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WAIT-FREE CONSENSUS USING ASYNCHRONOUS HARDWARE*
BENNY CHORt, AMOS ISRAELI:l:, AND MING LI

Abstract. This paper studies the wait-free consensus problem in the asynchronous shared memory model. In this
model, processors communicate by shared registers that allow atomic read and write operations (but do not support
atomic test-and-set). It is known that the wait-free consensus problem cannot be solved by deterministic protocols.
A randomized solution is presented. This protocol is simple, constructive, tolerates up to n processors crashes
(where n is the number of processors), and its expected run-time is O(n2).
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1. Introduction. The problem of reaching consensus among different processors in a
distributed environment [20] is one of the most fundamental problems whenever any type of
cooperation is to be achieved. The nature of solutions to this problem depends on the properties
of communication media, on the reliability of participating processors, and on their relative
speeds. In this paper we investigate the consensus problem in a totally asynchronous system,
where communication is carried out by shared registers that are atomic with respect to read
and write operations, and up to n out of n processors may fail-stop (i.e., crash).

The consensus problem we study is the following multivalued problem: Every processor
starts the protocol with an arbitrary input value (for example, an externally supplied variable
or an internally computed constant). Upon termination, each processor decides on an output
value. We have two requirements from the output. The first is that all processors that have
terminated hold the same output value. The second is that the output value must be one of
the input values of the processors. The consensus problem has been extensively studied in
the asynchronous message passing model (e.g., [6], [24], [10]). The original version of this
work [9] is the first one that studies and solves consensus in this asynchronous shared memory
model.

It is convenient to think about all the read and write operations in terms of a global time
model. In this model each such I/O operation takes place in a closed interval on the global-time
axis. Atomicity of a register means that every set of reads and writes from/to this register is
equivalent to a sequence in which each interval is shrunk to a distinct point, hence all these
operations are totally ordered. We refer the reader to the works of Lamport [19], Herlihy
and Wing [16], and Ben-David [5] for precise definitions of atomicity and linearizability. In
particular, the techniques of [5] imply that when analyzing protocols that use atomic shared
registers, the global time model can be used with no loss of generality.
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We look for solutions to the consensus problem that satisfy the wait-free termination
requirement. Wait-free termination means that every processor that is activated a sufficient
number of times will decide and terminate. We would like to have a solution that guarantees
that every schedule in which a processor is activated at least k(n) times (for some k(n) which
is a function of n, the number of processors, but does not depend on the scheduler) leads
to termination of that processor. This implies, in particular, that no processor needs to wait
for other processors to take stepsmit should terminate regardless of whether or not other
processors were active in between its own steps (the output value could, however, depend on
other processors’ activity). Such a requirement is in accordance with the complete asynchrony
of the system: It does not make sense to force the very fast processors to wait until a very
slow processor makes a move. Furthermore, wait-free termination implies resilience to any
number of processor crashes.

It is known that wait-free consensus cannot be achieved by deterministic protocols, even
for systems with n 2 processors. This impossibility result has been proven in the original
version of this paper [9] and independently by Loui and Abu Amara [22]. It is also implicit
in the work of Dolev, Dwork, and Stockmeyer [13]. All those proofs follow the ideas in the
impossibility proof for the message passing model of Fischer, Lynch, and Paterson 17]. The
gist of the proof is as follows: First, one shows that there are bivalent initial configurations
of the system, namely, configurations that can lead to more than one decision value (under
different schedulers). After establishing this fact, it is shown that starting from any bivalent
configuration, there is an infinite scheduler that keeps the deterministic system in a bivalent
state.

It is by now a well-known fact in the area of distributed computing that certain problems
that cannot be solved by deterministic protocols do admit randomized solutions [24], [21],
[6]. It is then only natural that in order to overcome the above-mentioned impossibility result,
we employ a randomized protocol, allowing processors to toss coins. We present an efficient
randomized protocol, that achieves consensus for systems of size n, using atomic single-writer
multireader registers. The protocol is fairly simple and constructive, and its expected run-time
is O(n2). This means that for any adversary scheduler, the system reaches a decision after
O (n 2) expected number of steps by all processors. The protocol uses unbounded size registers
(though large values are actually written only with very low probability). The main usage of
the unboundedness is to maintain a global order among processors. Processors who maintain
larger values get preference over processors holding lower values. Coin flips are used to break
possible ties among processors holding equal values.

