(q)d.Proof. Exchanging the roles of p and q we get that Pp(LRC) = Pq(LR), so wecan apply Lemma 5.5.Proposition 5.7. There exists a positive function ' such that Fp(Paths) obeys8<:Fp(Paths) � 2e�'(q)d; p < 12 ,Fp(Paths) � 1� e�'(p)d; p > 12 ,12 < Fp(Paths) � 34 ; p = 12 ,so Fp(Paths) is almost Condorcet.Proof. By de�nition, the event \there is a live quorum" is LR\TB. A moment'sreection shows that an open left-right path exists in G(d) i� no closed top-bottompath exists in G�(d), since a dual pair of edges e and e� have the same state (see dis-cussion in [15], pp. 198{199). Therefore the events LR and TBC are complementary.Since G(d) and G�(d) are isomorphic, then TB and LRC are also complementaryevents. Therefore the system failure event isfail = LR \ TB = TBC [ LRC:Additionally, the isomorphismbetween G(d) andG�(d) implies thatPp(LR) = Pp(TB)and Pp(LRC) = Pp(TBC). Now we consider the three cases, as follows.(i) Let p < 12 . Then Fp = Pp(fail) = Pp(LRC [ TBC) � 2Pp(LRC) and soFp(Paths) � 2e�'(q)d by Corollary 5.6.(ii) Let p > 12 . Then 1�Fp = Pp(LR\TB) � Pp(LR) � e�'(p)d by Lemma 5.5.(iii) Let p = 12 . From the above discussion and the proof of Corollary 5.6 itfollows that P1=2(LR) = P1=2(TB) = 12 . For the upper bound, note that both LRand TB are increasing events, so we can use the FKG inequality [10]. ThereforeF1=2 = 1�P1=2(LR \ TB) � 1�P1=2(LR)P1=2(TB) = 34 :For the lower bound, note that Paths is a dominated quorum system. ThereforeF1=2(Paths) > 12 by a result of [35]. 14



Finally, we show that w.h.p. the load of the Paths system is O( 1pn) in the presenceof failures, for any failure probability p < 12 . In other words, the load has essentiallythe same asymptotic behavior, as long as there is a good probability that at least onefunctioning quorum exists.Proposition 5.8. For any 0 � p < 12 there exists  > 0 such that Lp(Paths) =O( 1pn ) with probability � 1� e�d.Proof. Let LRr be the event \there exist at least r + 1 edge disjoint left-rightpaths in G(d)". Fix some 12 > p0 > p. Then by Theorem A.31�Pp(LRr) � � qq � q0�r [1�Pp0(LR)]:Now for p0 < 12 ,Pp0(LR) = 1�Pp0(TBC) = 1�Pp0(LRC) � 1� e�'(q0)dby Corollary 5.6, so Pp(LRr) � 1� � qq � q0�r e�'(q0)d:Fix 0 <  < ', let 0 < � = '�ln[q=(q�q0)] , and let r = �d. Then Pp(LRr) � 1 � e�d:In other words, w.h.p. there exist �d + 1 edge disjoint left-right paths in G(d). Thesame also happens for top-bottom paths in G�(d). Therefore we can �nd �d + 1quorums such that any element appears in at most two of them (once as an edgee 2 G(d) and once as the dual edge). We conclude that when such quorums arefound, Lp(Paths) � 2�d+1 = O( 1pn ):Remark: This is the strongest possible result regarding load with failures, sinceif p � 12 then by Lemma 3.14 and a result of [35], ELp(S) � Fp(S) � 12 for anyquorum system S.Proposition 5.8 guarantees that w.h.p. a good strategy (that induces a load ofO(1=pn)) exists. We now describe an e�cient algorithm that �nds a nearly optimalstrategy w for any given con�guration x; the load induced by w is at most twice theoptimal load under con�guration x, L(Pathsx).The algorithm mimics the structure of the existence proof. As a preprocessingstep, that needs to be performed after each con�guration change, the algorithm �ndsa maximum collection of disjoint left-right paths, say kLR such paths, and similarly�nds kTB disjoint top-bottom paths. This can be done by connecting a source vertexs to all the vertices on the left side and a sink t to the vertices on the right, assigninga capacity of 1 to all the edges, and �nding the maximum (s; t) ow (and repeatingfor TB paths). Since the network is planar we can �nd the ow in time O(n logn)using the algorithm of [20], or in time O(nplogn) by [17] using the methods of [11].Given these path collections, the strategy w is the following: If either kLR = 0or kTB = 0 then no live quorums exist in con�guration x. Otherwise, whenever aquorum is needed, pick a LR path with uniform probability 1=kLR and a TB pathwith uniform probability 1=kTB, and use their union. Since the paths are disjoint,each element can appear at most once in a LR path and once in a TB path, soLw(Pathsx) � 1=kLR + 1=kTB:15



