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ABSTRACT
In the renaming task n+1 processes start with unique input
names from a large space and must choose unique output
names taken from a smaller name space, namely 0, 1, . . . ,K.
To rule out trivial solutions, a protocol must be anonymous:
the value chosen by a process can depend on its input name
and on the execution, but not on the specific process id.

Attiya et al. showed in 1990 that renaming has a wait-
free solution when K ≥ 2n. Several proofs of a lower bound
stating that no such protocol exists when K < 2n have been
published. In this paper we prove that, for certain values
of n, this lower bound is incorrect, exhibiting a wait-free
renaming protocol for K = 2n − 1. For the other values of
n, we present the first completely combinatorial lower bound
proof stating that no such protocol exists when K < 2n.

More precisely, our main theorem states that there exists
a wait-free renaming protocol for K < 2n if and only if
the set of integers {

�
n+1
i+1

�
: 0 ≤ i ≤ bn−1

2
c} are relatively

prime. Thus, such protocol exists for six processes, and
not for less. The proof of the theorem uses combinatorial
topology techniques, both for the lower bound and to derive
the renaming protocol.

Categories and Subject Descriptors: F.0 [Theory of
computation]: General

General Terms: Algorithms, theory.

Keywords: Combinatorial topology, distributed systems,
renaming, shared memory systems, wait-free computation.

1. INTRODUCTION
The 2004 Gödel Prize for outstanding journal articles in

theoretical computer science was shared between Herlihy
and Shavit [15], and Saks and Zaharoglou [18]. These pa-
pers, together with Borowsky and Gafni [6], discovered the
topological nature of distributed computing and provided a
new perspective on the area. The papers showed that the

∗For a full version see [8].
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runs of any wait-free protocol in a read/write shared memory
model can be represented by a simplicial complex, that “has
no holes” (as in Figure 1) and used this powerful topolog-
ical invariant together with Sperner’s lemma to prove that
the k-set agreement task (deciding on at most k different
input values) cannot be wait-free solved in an asynchronous
system of n + 1 processes, if k ≤ n, where wait-free means
that any process must produce an output value in a fixed
number of steps, regardless of delays or failures by other
processes. Furthermore, [15] presented the Asynchronous
Computability Theorem that characterizes the tasks that
can be wait-free solved in such a system.

The paper [15] included one more application of the topol-
ogy perspective: a renaming lower bound. In the renaming
task n + 1 processes start with unique input names from
a large space and must choose unique output names taken
from a smaller name space, namely 0, 1, . . . ,K. To rule out
trivial solutions, a protocol must be anonymous: the value
chosen by a process can depend on its input name and on
the execution, but not on the specific process id. Attiya et
al. [3] presented a renaming wait-free protocol1 for K ≥ 2n,
and showed that there is no wait-free solution if K ≤ n+ 1.
It was not until 1993 that the gap was closed, in [14], the
conference version of [15], with a lower bound stating that
no wait-free renaming protocol exists when K < 2n. In
this paper we show that this lower bound does not hold for
an infinite number of values of n; for the other values of n
it holds, and we present a new, combinatorial lower bound
proof.

The proof of [14] was the first of four lower bound proofs
[1, 13, 14, 15], all closely related and based on algebraic
topology, stating that no wait-free renaming protocol exists
when K < 2n. The second proof appeared in [13] where a
chain map [17] methodology is developed that was used to
obtain lower bounds for other tasks. The lower bound proof
published in [15] is the third one, but is based on the proof
in [13]. The last proof we know of, appeared in [1]. A goal
there was to provide a combinatorial version of the lower
bound for renaming, and also for set agreement, that could
be accessible to a reader unfamiliar with algebraic topology.
They succeeded in doing this only for set agreement; for
the renaming lower bound, in the crucial step of the proof2,

1The protocol was presented in the message passing model,
but can be extended to the shared read/write memory model
[2].
2Actually, in the conference version of [1] this step was also
proved combinatorially, but an error was discovered and in
the journal version replaced by the lemma of [13].
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they relied on Lemma 6.1 of [13]. Thus, the question of a
fully combinatorial proof for renaming was left open, and all
four proofs are based on the same result, stated as Lemma
6.1[13].