We briefly discuss other approaches and developments. Loui and Abu-Amara [22] over-
come the impossibility of deterministic consensus by using a much stronger communication
primitive, namely, atomic test-and-set. Following the publication of the original version of
our work [9], various improvements were made: One was designing protocols that operate in
the presence of a stronger adversary model than the one used here. Another direction was the
development of the so-called "bounded time stamps" 18], [14], and using them in consensus
protocols with registers of bounded size. See 2 and 4 for further details.

The remainder of this paper is organized as follows: In 2 we formally define the model,
the class of admissible schedules, and the consensus problem. In 3 we present the protocol,
and 4 contains some concluding remarks.

2. Model and definitions. In this section we define our model of asynchronous con-
current computation, the consensus problem, and the class of schedulers in which we are
interested.

An asynchronous concurrent system is a collection of n processors. Every processor P
is a (not necessarily finite) state automaton with an internal input register ie and an internal
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output register ot,. The input register contains any value v taken from a set V, while the output
register has initially the value 2- 2_ V) and could be changed once to a value in V. The
set of all states of processor P will be denoted by St,. The set St, contains a set of states It,
that are the initial states of the processor P. States in St, where ot, contains a value - 2_

are called the decision states of processor P. The set St, might be infinite. In particular, this
enables every internal state to include a description of the whole history of the computation
of the processor P.

Processors communicate via shared registers. We use atomic single-writer multireader
registers: Every shared register can be written by one processor and read by all other processors.
Processors execute their programs by taking steps. A step consists of an internal operation,
possibly involving coin tosses, and an input/output operation. In the model we consider, these
two parts are executed as a single atomic step whenever the processor is scheduled. Formally,
every processor P takes steps according to its transition function Tt,. Each step consists of a
single input/output operation, followed by a state transition. The input/output operation could
either be "read register r" or "write the value v to register r." In case the communication
action is a read, the new state of P depends not only on the old state but also on the value
read by this action. The transition function Tt, could be either deterministic or randomized.
In the latter case, for every state s 6 St,, there is a probability measure assigned to the next

step. The choice of the actual step is done, according to these probabilities, only when the
processor makes its next step. Given an asynchronous system as specified above, a protocol
is a collection of n transition functions T1 Tn, one per processor.

A configuration C of the system consists of the state of each processor together with the
contents of the shared registers. In an initial configuration, every processor is in an initial
state, and all shared registers and output registers contain the default value 2_. The set of all
configurations will be denoted by C. A step takes one configuration to another by activating
a single processor P. A run of length e is a sequence of e steps. Each run has an associated
schedule that is a sequence of g. processors, numbered according to the order of processors that
take steps in that run. We denote schedules, finite or infinite, by a list of processor numbers,
e.g., (2, 3, 3, 2, 1). If S is a finite schedule, then we denote by S o i, where is any processor
number, the schedule obtained from the schedule S by concatenating the number to the end
of S. We say that processor P is activated k times in a run if P appears k times in its schedule.
The history 7-( of a run is the sequence obtained by interleaving the sequence of configurations
with the steps in the run, starting with the initial configuration. For a finite run, we refer to
the last configuration in its history as the current configuration.

When arguing about randomized protocols, the power of the scheduler crucially depends
on its adaptivity (see [8] for a discussion of this issue). Adaptive schedulers can use information
derived from the state of the system and its history in making scheduling decisions. Formally,
an admissible scheduler ,9 in our system is a mapping from 7-( into the set of n processors.
Given the configuration of the system, the scheduler picks the next processor that is to take
a step. The scheduler could either be a deterministic mapping or a randomized one. The
scheduler is best viewed as an adversary that tries to prevent us from reaching our goal. Under
the definition, this adversary scheduler is adaptive, and it has complete knowledge on the state
of every processor and on the contents of the shared registers during the entire history.2 In
case the processors are randomized, the scheduler could also base its choices on the outcome

An alternative approach separates the atomic operations to internal operations, input operations, and output
operations.

