
Randomized Wait-Free Consensus using An

Atomicity Assumption

Ling Cheung?

Department of Computer Science, University of Nijmegen
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

Abstract. We present a randomized algorithm for asynchronous wait-
free consensus using multi-writer multi-reader shared registers. This al-
gorithm is based on earlier work by Chor, Israeli and Li (CIL) and is cor-
rect under the assumption that processes can perform a random choice
and a write operation in one atomic step. The expected total work for
our algorithm is shown to be O(N log(logN)), compared with O(N 2)
for the CIL algorithm, and O(N logN) for the best known weak adver-
sary algorithm. We also model check instances of our algorithm using
the probabilistic model checking tool PRISM.
Keywords: Asynchronous Consensus, Randomized Algorithms, Wait-
Free Termination, Weak Adversary, Probabilistic Model Checking

1 Introduction

Distributed consensus refers to a class of problems in which a set of parallel
processes exchange messages in order to agree on a common preference. Initially,
each process is given an input value from a fixed, finite domain and, at the end
of the algorithm, each non-faulty process outputs a decision value. Correctness
requirements are typically formulated as follows.

– Validity : the output of any non-faulty process must have been the input of
some process.

– Agreement : all non-faulty processes decide on the same value.
– Termination: every non-faulty process decides after a finite number of steps.

As shown in [FLP85], there exists no deterministic algorithm that solves
distributed consensus in a setting of asynchronous communication with unde-
tected process failure. Nonetheless, many efficient solutions exist under stronger
assumptions (e.g. partial synchrony [DLS88] and failure detection [ACT00]) or
weaker correctness requirements (e.g. probabilistic termination [CIL87]).

Our algorithm falls into the category of randomized consensus algorithms,
where processes may use coin tosses to determine their course of actions. In this
setting, termination is weakened to a probabilistic statement: the set of all non-
terminating executions has probability 0. We refer to [Asp03] for a comprehensive
overview on randomized consensus.
? Supported by DFG/NWO bilateral cooperation project Validation of Stochastic Sys-
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The first randomized consensus algorithm was proposed by Chor, Israeli and
Li [CIL87,CIL94]. It satisfies the following termination condition.

– Probabilistic wait-free termination: with probability 1, each non-faulty pro-
cess decides after a finite number of steps.

We adopt the same requirement. In fact, the logical structure of our algorithm
closely resemble that in [CIL94], while we borrow ideas from [Cha96] to reduce
the amount of shared and local data. We shall refer to [CIL94] as the original
CIL algorithm and our own as the modified CIL algorithm.

Adversary Models and Work Bounds. To prove probabilistic termination,
we must reason about probability distributions on the set of executions. These
distributions are induced by the so-called adversaries, which are functions from
finite histories to available next steps.

The strength of an adversary varies according to the amount of information
it can extract from a finite history. The strong adversaries have access to com-
plete history of all processes and shared registers. Some weaker forms, such as
write-oblivious and value-oblivious, delay the adversary’s knowledge of outcomes
of internal coin tosses. Clearly, a stronger adversary model permits more possi-
bilities and therefore renders consensus more difficult. Consensus against strong
adversaries is shown to be Ω(N 2/ log2N) in expected total work, where N is the
number of processes participating in the algorithm [Asp98]. The best known al-
gorithms achieve expected O(N 2 logN) total work [BR91] and O(N log2 N) per
process [AW96]. Against write-oblivious adversaries, one can achieve expected
O(logN) per process work and O(N logN) total work [Aum97]. Against value-

oblivious adversaries, the fastest algorithm is O(N logN e
√

logN ) in a single-
writer single-reader (SWSR) setting [AKL99]1.