However, if the maximum ow is kLR then the Max-Flow Min-Cut theorem impliesthe existence of a kLR-size cut. Therefore any LR path that is open in con�guration xmust cross this cut via an edge, so some edge in this cut must have a load of at least1=kLR under any strategy. This implies a lower bound on the load,L(Pathsx) � maxf1=kLR; 1=kTBg;hence Lw(Pathsx) is at most twice the best possible.Remark: A related construction, using paths on a triangular lattice with ele-ments corresponding to the nodes, was suggested in [45] (see [44]). They show thattheir construction has asymptotically high availability (Fp ! 0 when p < 12 in ournotation). The rate of convergence is not analyzed, and neither is the load (with orwithout failures). Nevertheless it seems that an analysis similar to ours would showthat the characteristics of their system are comparable to those of our Paths system,with a load of O(1=pn) and Fp � e�
(pn) when p < 12 .5.2. The B-Grid System. Arrange the elements in a rectangular grid of width d.Split the grid logically into h bands of r rows each (so there are n = dhr elements). Callr elements in a column that are all contained in a single band a mini-column. Thena quorum consists of one mini-column in every band, and a representative element ineach mini-column of one band (see Figure 3).
Fig. 3. The B-Grid system over n = 240 elements with width d = 16, h = 5 bands and r = 3rows per band. One quorum is shaded.Lemma 5.9. L(B-Grid) = d+hr�1dhr .Proof. Clearly B-Grid is a fair quorum system, with a quorum size of d+ hr� 1,and the lemma follows from Proposition 4.10.Lemma 5.10. Fp(B-Grid) � �dpr�h + h�1� qr�d.Proof. De�ne E1 to be the event \in every band there exists a mini-columnwhose elements all failed", and E2 to be the event \there exists a band in whichevery mini-column contains a failed element". Clearly the system failure event isfail = E1[E2, so Fp(B-Grid) � P(E1)+P(E2). We get the result since P(E1) � �dpr�hand P(E2) � h�1� qr�d.In the next lemma we give a condition on r under which Fp decays exponentiallyfast in a large range of p values.Lemma 5.11. If 0 � p � 13 and r = bln dc then Fp(B-Grid) � e�h + e� 12pd forlarge values of d such that lnh < 12pd. 16



Proof. To get P(E1) � �dpr�h � e�h we require the conditionr > ln d+ 1ln1=p :(3)To get P(E2) � h�1� qr�d � e� 12pd we require the conditionr < lnd� ln(lnh+ 12pd)ln 1=q :(4)If we consider only p � 13 , then 1ln 1=p � 0:91 and 1ln 1=q � 2:466, and a simplecheck shows that r = bln dc �lls both conditions (3) and (4) for su�ciently large d iflnh < 12pd.The next propositions are proved by plugging the parameters into Lemma 5.11and Lemma 5.9. In Proposition 5.12 the failure probability is minimal for the B-Gridsystem (up to a logarithmic factor in the exponent). In Proposition 5.13 the load isminimal.Proposition 5.12. If d = n2=3, r = bln dc and h = n=(rd) then L(B-Grid) =O(n�1=3) and Fp(B-Grid) = O(exp(�n1=3lnn )) in the range 0 � p � 13 .Proposition 5.13. If d = pn, r = bln dc and h = n=(rd) then L(B-Grid) =O(1=pn) and Fp(B-Grid) = O(exp(�n1=42 )) in the range 0 � p � 13 .Remark: Taking either d > n2=3 or d < pn makes both the load and theavailability worse. Note that in any case, the tradeo� between the load and failureprobability is not tight. By Proposition 4.5 we could hope for a failure probability ofO(exp(�n2=3)) when the load is � n�1=3.5.3. The SC-Grid System. Consider a grid made of h rows of cells with width d.In a universe of size n = dh, allocate d di�erent elements to each row. Assume thatrow j is allocated elements f1; : : : ; dg. Then for a parameter r < d, place the elementsinto cells in shifted cyclic order: f1; : : : ; rg in cell (1; j), f2; : : : ; r + 1g in cell (2; j)and so forth. Every element appears in r cells in the same row. A quorum in thesystem is a set of elements that are a majority in one cell of every row and a majorityin every cell of one row (see Figure 4). This system is somewhat similar to that of[38], in which each grid cell contains a distinct set of elements. For simplicity assumethat both d and r are odd.