2In the more refined level of atomicity, where internal operations, input operations, and output operations are
separate, the adversary is even stronger. For example, it knows what a processor is about to write before scheduling
that processor. For more details, see 4.
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of past coin flips. We do not allow it, though, to be able to predictfuture randomized moves of
the processors. This is a necessary requirement if randomization is to be helpful at all, and it
is used in all algorithms where randomization is employed, e.g., [24], [21 ], [6]. In particular,
in randomized protocols, a processor might be in a state in which the adversary does not know
which input/output operation will be taken by that processor, before the action takes place.
Given a history 7-/and a scheduler S, the runs that can be produced by ,9, extending 7-/, on some
possible randomized choices are called the runs compatible with 7/and S. Notice that if both
processors and scheduler are deterministic, then there is a single compatible run extending 7-(.

We say that a configuration C is reachable from history 7t with schedule S if there is
a run compatible with 7-/and S that leads to configuration C. We say that a configuration
has a decision value v if some processor P is in a decision state with its output register o,
containing v I.

A randomized consensus protocol is designed for an asynchronous system of n processors
(n >_ 2). The protocol specifies a set V of possible inputs whose cardinality is at least two
(otherwise the problem is trivial). It is required to satisfy the following properties:

(1) Consistency: for every schedule, no configuration reachable from an initial configu-
ration has more than one decision value.

(2) Nontriviality: if processor P has decided on value v in a run, then v is an input value
for at least one processor.

(3) Randomized wait-free termination: each processor must decide after taking a finite
expected number of steps. Formally, there is a probability function f from the natural numbers
into the interval [0, 1] (Y= f(k)- 1), satisfying -= kf(k) < , such that for every
initial configuration Co and for every admissible scheduler, if a processor P was activated k
times by the scheduler, then the conditional probability that P is in a decision state, conditioned
on P not being in a decision state after its previous activation, is at least f(k).

We required that randomized consensus protocols will never err. The randomization
effects only the running time of the protocol and not its correctness. There could be a positive
probability for arbitrary long nonterminating runs, but this probability should be very small
(converging to 0 with the length of the run), so that the expected running time is bounded.

3. Wait-free consensus protocol. The high-level structure of the protocol is as follows:
In every point of an execution, each processor holds a preferred value (which is a potential
decision value) and a confidence level (which is a nonnegative integer). Initially, the confidence
level is 0, and the preferred value of the processor is its input value. Both the preferred value
and the confidence level are written by each processor into a shared register, which can be read
by all others. Processors compare their confidence levels, and if a large enough gap forms, the
leading processor decides on its preferred value. In case of ties, processors increment their
confidence level. In order to prevent live locks, where competing processors concurrently
increment their confidence ad infinitum, coin flips are used. Confidence levels can possibly
reach any nonnegative integer, which means that registers of unbounded size are used by the
protocol. There is a positive (though very small) probability for very large numbers to be
written into the shared registers. This probability decreases to 0 when the numbers increase
to infinity.

To simplify the description of the protocol, we will say that a processor is on node
if its confidence level is i. The initial node is node 0. Before deciding and terminating,
the processor moves to a special node, denoted by cx (this move facilitates the design and
analysis of the protocol). Each processor starts execution by writing its input value in its

register while staying on the start node. The steps of each processor in any given history H of
the protocol are divided into phases. In each phase a processor reads the registers of all other
processors, computes a new value, and writes it in its own register. A processor decides if it



WAIT-FREE CONSENSUS 705

is at least two nodes ahead of all other processors with contending values. Thus, by the time
of decision, processors with contending values are at least one step behind and will change
their preferred value to that of the leading processor. There could be a situation with ties. The
protocol resolves ties by having the option of advancing (to the next node) or not advancing,
according to the outcome of coin tossing. This is where the use of randomization overcomes
the deterministic impossibility result. In a bivalent configuration, only some of the choices
made by some processors lead to another bivalent configuration. Other choices could lead to a
univalent configuration. The adversary does not know which choices the processor will make
before scheduling it, because the choice is made by flipping a coin.