Our adversary model takes the form of an atomicity assumption: processes
can perform a random choice and a write operation in one atomic step. In par-
ticular, the process increments its round number if and only if the coin lands
heads; then immediately it writes 1 to the memory location mem(r, v), where r
is the round number after the coin toss and v is the current preference. This
amounts to saying that the adversary cannot distinguish between the two loca-
tions mem(r, v) and mem(r+1, v). The original CIL algorithm relies on a similar
atomicity assumption2 and achieves expected O(N 2) total work [CIL94]. In the
present paper, we replace the single-writer multiple-reader (SWMR) registers
of [CIL94] with multi-writer multi-reader (MWMR) registers, thereby reducing
the expected total work to O(N log(logN)).

Since our adversaries are value-sensitive, every non-faulty process must per-
form at least one read operation, otherwise we can easily construct an execu-

1 This is faster than other value-oblivious algorithms because SWSR is a weak primi-
tive. More discussion can be found in Section 7.

2 The assumption in [CIL94] says that the adversary cannot distinguish between the
values r and r + 1 as they are written to the same memory location.



tion that violates the agreement property. Therefore, expected total work in this
model is Ω(N), which is almost matched by our upper bound of O(N log(logN)).

We have adopted the worst case expected total work as our complexity mea-
sure, mainly because it is more natural to reason about the collective effect of all
processes on the shared memory. In fact, per process work in our case is compa-
rable to total work: if all but one process suffer crash failures, the lone survivor
carries the total work burden and performs expected Ω(N) tosses in order to
pull far enough ahead for termination. In this sense, our algorithm is less effi-
cient than [Cha96,Aum97], where polylogarithmic upper bounds are given for
per process work.

Probabilistic Model Checking. We model check instances of our algorithm
using PRISM, which can check PCTL (Probabilistic Computation Tree Logic)
formulas against an MDP (Markov Decision Process) [PRI,BK98]. This tool has
been applied to many randomized algorithms, including the consensus algorithm
of Aspnes and Herlihy [AH90,KNS01] and Byzantine agreement [KN02].

Consensus algorithms are often hard to model check, because the state space
grows exponentially with the number of participating processes. In [KNS01],
PRISM is applied only to a shared-coin subroutine, while full correctness re-
lies on verification using Cadence SMV, as well as higher level manual proofs.
Unfortunately, the structure of our algorithm does not provide such convenient
isolation of probabilistic reasoning. Nevertheless, we are able to build models of
binary consensus with up to 4 processes and verify relevant properties. In Sec-
tion 6, we briefly describe these models and give a summary of PRISM results. In
Section 7, we discuss some prospects in improving feasibility of model checking.

Overview. Section 2 describes in greater detail our computational setting and
assumptions. Section 3 presents the algorithm and Sections 4 and 5 outline cor-
rectness proofs. Detailed proofs are carried out in [Che05b]. Section 6 is devoted
to model checking and Section 7 contains closing discussions.

2 System Model

We consider a system ofN processes interacting asynchronously via shared mem-
ory objects. Each process Pi is given as input an initial preference p0

i , which be-
longs to a fixed, finite domain. Without loss of generality, this preference domain
is assumed to be ZK for some natural number constant K ≥ 2. As a convention,
we write ZK for {0, . . . ,K − 1} and Z+

K for {1, . . . ,K − 1}.
We take a state-based view of our system. The local state of a process is

determined by a valuation of all of its local variables, plus a program counter
indicating the next line of code to be executed. The global state is then de-
termined by local states of all N processes, together with contents of shared
MWMR atomic registers.

A process executes a possibly infinite sequence of discrete steps, each con-
sisting of a change in local state and/or a memory operation. It may also exhibit



a limited form of non-deterministic behavior: crashing at any point of its execu-
tion. A crashed process may never recover and re-enter the algorithm.

An execution of the entire system is obtained by interleaving executions of
individual processes, where scheduling among processes is determined by an
adversary that satisfies the atomicity assumption stated in Section 1. That is, if
a process is scheduled to toss a coin, it must be allowed to write to the memory
before another process is given a turn. The worst-case complexity is measured in
terms of the expected number of read and write operations taken by all processes,
quantifying over all admissible adversaries.

3 Modified CIL Algorithm

As in many other consensus algorithms (e.g. [BO83,CIL94,AH90,Cha96]), we
make use of a round structure. During each round, a process goes through a
possibly infinite sequence of phases, each of which is a complete pass through
the main while-loop.