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Klm lmN mNo NoK oKlFig. 4. The SC-Grid system over n = 15 elements with width d = 5, h = 3 rows and r = 3elements per cell. The elements of one quorum are marked by capitalized letters, and the cells wherea majority is achieved are shaded.Lemma 5.14. Let r be odd and let d > r. Consider a cycle of d elements, andthe d subsets C1; : : : ; Cd of r consecutive elements along the cycle. Color G of the17



elements in green, and let gj count the number of green elements in Cj. If gj � r+12for all j then G � dd � r+12r e. If d j r then the bound can be achieved.Proof. Sum the number of green elements in each Cj. Then Pdj=1 gj = rG sinceevery green element is counted precisely r times. Since gj � r+12 then rG � d � r+12and we are done.If d = rx for some integer x then consider the x disjoint sets C` = f(` � 1)r +1; : : : ; `rg for 1 � ` � x. In each set color the �rst r+12 elements in green. Then everyset Cj contains r+12 green elements and G = x � r+12 , so the lower bound is achieved.Lemma 5.15. rh+d2n / L(SC-Grid) / rd .Proof. By Lemma 5.14 the smallest quorum size is c(SC-Grid) � r+12 (h�1)+ d+12 ,so the lower bound follows from Proposition 4.1. For the upper bound, consider thequorums S1; : : : ; Sk+1, where Sj contains all the d elements of row j, and r+12 elementsof every row i 6= j. Consider a speci�c row j. As long as k r+12 � d we can use adi�erent set of r+12 elements from row j in quorum Si for i 6= j, so every elementappears in at most 2 quorums. Therefore we can take k = b 2dr+1 c. A strategy thatchooses one of these quorums with equal probability induces a load of 2k+1 � rd .Notation: Let fx be the probability that at least x+12 elements fail out of xwhen each element fails independently with probability p.Lemma 5.16. Fp(SC-Grid) � (dfr)h + hfd.Proof. Call a cell failed if a majority of its elements fail. Let E1 be the event\all the rows contain at least one failed cell", and let E2 be the event \there existsa row in which all the cells failed". Then Fp(SC-Grid) � P(E1) + P(E2). ClearlyP(E1) � (dfr)h. By Lemma 5.14, if all the cells in row j have failed then at least d+12of the elements in row j have failed, so P(E2) � hfd.Lemma 5.17. For every � < 12 there exists " > 0 such that when 0 � p � 12 � �and r � 2" ln d then Fp(SC-Grid) � d�h + he�"d:Proof. By a Cherno� inequality, there exists " > 0 such that fx � e�"x for all xwhen 0 � p � 12 � �. For this ", if r � 2" lnd then fr � 1=d2. Plugging this intoLemma 5.16 �nishes the lemma.By plugging the parameter values into Lemma 5.15 and 5.17 we obtain the fol-lowing result.Proposition 5.18. For every � < 12 there exists " > 0 such that if 0 � p �12 � �, then taking r = d2" ln de, d = pn lnn and h = n=d gives Fp(SC-Grid) =exp(�
(pn lnn)) and L(SC-Grid) = O(q lnnn ).Remark: The parameters were chosen to minimize the failure probability. Thetradeo� between the load and failure probability is tight for this construction.5.4. The AndOr System. Consider a complete rooted binary tree of height h,rooted at root, and identify the n = 2h leaves of the tree with the system elements.We de�ne two recursive procedures, that operate on a subtree rooted at v and returna set of elements.(i) For a leaf v, ANDset(v) = ORset(v) = fvg.(ii) ANDset(v) = ORset(v:left) [ORset(v:right).(iii) ORset(v) has a choice; it can be either ANDset(v:left) or ANDset(v:right).18



A quorum in the AndOr system is any set Q = S [ R where S is an ANDset(root)and R is an ORset(root).It is easy to think of the AndOr system as the conjunction of two boolean func-tions, corresponding to the top level activations of ANDset and ORset . Each functionis de�ned by a complete tree of alternating AND and OR gates, over the same inputs,but one function has an AND gate at the root while the other has an OR gate there.Lemma 5.19. If S = ANDset(root) and R = ORset(root), then jS \ Rj = 1for any choices made by the activations of the ORset procedure. Hence AndOr is aquorum system.Proof. By induction on the tree height h. The case h = 0 is obvious. For h � 1,assume w.l.g. that the ORset procedure uses the left subtree. Then any elementin the right subtree is not in the intersection, and by