If the coin used by every processor (in choosing whether to advance or not) would be
unbiased, then with high probability, about half the contenders would advance. Those lagging
behind would then join them, and again we would be in a tied situation. While such protocol,
using unbiased coins, would satisfy the requirements of randomized consensus, it would lead
to exponential (in n) expected running time (for an appropriate adversary strategy). To be more
efficient, our protocol tries to have, with high probability, only one successful advancement
out of n attempts. Leading processors in a tied situation flip a biased coin and advance only
with small probability. Intuitively, this probability should be 0 (). The specific value we use,
! is based on calculations done to minimize the expected running time.2n

It is dangerous to let a lagging processor decide, even if all leading processors have
the same preferred value. The reason is that another processor might advance substantially
after its value was last read by the lagging processor. The lagging processor, who thinks all
leading processors have the same value, would in fact be wrong. Therefore, in our protocol,
processors lagging behind never decide, and they always advance. A lagging processor who
sees all leading processors with the same preferred value changes its own value. If the lagging
processor sees conflicts at the top, it retains its old preferred value. In both cases, the lagging
processor advances. If it is no more than two nodes behind the maximum, it advances by one.
If it more than two nodes behind the maximum, it "jumps" to a point that is the maximum
minus two. This shortcut allows the protocol to converge quickly to a decision, even if it starts
from a configuration where one processor is way behind other active processors (e.g., if it just
woke up). Thus, our upper bound on the expected running time will be valid starting from
every reachable configurations, and not just the initial one.

To continue the description of the protocol, some definitions are introduced. Assume that
processor P/has just finished all the read steps in its jth phase, a phase we denote by 4j. Let

maxnode} be the maximum node on which Pi sees a processor during 4 (including itself).

Using the data collected on 4, Pi computes two sets of processors, L and A L. The set L (the
leaders) contains the processors whose node, as read by/9. is maxnode. The set A L (the
almost leaders) is the set of processors whose node, as read by/9/, is maxnode. 1. Denote
by Lji (A L}) the set L (A L) computed by P/in phase 05}.

A processor/9, terminates after the write step of phase qj in one of two cases"

T If another processor has already terminated. The decision value is the value of the
terminating processor.

tO AL} have the same pref.and all processors in the set LjTa If Pi itself is in the set L
The decision value is the common pref.

We say that a processor Pi is committed to terminate in phase } if it completed all the
read steps of the phase and one of the termination conditions T1 or T2 holds (so its next step is
a write, after which/9/decides and terminates). If none of the termination conditions holds,
then P/either moves to a new node or it stays put. The motivation behind the protocol design
is to create a single leader. If Pi is a leader (that is, Pi L}), then the new node to which
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(rl)

(r2)

newreg "= (input, O)
regl "=write(newreg)
repeat

1) newreg
for "= 2 through n do vi :=read (regi) od
maxnode "= maxl <i<, {vi.node}
L := {P/ vi.node maxnode}
AL "= Pi vi.node maxnode
if qi vi.node
then regl "= write(vi.pref, cx), decide vi.pref and halt.

elseif P1 e L and prefof all processors in L U AL vl.pref
then regl :=write(vl.pref, cxz), decide vl .pref and halt.

elseif PI e L
then

newreg.pref := Vl.pref
newreg.node v.node +
toss a biased coin with 1/2n probability of heads
if tails (this occurs with probability
then newreg Vl (retain old value)

endif
elseif maxnode- Vl.node <_ 2

then
newreg.node "= Vl.node +
if all leading processors have the same pref
then

newreg.pref prefof leading processor
else

newreg.pref’= Vl.pref
else (maxnode-v.node > 3)

newreg.node "= maxnode 2
newreg.pref := pref of processor with minimum index in L

endif
regl =write(newreg)

until decision is made

FI6. 1. The n processor protocol or P1 ).

it can move is the successor of its node. However, it moves to its successor node only with
probability 1/2n. With probability 1/2n, Pi stays on its current node. In both cases, the
leader P/retains its old preferred value.