In original CIL, the shared memory is configured into an array of N many
SWMR registers, one for every process. Each registeri contains two pieces of
information: round number ri and preference value pi. At the beginning of each
phase, process Pi copies the contents of all registerj (i 6= j) and stores them
locally. These entries are then examined to decide the next action of Pi: output
a decision value and terminate, toss a coin to advance to the next round, or
jump to a higher round.

The initial copying of each phase is the main source of inefficiency in original
CIL: copied data contain more information than necessary for decision making.
For example, Pi need not know exactly which Pj is in a higher round, as long as it
knows some Pj is. This observation is precisely the motivation of our move from
SWMR memory to MWMR memory. Thus, instead of a race among processes,
we envision a race among preference values. In this way, processes participate
anonymously and the number of read operations in the main loop is reduced
from O(N) to O(1). Moreover, consensus is achieved with high probability using
only O(logN) registers containing one bit each.

Following [Cha96], our MWMR shared memory is configured into K arrays
of bits, each of length R + 2, where R := 2dlogNe. In other words, we have
mem : ZR+2 × ZK → {0, 1}. (Recall that K is the size of the preference domain
and is a constant, while N is the number of participating processes.) These bits
can be interpreted as follows.

– For all r ∈ Z+
R+1 and v ∈ ZK , mem(r, v) = 1 if and only if value v has

reached round r (i.e., some process holds/held preference v while in round
r). These entries are initialized to 0.

– We assume every value v participates in the race from round 0, therefore
mem(0, v) is initialized to 1. This prevents a process from deciding (erro-
neously) in round 1 before all processes “wake up” and join the protocol3.

3 As noted in [CH05], original CIL contains this initialization error.



– Round-(R+ 1) entries are initialized to 0 and are used for marking decision
values. That is, if a process decides on value v, it writes 1 to mem(R+ 1, v).

Each process Pi maintains a current preference pi and a round number ri.
Intuitively, Pi “believes” that pi is a leading value and ri is the highest round
reached by pi. If Pi detects any value v in a round higher than ri, it updates its
“belief” by running a subroutine Jump. In this way, lagging values are quickly
abandoned by active processes and are eventually eliminated from the race.
(This notion is made precise in Definition 1 in Section 4.) Therefore the number
of contending preference values never increases and the algorithm terminates
when that number decreases to 1. If Pi sees pi at least two rounds ahead in
the race, the algorithm guarantees that every other contending value has been
eliminated, therefore Pi can safely terminate with pi.

Notice, biased coin tosses are used to break ties in the lead pack, so that
with probability 1 the number of contending preferences eventually reaches 1.
This technique is used in [CIL94] and is quite different from the more common
approach of shared coin subroutines, in which processes cast randomly generated
votes to obtain a weak shared-coin (e.g. [AH90,BR91]).

Although every non-faulty process is guaranteed (with probability 1) to ter-
minate after a finite number of steps, the round in which it terminates can
become arbitrarily high. This requires an unbounded number of registers and
is infeasible. Therefore we stop our algorithm when it reaches a certain round
without successful termination, in which case we switch to a slower algorithm
that requires bounded memory. We call this the exit algorithm. For convenience,
the original CIL algorithm is chosen for this purpose4. We will show that any
exit algorithm is invoked with probability at most 1

N , therefore the higher cost
of original CIL does not affect overall expected complexity.

Figure 1(a) contains the pseudocode for process Pi. The numbered lines can
be described informally as follows.

(1) Check if some process has decided.
(2) If so, decide for the same value.
(3) Check if a value other than pi has reached round ri − 1.
(4) If not, write 1 to mem(R + 1, pi) and terminate with output pi.
(5) Otherwise, if round R is reached, run the original CIL algorithm.
(6) Otherwise, check if some value has reached round ri + 1.
(7) If not, advance pi to the next round with probability 1

2N .
(8) Otherwise, run subroutine Jump to find a leading value.