the induction hypothesis theintersection in the left subtree has size 1.Lemma 5.20. The AndOr system is a fair system, withc(AndOr) = � 2pn� 1; h even,3pn=2� 1; h odd.Proof. The fairness is obvious from symmetry. Let ANDsize(h) = jANDset(root)jdenote the size of the output of the ANDset procedure on a tree with height h, andsimilarlyORsize(h) = jORset(root)j. Then by de�nition, ANDsize(0) = ORsize(0) =1, and ANDsize(h) = 2ORsize(h� 1);ORsize(h) = ANDsize(h� 1):It is easy to show by induction on h that ORsize(h) = 2bh2 c and ANDsize(h) = 2bh+12 c.Combining with Lemma 5.19 �nishes the proof.Proposition 5.21. L(AndOr) = O(1=pn).Proof. Apply Proposition 4.10 using Lemma 5.20.The following proposition shows the high availability of the AndOr system. Theproof is an adaptation of the proof in [43]. We include it here for completeness,omitting some of the technical details.Proposition 5.22. Let � = 3�p52 � 0:38. Fp(AndOr) � exp(�
(pn)) whenp < 14 and Fp � exp(�
(n0:19)) when p � �� 
(n�0:19).Proof. Let fA(h) denote the probability that all the possible outputs sets of theANDset procedure are hit, and similarly fO for the ORset procedure, on a tree withheight h. Clearly Fp(AndOr) � fA(h) + fO(h). By the de�nitions,fA(h) = 2f2A(h � 2)� f4A(h� 2);fO(h) = 4f2O(h � 2)� 4f3O(h� 2) + f4O(h� 2);and fA(0) = fO(0) = p. Obviously fA(h) < 2f2A(h � 2), and also fO(h) = f2O(h �2) (2� fO(h� 2))2 < 4f2O(h� 2). Therefore by induction, when h is even,fA(h) < 22h2 �1p2h2 < (2p)pnand similarly fO(h) < (4p)pn. So it follows that Fp(AndOr) � exp(�
(pn)) whenp < 14 . When h is odd the bound is similar.19



Now fO has a stable point at p = � and fA has a stable point at p = 1� �. Asshown by [43], if there are n = O(d5:3) leaves in the tree and p < ��
(d�1) < 1���
(d�1), then fA(h) < 2�d�1 and the same for fO . Setting d = O(n1=5:3) = O(n0:19)�nishes the claim.We now describe how to use the AndOr system when some elements have failed.We show an algorithm that �nds a nearly optimal strategy w for any given con�gura-tion x; the load induced by w is at most twice the optimal load under con�guration x,L(AndOrx). The description is of an activation at the top level of ANDset(root), say.The description of the ORset activation is identical.The algorithm is a preprocessing step which needs to be done after each con�g-uration change. It begins by recursively marking the internal nodes in the tree as\alive" or \dead" in the obvious way; an AND node is alive if both its children arealive, and an OR node is alive if at least one child is alive.Consider a live node v. If it is either an AND node, or an OR node with a singlelive child, then any strategy that chooses to use (elements in the tree rooted at) vis forced to use all v's live children. Therefore to complete the description of ourstrategy w need to show what happens at OR nodes with two live children. For this,during the preprocessing each such node v is given a probability �(v). If the strategyw decides to use v's tree then it uses its left subtree with probability �(v) and itsright with probability 1� �(v).To compute the �(v) values for live OR nodes v with two live children, the algo-rithm recursively computes the optimal loads `L and `R in the left and right subtrees,respectively. To achieve an optimal load for v's tree, �(v) must satisfy �`L = (1��)`R.Therefore �(v) = `R=(`L + `R), and the load induced on v's tree is `L`R=(`L + `R).The above computation is performed twice, once starting with ANDset(root)and once with ORset(root). Note that a node may be marked \alive" w.r.t. theANDset(root) activation and \dead" w.r.t. the ORset, or vice versa. However every vis assigned a single �(v) value since it is an OR node only w.r.t one top level activation.This w would clearly induce an optimal load for any con�guration x if we were in-terested in a single top level activation. However since we must activate both ANDsetand ORset at the top level, a moment's reection shows Lw(AndOrx) � 2L(AndOrx).Remarks:(i) A quorum system can be constructed from any monotone read-once booleanfunction in a similar way. This is achieved by taking some AND/OR formula Fimplementing the function, and making a dual copy if it F d (in which every ANDgate is replaced by an OR gate and vice versa). A quorum is de�ned to be a unionof two sets of elements, one satisfying F and the other satisfying F d. The proofof Lemma 5.19 would still hold for such a system. However the load and failureprobability would depend on the speci�c structure of the function used.