If P is not a leader, then it always moves to a new node. Let k denote Pi’s node during
q. If maxnode. k < 2, then P moves to the successor of its node, k + 1. In this case, Pi’s

have the same pref, thisnew preferred value is determined as follows" If all processors in Lj
value is the new pref of P/. If this is not the case, then P/keeps its own pref.

If P,. is not a leader and maxnode} k > 3, then P/moves to node maxnode} 2. In such
case, we say that Pi jumps. In case of a jump, the new pref of Pi is the pref of the processor

with the minimal index.in Lj
LEMMA 3.1. Let Ho be an initial segment of a history H of an arbitrary execution of

the protocol. If in Ho no processor reaches node with preferred value v, then for any node
j > i, no processor reaches j, in Ho, with preferred value v.

Proof Assume, toward a contradiction, that H is the history of an execution not satisfying
the lemma. Let H0 be an initial segment of H of minimal length that violates the lemma. This

3This specific probability 1/2n was chosen in order to optimize the expected running time.
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means that there is a node such that in H0 no processor reaches with preferred value v and
there is a processor Pk that reaches a node j > with preferred value v.

Let qe be the phase in which Pk moves to node j. If Pk jumps to j, then, by the protocol,
at least one processor Pm Le has been on node j + 2 with preferred value v before this
jump. Since j + 2 > i, this contradicts the minimality of H0. We can therefore assume that Pk
moves to node j from node j without jumping. First, we show that the preferred value of
Pk at j is v’ - v. If j then, this is true by our assumption that in H0 no processor
prefers the value v on node i. If j > i, then this is true because of the minimality of H0.
Having established this claim, we observe that by the protocol, in order for Pk to change its
preferred value from v’ to v while moving from j- to j it has to see all processors in Le with
preferred value v. We now show that for any possible value of maxnode this is impossible.
In q P is on j > i. Therefore maxnode > j > i. If maxnodee i, then by our
assumption no processor has preferred value v on i. If maxnode > i, then as we have shown
above, no processor in Le has preferred value v.

LEMMA 3.2. Let Pk be the first processor reaching node with preferred value v. Then
Pk does notjump to i, and its preferred value on node is also v.

Proof. Let qe denote the phase in which Pk moves to node i, and let H0 be the initial
segment of the history of the execution that ends with the last read step of Pk in be. In H0
no processor has reached node with preferred value v. Thus, by Lemma 3.1, no processor
has reached any node j >_ in H0 with preferred value v. Therefore Pk sees no leader on any
node j > with preferred value v during q. According to the protocol, Pk does not jump
to node with preferred value v in qk Since Pk reaches node with preferred value v, this
argument implies that Pk does not jump to node i.

Assume, by way of contradiction, that Pk changes its preferred value from v’ to v while
moving from to at the end of be. This happens only if pref of all processors in
is v. Consider the following cases:

Case 1’ maxnodee --i- 1. In this case P 6 Le. By the protocol Pk keeps its preferred
value while moving to i. Contradiction.

Case 2" maxnodee i. In this case the preferred value of all processors in L does not
equal v, since we assumed that Pk is the first processor reaching with preferred value v.
Contradiction.

Case 3: maxnode > i. In H0 no processor has been on node with preferred value v,
and by Lemma 3.1, in this execution no processor has preferred value v on maxnodee before
the completion of 4e. Contradiction.

We conclude that Pk prefers the value v during 4e, its last phase on node 1. By the
protocol, processors retain their preferred values when staying on the same node. This means
that P prefers the value v during all phases it executes while residing on node 1.