Notice that the atomicity assumption discussed in Section 1 applies at Line (7).
This prevents the adversary from selectively delaying write operations of pro-
cesses who are ready to advance its preference to the next round.

Figures 1(b) and 1(c) contain the subroutines ReadMem and Jump, respec-
tively. The former is used to read from the shared memory, while the later is

4 Technically, original CIL requires registers with unbounded size. However, according
to [CIL94], the probability of non-termination is already extremely small (2−56)
when each register is 128 bits.



ModifiedCIL(i, p0
i )

local variables
// round number
ri ∈ ZR+2,
// preference
pi ∈ ZK ,
// decision value
di ∈ ZK+1,
// values read from memory
aheadi, behindi ∈ ZK+1

begin
pi := p0

i ; ri := 0;
while ri ≤ R do

(1) di := ReadMem(R+ 1, K);
(2) if di 6= K then return di;

if ri > 0 then {
(3) behindi := ReadMem(ri − 1, pi);
(4) if behindi = K then {

mem(R + 1, pi) := 1;
return pi
}

(5) elseif ri = R then return
OriginalCIL(i, pi)

}
(6) aheadi := ReadMem(ri + 1, K);

if aheadi = K then {
(7) with probability 1

2N
do

ri := ri + 1;
mem(ri, pi) := 1
}

(8) else 〈ri, pi〉 := Jump(ri + 1, aheadi)
od

end

(a) Main Algorithm.

ReadMem(r, p)
local variables

// counter
k ∈ ZK ,
// preference value found
v ∈ ZK+1,

begin
k := 0; v := K;
while k < K and v = K do

if mem(r, k) = 1 and k 6= p then
v := k;

k := k + 1
od
return v

end

(b) Subroutine ReadMem.

Jump(r, p)
local variables

// confirmed round and preference
r′ ∈ ZR+1, p′ ∈ ZK ,
// current round and preference
l ∈ Z+

R+1, u ∈ ZK+1,
// counter
c ∈ ZR+1,

begin
if r ≥ R then return 〈r, p〉;
r′ := r; p′ := p; c := dlog(R− r)e;
while c > 0 do
l := r′ + 2c−1;
if l ≤ R then {
u := ReadMem(l,K);
if u 6= K then {
r′ := l; p′ := u
}

}
c := c − 1

od
return 〈r′, p′〉

end

(c) Subroutine Jump.

Fig. 1. Modified CIL Algorithm



used to find a faster value. When called with parameters r and p, ReadMem
scans one-by-one the r-th entry of every bit vector, except for the p-th. In other
words, we would like to know if any process has reached round r with preference
other than p. It returns the first k such that both k 6= p and, at the time of read
access, mem(r, k) = 1. If no such k is encountered, ReadMem returns K.

In every pass through the while-loop of Figure 1(a), ReadMem is called with
at most three round numbers: R+ 1, ri − 1, and ri + 1. This does not reveal the
highest round ever reached by any value. Therefore, a separate subroutine Jump
is run when the process sees itself behind. This is a key difference between our
algorithm and original CIL: in exchange for fewer read operations in the main
loop, more work is needed for slower processes to catch up.

The subroutine Jump can be implemented in various ways. The version pre-
sented here is essentially a binary search on mem. This involves O(log(logN))
operations per invocation of Jump, but a process can correctly locate a fastest
value in one complete phase (provided no further progress is made in the mean
time).

4 Validity and Agreement

In this section, we treat all coin tosses as non-deterministic choices. Let s0 denote
the initial state of our system, where all N processes as well as the shared
memory have been properly initialized. A path of the system is a finite sequence
of states s0s1 . . . sm where, for all j ∈ Zm, sj+1 can be obtained from sj by
allowing exactly one non-faulty process to execute its next instruction. A state
s is reachable if there is a path ending in s. Finally, a value k ∈ ZK is said to be
valid if there is i ∈ ZN such that k equals the input p0

i to process Pi.
We use record notation to indicate valuation of variables. For example, s.ri

denotes the round number of Pi in state s. If Pi is running a subroutine (e.g.
ReadMem), we add subscript i to variables of that subroutine (e.g. s.ki and s.vi).