(ii) The AndOr system is isomorphic to the hierarchical grid construction of [24],when the grids at all the levels are 2� 2 grids. The read-quorum and write-quorumprocedures of [24] correspond to our top level activations of the ANDset and ORsetprocedures, respectively. However ours is a much stronger analysis; we calculate theload, and analyze the rate of decay of Fp and the critical probability �.6. Load Analyses of some Quorum Systems.6.1. Non Dominated Coteries Have Lower Load. The following proposi-tion shows that non-dominated coteries (see De�nition 2.5) have the lowest loads. Thisgives further support to the intuitive view that NDC's are preferable to dominatedcoteries for practical applications. 20



Proposition 6.1. Let S, R be quorum systems over the same universe U suchthat R � S. Then L(R) � L(S).Proof. Assume that S = fS1; : : : ; Smg and R = fR1; : : : ; Rm0g. De�ne a mapping' : S 7! R as follows. For every set Sk 2 S consider the minimal j such that Rj � Sk,and let '(Sk) = Rj. By De�nition 2.5 there exists such an Rj for every Sk, so ' iswell de�ned. Let w be an optimal strategy for S. De�ne w0 for R byw0j = �P'(Sk)=Rj wk; if 9k : '(Sk) = Rj,0; otherwise.Clearly w0 is a strategy for R. The load induced by strategy w0 on an element i is`w0(i) = XRj3iw0j = XRj3i0@ X'(Sk)=Rj wk1A � XSk3iwk = `w(i):Applied to the load on the busiest element i this implies thatLw0(R) � Lw(S) = L(S);and by the minimality of L(R) the result follows.Remark: Proposition 6.1 does not imply that dominated quorum systems neces-sarily have a high load. In fact, all our constructions of Section 5 are dominated, andhave optimal or near optimal load. By Proposition 6.1 there exist NDC's with loadswhich are as good or better|but these are more cumbersome to describe explicitly.6.2. Voting Systems Have High Load. A popular and simple way to con-struct a quorum system is by weighted voting [14, 13, 41, 29]. In this section we showthat L(S) > 12 for any voting system S, i.e., any voting system is at least as bad asthe Maj system in terms of load.Definition 6.2. For each i 2 U let the integer vi � 0 denote the weight of i.Let V =Pi vi be the total weight. The voting system de�ned by the weights vi isVote = fS � U :Xi2S vi > V2 g:Proposition 6.3. L(Vote) > 12 .Proof. Consider the vector y de�ned by yi = vi=V for all i 2 U . Clearly y(U ) = 1.By de�nition 6.2, y(S) = 1V Xi2S vi > 12 ;for any quorum S 2 Vote. Therefore (y; 12) is a feasible point to program DLP , soL(Vote) > 12 by the weak duality of linear programming.6.3. The Tree System. We have shown in Example 4.4 that the load of theTree quorum system [1] is L(Tree) � 1log(n+1) . In this section we show that thebound is almost tight; the precise load is L(Tree) = 2log(n+1)+1 . We �rst show anupper bound by balancing the load on the elements, and then show a matching lowerbound. We use h to denote the height of the tree (n = 2h+1 � 1).Claim 6.4. L(Tree) � 2h+2 . 21



Proof. Denote a tree rooted at node i by T (i), and denote its left and rightsubtrees by TL(i) and TR(i). We build a probabilistic recursive strategy Pick to picka quorum, using values �h, to be de�ned later, as follows.Pick (T (i)) = 8<: fig [ Pick(TL(i)); with probability �h,fig [ Pick(TR(i)); with probability �h,Pick(TL(i)) [ Pick (TR(i)); with probability 1� 2�h.Let L(h) denote the load induced by strategy Pick in a tree of height h. The load isdetermined either by the load on the root i, or by the most heavily loaded elementin one of the subtrees. Therefore L(h) = maxf2�h; (1 � �h)L(h � 1)g: Choosing�h = L(h�1)L(h�1)+2 balances the load, so with this choice the load obeys the recurrenceL(h) = 2L(h� 1)L(h � 1) + 2 ;and L(0) = 1. A simple check shows that L(h) = 2h+2 solves this recurrence, and then�h = 1h+2 for h � 1.Claim 6.5. L(Tree) � 2h+2 .Proof. Let 0 � ti � h denote the distance from node i to the root. To show amatching lower bound we build