LEMMA 3.3. Let H be the history of an arbitrary execution of the protocol. Let Pj be
a processor committed to terminate, in H, by T2. If Pj is committed to terminate on with
decision value v, then in H, no processor reaches with a preferred value v’ :fi v.

Proof Assume, by way of contradiction, that Pe is the first processor reaching with
preferred value v’ 5 v. By Lemma 3.2, Pe moves to node withoutjumping, and the preferred
value of Pe on is also v’. Let 4) be the phase in which Pj is committed to terminate with

v. At the beginning of 4j, Pe is on node m < 1. (Otherwise Pj sees Pe as either a leader

or an almost leader during phase 4j and condition T2 does not hold.) After Pe advances tok,

it starts a new phase q. In 4e, Pe reads the values of all processors. The leaders in

L are on a node >_ i. The value preferred by all these leaders before Pe moves there is v, as
the only value preferred at is v. By the protocol Pe takes v as its new preferred value and
advances to i. Contradiction.



708 BENNY CHOR, AMOS ISRAELI, AND MING LI

LEMMA 3.4. Let H be the history ofan arbitrary execution of the protocol. Assume that
in H a single processor Pi movesfrom node.m to node m + as a result ofa successful coin
toss. (That is, all other processors that tried to move from m to m + as a result of a coin
toss fail to do so.) If Pi’s preferred value on node m is v, then all processors reaching node
m + in H have v as their preferred value on node m + 1.

Proof. Assume, by way of contradiction, that the lemma does not hold. Let Pj (i j) be
the first processor reaching node m + with preferred value v’ (v’ - v) in H. By Lemma 3.2,
Pj does not jump to node m + 1. By the supposition, Pj does not flip a coin when moving
from node m to node m / 1. This implies, by the protocol, that Pj is not one of the leaders

during the phase 4) in which it moves to node m + (i.e., Pj L). Since all processors who
move to node m / in H before Pj’s move prefer the value v on node m + 1, it follows from

Lemma 3.1 that all leading processors (those in L) prefer the value v. All these leaders are
on a node > m + and according to the protocol Pj moves to m + with preferred value v

in phase 4)mcontradiction. [3

LEMMA 3.5. Let H be the history ofan arbitrary execution of the protocol. Assume that
in H, processor Pi is the first processor who movesfrom node m to node m + as a result of
a successful coin toss. Then after this write step of Pi, any other processor Pj makes at most
one attempt to movefrom node m to node m + as a result ofa coin toss.

Proof. Consider the execution after Pi’s move. If Pj succeeds in its first attempt to move
from node m to node m + as a result of a coin toss, then we are done. If Pj fails, then it
stays on node m. In the phase following the failed attempt, Pj is not a leader (as it sees P/at
least one node ahead). By the protocol, Pj does not flip a coin in its next phase on node m and
moves to a new node in this phase. [q

THEOREM 3.6. The n processor protocol is consistent.

Proof Let H be an arbitrary history of the protocol. It is easy to see that a processor
terminates by T1 with value v only if some other processor terminated earlier with v by T2.
Therefore, it suffices to show that in H all processors that terminate by T2 have the same
decision value. Let be a minimal node on which some processor is committed to terminate
by T2. Without loss of generality assume that Pj terminates on with value v. In order to

prove that the protocol is consistent we will show that no other processor is committed to
terminate on any node with a value v’ :/: v. By the protocol, the first processor committed to
terminate with value v’ is committed by T2. Since is a minimal node on which any processor
is committed to terminates by T2, no processor is committed to terminate by T2 on any node
k < i. By Lemma 3.3 no processor reaches with any preferred value v’ : v. By the protocol,
this implies that no processor is committed to terminate by T2 on node with decision value
v’. This also implies, by Lemma 3.1, that no processor reaches any node k > with preferred
value v’ :/: v. Therefore, by the protocol, no processor is committed to terminate by T2 with
decision value v’ - v. V1

We now proceed to analyze the expected running time of the multiprocessor protocol.
THEOREM 3.7. Let C be any reachable configuration of the n processor system and .A

an arbitrary adversary scheduler. If fit schedules the processors such that at least 15n entire
phases are executed following C, then with probability >_ 0.4534, at least one processor
decides and terminates.