First we state some properties about mem and subroutines ReadMem and
Jump. Lemma 1 says that an entry in mem never changes from 1 to 0. Lemma 2
says that the return value of ReadMem is correct (although it may be out-of-
date). Similarly, Lemma 3 states the correctness of Jump.

Lemma 1. Let r ∈ ZR+2, v ∈ ZK and a path s0 . . . sm be given. Suppose there
is j ∈ Zm+1 with sj .mem(r, v) = 1. Then sj′ .mem(r, v) = 1 for all j ≤ j ′ ≤ m.

Lemma 2. Let r ∈ ZR+2, p, v ∈ ZK+1 and a path s0 . . . sm be given. If the last
step is ReadMem(r, p) returning v 6= K, then sm.mem(r, v) = 1.

Lemma 3. Let r, r′′ ∈ ZR+1, p, p′′ ∈ ZK and a path s0 . . . sm be given. Suppose
the last step is Jump(r, p) returning 〈r′′, p′′〉. If mem(r, p) = 1 when Jump(r, p)
is called, then sm.mem(r′′, p′′) = 1.

Proof (Sketch). This follows from the fact that mem(r′, p′) = 1 is an invariant
of the while-loop in Jump. ut



Lemma 4 below states that mem correctly reflects the preference history of
participating processes. Validity is then proven to be an invariant (Theorem 1).

Lemma 4. Let a path s0 . . . sm be given.

(i) For all i ∈ ZN , sm.ri ≤ R implies sm.mem(sm.ri, sm.pi) = 1.
(ii) For all r ∈ Z+

R+2 and v ∈ ZK , sm.mem(r, v) = 1 implies there exist i ∈ ZN
and j ∈ Zm+1 such that sj .pi = v.

Theorem 1. The following claims hold in every reachable state s.

(i) For every i ∈ ZN , s.pi is valid.
(ii) For every r ∈ Z+

R+2 and v ∈ ZK , s.mem(r, v) = 1 implies v is valid.
(iii) For every i ∈ ZN , if s.di 6= K then s.di is valid. Similarly for s.aheadi and

s.behindi.

Corollary 1. The modified CIL algorithm in Figure 1 is valid, assuming the
exit algorithm (in this case, the original CIL algorithm) is valid.

Next we prove agreement. A key ingredient is a predicate Φ on global states.

Definition 1. Let v, v′ ∈ ZK and r ∈ Z+
R+1 be given. We say that v eliminates v′

in round r in global state s (denoted s |= Φ(v, v′, r)) just in case s.mem(r, v) = 1
and s.mem(r − 1, v′) = 0.

We state a string of lemmas leading to the claim that no two processes
terminating by Line (4) do so with conflicting decision values (Lemma 8). First,
if an entry mem(r, v) is marked 1, then every entry mem(r′, v) with r′ ≤ r is
also marked 1 (Lemma 5). Second, if v′ is eliminated by v in round r, then no
process subsequently reaches round r with preference v′ (Lemma 6). Finally, if
a process Pi terminates by Line (4) with value v in round r, then every other v′

must have been eliminated by v in round r at some earlier state (Lemma 7).

Lemma 5. Let s be a reachable state. For all r ∈ ZR+1 and v ∈ ZK , if
s.mem(r, v) = 1 then s.mem(r′, v) = 1 for all r′ ≤ r.

Lemma 6. Let v, v′ ∈ ZK and r ∈ Z+
R+1 be given. Consider a path s0 . . . sm

such that sj |= Φ(v, v′, r) for some j ∈ Zm+1. Then, for all j′ ∈ {j, . . . ,m},
sj′ .mem(r, v′) = 0.

Proof (Sketch). If the claim doesn’t hold, then some process Pi must have writ-
ten 1 to mem(r, v′) by executing Line (7) between sj and sm. This leads to a
contradiction because the definition of Φ implies that Pi does not reach Line (7).