a dual-feasible weights vector y, de�ned byyi = ( 1h+2 �12�ti ; 0 � ti < h,1h+2 �12�h�1 ; ti = h.It is easy to see that y is a valid weight vector. We need to show that y(S) � 2h+2for every quorum S 2 Tree.By induction from the leaves towards the root, one can show thaty(S \ T (i)) = � 2h+2 �12�ti ; S \ T (i) 6= ?,0; otherwise,(5)for every i 2 U and S 2 Tree. Plugging the root of the tree we obtain y(S) =2h+2 �12�0 = 2h+2 : Therefore (y; 2h+2 ) is feasible for program DLP so the claim followsfrom the weak duality of linear programming.6.4. The Hierarchical Quorum System. In this section we analyze the loadand availability of the hierarchical system of [23]. In this system the elements arethe leaves of a complete ternary tree. The internal nodes are 2-of-3 majority gates.We show that Fp(HQS) � exp(�
(n0:63)) when p < 13 and Fp(HQS) � n��(p) whenp < 12 , and that L(HQS) = n�0:37.The analysis is similar in nature to that of the AndOr system. However, HQS isa non-dominated system, so the analysis is good up to 12 rather than up to the 0:38 ofthe AndOr system. On the other hand the load of HQS is worse than the O(1=pn)of the AndOr system.We use h to denote the height of the tree (n = 3h).Proposition 6.6. L(HQS) = n�0:37.Proof. By symmetry it follows that HQS is a fair system, with c(HQS) = nlog3 2 =n0:63. Therefore by Proposition 4.10, L(HQS) = n0:63=n = n�0:37.Proposition 6.7. Fp(HQS) � exp(�
(n0:63)) when p < 13 and Fp(HQS) �n��(p) when p < 12 . 22
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A. Results of Percolation Theory. In this section we list the de�nitions andresults that are used in our analysis of the Paths system, following [15].The percolation model we are interested in is as follows. Let Z2 be the graph ofthe square lattice in the plane. Assume that an edge between neighboring vertices inZ2 is closed with probability p and open with probability q = 1� p, independently ofother edges. This model is known as bond percolation on the square lattice. Anothernatural model, which plays a minor role in our work, is the site percolation model. Init the vertices are closed with probability p. Unless otherwise stated, we always usethe bond percolation model.Notation: For an event E de�ned in the percolation model (either on Z2 or onsome �nite subgraph of Z2), we denote the probability of E by Pp(E).A key idea in percolation theory is that there exists a critical probability, pc, suchthat graphs with p < pc exhibit qualitatively di�erent properties than graphs withp > pc. For example, Z2 with p < pc has a single connected (open) component ofin�nite size. When p > pc there is no such component (see [15], p. 110). For bondpercolation in the plane pc = 12 [22].Notation: Let B(d) be the ball of radius d with center at the origin; B(d) =fv 2 Z2 : jv1j + jv2j � dg. Let @B(d) be the surface of B(d), @B(d) = fv 2 Z2 :jv1j + jv2j = dg. For a vertex v and a set of vertices A, let v $ A denote the eventthat there exists an open path between v and some vertex in A.The following theorem shows that when the probability p for a closed edge is abovethe critical probability, the probability of having long open paths decays exponentiallyfast.Theorem A.1. [31] If p > 12 then there exists  (p) > 0 such thatPp(0$ @B(d)) < e� (p)d for all d:Definition A.2. Let E be an event de�ned in the percolation model. Then theinterior of E with depth r, denoted Ir(E), is the set of all con�gurations in E whichare still in E even if we perturb the states of up to r edges.We may think of Ir(E) as the event that E occurs and is `stable' with respect tochanges in the states of r or fewer edges. The de�nition is useful to us in the followingsituation. If LR is the event \there exists an open left-right path in a rectangle D",then by ow considerations it follows that Ir(LR) is the event \there are at least r+1edge disjoint open left-right paths in D".Theorem A.3. [3] Let E be an increasing event and let r be a positive integer.Then 1�Pp(Ir(E)) � � qq � q0�r [1�Pp0(E)]whenever 0 � p < p0 � 1.The theorem amounts to the assertion that if E is likely to occur when the edgefailure probability is p0, then Ir(E) is likely to occur when the failure probability issmaller than p0. 25