Proof Let m (m > 0) be the maximal node on which any processor resides at C. By the
protocol, any processor Pi that executes an entire phase following C finds that some processor
resides on a node > m and will subsequently move to a node j >_ m 2 in the write step of
this phase. After completing two additional phases, P reaches node j > m. (Recall that if a
processor is not among the leaders in some phase, then it does not flip a coin and traverses at
least one edge in the write step of that phase.)
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Thus, of the 15n entire phases that are executed following C, at most 3n are executed
by processors residing on nodes smaller than m. Therefore, at least 12n entire phases are
executed, following C, by processors residing on nodes greater than or equal to m.

Consider the first processor P/that is scheduled to make a write step while residing on
node m following C. If some other processor has already decided before this write step of P,
then we are done. If no other processor has yet decided, then since m is the maximal node in
C, the value maxnode that/9,, maintains at the time of this write equals m. If P/decides and
moves to , then we are done. Otherwise, according to the protocol, Pi flips a coin when
making its write step, and if it succeeds (this happens with probability 1/2n), it moves to node
m+l.

We base our analysis on the following two events:

El: Of the first 4n attempts to move from node m to node rn + as a result of a coin
toss following C, exactly one succeeds. Subsequent to the successful move, all attempts to
move from node m to node rn + as a result of a coin toss fail.

E2: Of the first 4n (or fewer) attempts to move from node m + to node m + 2 as a
result of a coin toss following C, at least one succeeds.

Using Lemma 3.5, the number of subsequent attempts to toss a coin on node m, after the
first successful toss on node m, is less than or equal to n 1. Since the adversary is unable to

predict the outcome of a write that uses coin tossing before the action takes place, we have

Pr(E) >_
succ.n

st

no subsequent success

(1_ t
--(1-(1-1"4n

success in 2nd success in 4nth

+

n-1

If E1 occurs, then at most 4n + n 5n of the entire phases that are executed on nodes
> rn following C involve an attempt to move from node rn to rn + by tossing a coin. At
most n additional phases can involve moving from node rn to rn + without tossing a
coin. Thus overall, if E1 occurs, then at most 6n 2 of the entire phases that are executed on
nodes > rn following C are executed by processors residing on node m. This implies that at
least (12 6)n + 2 6n + 2 entire phases are executed, following C, by processors residing
on nodes greater than or equal to rn + 1.

Consider the first processor P/that is scheduled to make a write step while residing on
node rn + following C. If some other processor has already decided before this write step
of Pi, then we are done. If no other processor has yet decided, then since m is the maximal
node in C, the value maxnode that P maintains at the time of this write must equal m + 1. If
P,. decides and moves to , then we are done. Otherwise, according to the protocol, Pi flips
a coin when making its write step, and if it succeeds (this happens with probability 1/2n), it
moves to node rn + 2. If P does not succeed, then by the same reasoning the next processor
that resides on node m + flips a coin when it is scheduled to write, and so on. Thus, until at

least one processor succeeds, all processors that reside on node rn + try to move to node rn +2
by flipping a coin. The probability that out of the first 4n attempts at least one is successful
satisfies
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Pr(E2 E1) >_ 1-- 1-- n
sequence {(1 --’)’-},2 is monotonically decreasing to the limit ee" The sequenceThe

{1 (1 n)4" }’=2 is monotonically decreasing to the limit (the limits can easily be
kverified, using the fact that {(1 ) },=2 monotonically increases to ). Combining these

properties with the two inequalities above, we have (for n >_ 2)

Pr(E2 fq E) > 1- 1- -n

> 0.4534.

n--1

If E2 occurs, then at least one of the first 4n (or fewer) attempts succeeds. Using Lemma 3.5,
the number of subsequent attempts to toss a coin on node m + after the first successful toss
is less than or equal to n 1. At most n additional phases can involve moving from node
m + to m + 2 without tossing a coin. Thus overall, at most 6n 2 of the entire phases that are
executed on nodes >_ m + following C are executed by processors residing on node m + 1.
This implies that at least (6n + 2) (6n 2) 4 entire phases are executed, following C, by
processors residing on nodes greater than or equal to m + 2.