Lemma 7. Consider a path s0 . . . sm+1. Suppose that in the last step some pro-
cess Pi terminates by executing Line (4). Let r denote sm.ri and v denote sm.pi.
For every v′ 6= v, there is j′ ∈ Zm+1 such that sj′ |= Φ(v, v′, r).

Proof (Sketch). Set sj′ to be the state from which the last invocation of ReadMem
in Line (3) reads from mem(r − 1, v′). ut



Lemma 8. Let a path s0 . . . sm and j, j′ ∈ Zm+1be given. Assume that process
Pi terminates by Line (4) with output v from state sj and some other process
Pi′ does the same with output v′ from state sj′ . Then v = v′.

Proof (Sketch). From the assumptions we prove that v and v′ have eliminated
each other, which by Lemma 6 is a contradiction. ut

It remains to consider termination by Line (2). Lemma 9 below implies that
every process terminating by Line (2) must be preceded by a process terminating
by Line (4) with the same decision.

Lemma 9. Let v ∈ ZK and a path s0 . . . sm be given. Assume that sm.mem(R+
1, v) = 1. There is j ∈ Zm+1 such that some process Pi terminates with decision
value v by executing Line (4) from sj .

Theorem 2. Let a path s0 . . . sm be given. Assume that process Pi terminates by
executing either Line (2) or Line (4) from state sj (j ∈ Zm+1) and its decision
value is v. Similarly for Pi′ , sj′ and v′. Then v = v′.

Proof (Sketch). Applying Lemma 9, we find a process that has terminated by
Line (4) with v. Similarly for v′. The claim is then reduced to Lemma 8. ut

5 Probabilistic Termination and Expected Complexity

Let us first consider the amount of work required during each phase of the
algorithm. (Recall that a phase is an entire pass through the while-loop in
Figure 1(a)). Notice each phase involves at most (i) three calls to ReadMem,
(ii) one write operation and (iii) one call to Jump. Each call to ReadMem requires
O(1) read operations, because the size K of the preference domain is a constant
in our analysis. Therefore, aside from Jump, each phase involves constant work.

Consider the while-loop in Jump. Each pass through this loop involves at
most one call to ReadMem. Furthermore, this loop is executed at most logR+ 1
times. Since R = 2dlogNe by definition, each call to Jump requires O(log(logN))
read operations. This is then also the cost of a complete phase. Later on, we will
prove that the expected number of complete phases until at least one process
terminates successfully is O(N) and hence the expected number of read/write
operations is O(N log(logN)) (Lemma 13).

For any state s, let s.rmax denote the highest round reached by any process in
state s. In other words, s.rmax := maxi∈ZN s.ri. Since the two updates in Line (7)
of Figure 1(a) are performed in a single step, s.rmax is also the largest r such
that s.mem(r, v) = 1 for some value v ∈ {0, . . . ,K − 1}. Lemma 10 below says,
if no value advances to round rmax + 1, a lagging process can catch up to round
rmax in one complete phase. Lemma 11 then shows, whenever rmax is at most
R−2, the probability of at least one process terminating successfully within the
next two rounds is bounded below by a constant. Moreover, this termination
takes place before 15N complete phases are executed.



Lemma 10. Let s0 . . . sm . . . sm′ be a path with m < m′. Assume that sj .rmax =
sm.rmax for every j ∈ {m, . . . ,m′}. Moreover, assume that Pi completes a phase
between sm and sm′ without crashing, successfully terminating or switching to
the exit algorithm. Then sm′ .ri = sm.rmax.

Proof (Sketch). First we argue that Pi reaches Line (8) in its first complete
phase after sm. Then, based on the while-loop in Jump, we construct a nested
sequence of intervals shrinking to the singleton {sm.rmax}. Therefore sm.rmax is
the round number returned by Jump. ut

Lemma 11. Suppose ModifiedCIL starts from a reachable state s. Let r denote
s.rmax and suppose r ≤ R− 2. Then, with probability greater than 0.511, at least
one process terminates successfully in a round no higher than r+2. Moreover, at
most 15N complete phases are executed between s and the successful termination.