In particular, it follows that at least one processor Pi completes a phase, including a write
step, while residing on node m + 2. By Lemma 3.4, if E1 occurs, all processors reaching
node m + have the same preferred value v on node m + 1. But since on node m + all
processors prefer the same value v, Lemma 3.1 implies that on m + 2 all processors prefer v
as well. Thus the first processor/9, that completes a phase while residing on node m + 2 finds
out during that phase that all leaders (processors on m / 2) and almost leaders (processors on
m / 1) prefer v. P/thus moves to the decision node cxz by T2, and terminates.

Therefore, with probability at least 0.4534, at least one processor terminates after 15n
phases are completed following C. 1

Using Theorem 3.7, we can easily give an upper bound on the expected time until some
processor decides, starting from any reachable configuration C. Dividing the execution into
blocks such that in each block exactly 15n phases are completed, we know that the probability
of termination in each block is at least 0.4534. The expected number of entire phases is thus

15n/0.4534 < 33.1n operations. In terms of elementary operations (atomic read, atomic
write), each entire phase involves exactly n elementary operations. At most n (n 1) initial
elementary operations can belong to phases whose execution have already begun. Thus, the
expected number of elementary operations until at least one processor decides is at most
33.1n2 / n(n 1) < 35n2. This implies the following.

THEOREM 3.8. The n processor protocol is a randomized wait-free consensus protocol.
Starting from any reachable configuration, the expected number of elementary steps until at

least one processor decides is less than 35n2o

4. Concluding remarks. The analysis of the expected running time of our n processors
protocols relied on the inability of the adversary to predict the outcome of a write that uses
coin tossing, before the action takes place. Following the publication of the original version
of our paper [9], Abrahmson [1] considered a stronger adversary model, where the outcome
of the coin toss that is used in the next write step is known to the adversary before the step
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takes place. In this adversary model, the scheduling choices can be based on the outcome of
the coin. Abrahmson modified our protocol and produced one that works in the presence of
the strong adversary but has exponential (2n2)) expected running time. Subsequently, this
was dramatically improved by Aspnes and Herlihy [3], who designed an efficient wait-free
consensus protocol for this strong adversary model, with n expected running time. The
protocol of Aspnes and Herlihy employs the same basic structure of our protocol, namely
an incremental walk on the line of nonnegative integers. It introduces novel ideas from the
theory of random walks in the implementation of the coin flips. Improved algorithms that use
bounded shared registers and work in the presence of the strong adversary were later designed
by Attiya, Dolev, and Shavit [4], Aspnes [2], and Saks, Shavit, and Wohl [25]. (Most of these
algorithm solve the somewhat simpler problem of binary consensus, where the input set is
{0, }.) The expected running time of the later protocol is (R)(n 3) elementary steps. This has
subsequently been improved by Bracha and Rachman [7] to an O(n2 log n) consensus protocol.
Despite these improvements, our protocol remains the most efficient of which we know for
the model considered in this paper and is a strong candidate for practical consensus protocols.
By bounding the size of the shared registers in our protocol to, say, 128 bits per processor, we
get a protocol that still never errs and has probability less than 2-56 of nontermination.

We view the possibility of achieving wait-free consensus as a fundamental tool in shared
memory systems and believe it is only the first step in a promising direction. The subsequent
results of Herlihy [15] and Plotkin [23] on wait-free implementation of sequential objects and
of Chor, Moscovici, and Nelson [11], [12] on solvability of distributed decision tasks and
distributed interactive tasks seem to support this belief.
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this work are also acknowledged.
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