Proof (Sketch). Consider two events: E1 is “a success occurs before 5N attempts
to move from r to r + 1 are made and all subsequent such attempts fail” and
E2 is “a success occurs before 5N attempts to move from r + 1 to r + 2 are
made.” We argue that the conjunction of E1 and E2 implies at least one process
terminates successfully in round r+ 2 before 15N complete phases are executed.
Moreover, the probability of both E1 and E2 occurring is at least 0.511, using
the fact that {(1− 1

n )n}∞n=2 increases to the limit 1
e . ut

Notice Lemma 11 applies only to executions starting in round R−2 or lower.
The next lemma covers rounds R − 1 and R, assuming a decision is reached
without switching to the exit algorithm.

Lemma 12. Suppose ModifiedCIL starts from a reachable state s. Let r denote
s.rmax and suppose R− 2 < r ≤ R. Assuming the exit algorithm is not invoked,
the (conditional) probability that at least one process terminates successfully be-
fore 15N complete phases are executed after s is greater than 0.511.

Theorem 3. If the exit algorithm is wait-free and satisfies probabilistic termi-
nation, the same holds for ModifiedCIL.

Proof. By correctness of the exit algorithm, we may focus on the case in which
the exit algorithm is not invoked. Consider execution blocks of 15N complete
phases each. By Lemma 11 and Lemma 12, the probability of successful termina-
tion within each block is at least 0.511. Thus, with probability 1, the algorithm
terminates successfully after a finite number of blocks. Since we have made no
assumption on the number of surviving processes, the algorithm is wait-free. ut

We now turn to complexity considerations. Again, we make a case distinction
based on whether the exit algorithm is invoked.

Lemma 13. Assume that the exit algorithm is not invoked. The expected num-
ber of elementary read/write operations until at least one process terminates
successfully is O(N log(logN)).



Proof (Sketch). Again we consider blocks of 15N complete phases and argue
that the expected number of blocks is at most 2. Hence the expected number of
complete phases is O(N). Since each phase involves O(log(logN)) elementary
operations, the expected number of elementary operations O(N log(logN)). ut

Lemma 14. Suppose the exit algorithm is the original CIL algorithm and is
invoked. The expected number of elementary read/write operations until at least
one process terminates successfully is O(N 2 log(logN)).

Proof (Sketch). The expected number of elementary operations before switching
is shown to be O(N(logN)(log(logN))). Using results of [CIL94], the expected
complexity after switching is O(N 2). Therefore, the overall expected complexity
is O(N2 log(logN)). ut

Lemma 15. Suppose the ModifiedCIL starts from the initial state s0. The prob-
ability of failing to reach a decision in or before round R is at most 1/N .

Proof (Sketch). By Lemma 11, this probability is at most (1−0.511)
R
2 ≤ 1

N . ut

Putting together Lemmas 13, 14, and 15, we conclude that the expected
complexity of ModifiedCIL is O(N log(logN)).

Theorem 4. Suppose ModifiedCIL starts from the initial state s0 and the exit
algorithm is original CIL. The expected number of elementary read/write oper-
ations until at least one process terminates successfully is O(N log(logN)).

6 Model Checking

It is quite straightforward to specify our algorithm in PRISM’s state-based in-
put language. Each process is modeled as a module and the shared memory is
modeled using global variables. Two more global variables are used to keep track
of process failures and the number of completed phases.

We consider binary consensus (i.e., K = 2) with N = 2, 3, 4 processes.
Processes are assumed to disagree initially, therefore validity is trivial. Agree-
ment is satisfied in all models constructed. For probabilistic termination, we
ask PRISM to compute the (exact) minimum probability of at least one pro-
cess terminating successfully, given an allowance of R = 2dlogNe rounds and
15N · R2 = 15NdlogNe complete phases. This result is compared against our
analytic lower bound of 1− 1

N .
In the case of N = 4, the model becomes too complex (with 2dlogNe = 4

rounds and 15NdlogNe = 120 complete phases). However, we discover that the
analytic bound of 1− 1

N = 0.750 is already met when we restrict to 40 complete
phases. This suggests that we have made some overly conservative estimates
while deriving the analytic bound.

The table below summarizes our results. We use PRISM version 2.1, running
on a 1.4 GHz Pentium M machine with 500 Mb memory under Linux 2.6. The
MTBDD engine is used with a CUDD memory limit of 400 Mb. Other parameters



remain at default settings. All relevant files, including model checking logs, can
be found in [Che05a].

N R #Phases Model Agreement Termination
#States Time(s) Time(s) Time(s) MinProb AnalyticBd

2 2 30 42,320 4 0.025 6 0.745 0.511
3 4 90 12,280,910 213 0.094 2,662 0.971 0.667
4 2 60 45,321,126 429 0.078 602 0.755 0.511
4 4 40 377,616,715 5224 3.926 55,795 0.765 0.750

7 Conclusions

We have given a simple algorithm that solves asynchronous wait-free consensus
in expected O(N log(logN)) total work. We follow a value-based (as opposed to
process-based) approach and make use of MWMR atomic registers. This strat-
egy, also adopted in [Cha96,Aum97], leads to a significant reduction in data han-
dling and hence more efficient consensus algorithms. As a pleasant side-effect,
the reduction in both global and local data makes model checking significantly
more feasible, for it helps to avoid the typical state explosion problem.

MWMR memory is often regarded as a stronger primitive than SWMR mem-
ory. Indeed, there are optimal implementations of MWMR from physical SWMR
registers using linear time and logarithmic space [IS92]. However, if one makes
comparisons from the basis of SWSR, then MWMR and SWMR become roughly
the same: when implemented from SWSR, both require linear time and logarith-
mic space. Moreover, it is argued in [BPSV00] that SWMR memory requires the
hidden assumption of naming : existence of distinct identifiers known to all. In
that sense, MWMR is a weaker primitive compared to SWMR. This idea is
echoed by the fact that, unlike the original CIL algorithm, our version allows
processes to participate anonymously.

The MWMR strategy has another advantage, namely, flexibility in memory
usage. We have shown that, with high probability, consensus can be reached
using O(logN) many single-bit MWMR registers. (That is, the main algorithm
succeeds and thus the exit algorithm is not invoked.) This can be seen as a
temporary reprieve from the lower bound of Ω(

√
N) for the space requirement

of randomized consensus [FHS98]. In practice, one may be willing to accept a
small probability of failing to reach consensus, in which case we can remove the
exit algorithm altogether. The main algorithm can be repeated to increase the
success probability, and memory is allocated only as needed.

For future work, we want to improve the per process work bound of our algo-
rithm. In [AW96], a similar improvement is achieved by allowing fast processes
to cast votes of increasing weights. However, their proofs rely on properties of
Martingale processes and cannot be adapted immediately to our setting. At this
time, we do not know if per process work is inherently high in our setting (e.g.
Ω( N

f(N)), where f is a polylogarithmic function).

Finally, we comment on model checking using PRISM. Although the current
limit seems to be 4 processes, we conjecture a vast improvement using a symme-



try reduction option, which is under development by the PRISM team. Before
symmetry reduction is available, manual abstraction can be used to increase fea-
sibility. That is, we manually construct an abstraction that captures core ideas
of an algorithm, while significantly decreasing the model size. We experimented
with such an abstraction of original CIL, by focusing on the shared memory and
filtering out local states of processes. Having done so, we were in fact able to
handle up to 10 processes. However, it is non-trivial to prove soundness of the
abstraction. Standard techniques such as probabilistic simulation are available
for this purpose, but substantial investment of time is required.

Overall, PRISM allows us to conduct experiments during the development
stage of an algorithm, with minimal learning effort. Although in most cases it
still cannot handle large instances of a full algorithm, it is perfectly feasible to
model check a subroutine or an abstract version. This already provides valuable
information, especially to those who simply wish to gain more insight into an
algorithm.
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