This lemma was expressed combinatorially as Theorem
6.2[1]: roughly, that any binary coloring of a subdivided
simplex that is symmetric on the boundary must produce a
non-zero number of monochromatic simplexes, counted by
orientation. In the example in Figure 1, n = 2, there is a sub-
divided 2-simplex (2 dimensional triangle), that has three
1-monochromatic 2-simplexes (the color 0 is represented by
a white circle and the color 1 by a black circle), but counted
by orientation it has only +1 or −1 (to orient it assign to
each 2-simplex +1 or −1 in a way that if two 2-simplexes
share an edge they have opposite sign; the two monochro-
matic simplexes inside the bold region must have opposite
sign). Furthermore, the reader can verify that any color-
ing of the interior vertexes with 0’s and 1’s will produce
monochromatic simplexes. Also, this will be true for any
chromatic and symmetric subdivision of the 2-simplex.

Figure 1: A subdivided simplex.

Our first result in this paper is to show that, for certain
exceptional values of n, this is not true. We present sub-
divided simplexes Kn in Section 4.1, that are symmetric
on the boundary and have zero monochromatic simplexes
counted by orientation. The smallest such example exists
for n = 5. That is, we discovered that while Theorem 6.2[1]
is true in dimension 1 (a line), 2 (as in Figure 1), dimension 3
(subdivided tetrahedron), and dimension 4, it fails in dimen-
sion 5. These counterexamples Kn for exceptional n, imply
that previous renaming lower bound proofs for K < 2n are
flawed.

Our second result, in Section 3, is a renaming lower bound
proof for K < 2n, that holds for the other, non-exceptional
values of n. For this, we prove a theorem that fully char-
acterizes the number of monochromatic simplexes in a sym-
metric subdivided simplex. This is the first, fully combina-
torial renaming lower bound proof, closing the open question
left in [1].

Our third result is that the lower bound statement itself
is incorrect, for the exceptional values of n. That is, we de-
rive, for such values of n, a wait-free renaming protocol for
K = 2n − 1. Technically, our contribution in Section 4.2 is
an algorithm to eliminate all monochromatic simplexes from
a counterexample Kn, without modifying its boundary. For
example, in Figure 15 it is shown how to eliminate the two
monochromatic simplexes in the bold region of the previ-
ous figure. Then, as explained in Section 5, the Anonymous

Computability Theorem [15], or the Simplex Convergence al-
gorithmic version [5], implies that the renaming protocol ex-
ists, using the equivalence of renaming and weak-symmetry
breaking [11].

More precisely, combining the lower bound with the pro-
tocol, our main theorem states that there exists a wait-free
renaming protocol for K < 2n if and only if n is excep-
tional, where exceptional means that the integers in the set
{
�

n+1
i+1

�
: 0 ≤ i ≤ bn−1

2
c} are relatively prime. For example,

such protocol exists for n = 5, 9, 11, 13, 14 (exceptional), and
does not exist for the other values smaller than 14 (as they
are not exceptional). This is interesting in light of the result
of [11] that states that renaming is weaker than set agree-
ment when n is even. Our result implies that this claim is
true for exceptional values of n.

We use the combinatorial topology framework of [1], both
for the lower bound and to derive the renaming protocol.
The lower bound is based on Fan’s formula [10], a generaliza-
tion of both Sperner’s and Tucker’s lemma (a combinatorial
version of the Borsuk-Ulam Theorem). A particular case of
the formula is called Index Lemma in [12]. The monochro-
matic simplex elimination algorithm of the upper bound is
reminiscent of the equivariant Hopf theorem3 [16].

For lack of space details and proofs have been omitted
from this extended abstract. See [8] for a full version.

2. BASIC CONCEPTS
In this section we review basic concepts on distributed

computing and combinatorial topology. For more details
see [4] and [12].

2.1 Distributed Computing
Let IDn = {0, . . . , n}, and denote the set IDn − I as

IDn
I , where I ⊂ IDn. We consider a set of n + 1 asyn-

chronous processes with ids IDn communicating through a
read/write shared memory, and executing a wait-free pro-
tocol: any process that continues to run will halt with an
output value in a fixed number of steps, regardless of de-
lays or failures (only crash failures are considered) by other
processes. A protocol is anonymous if it does not depend
on process ids. In the K-renaming task [3] processes start
with unique input names from a large name space, and must
choose unique output names from the space 0, . . . ,K. It can
be formulated in other equivalent ways. For this paper it
is convenient to use the Weak Symmetry-Breaking (WSB)
formulation. It was shown in [11] that the WSB task is
equivalent to K-renaming, K = 2n − 1. In the WSB task
processes have no input values and the output values are 0
or 1. It is required that in every execution in which all n+1
processes participate, at least one process decides 1 and at
least one process decides 0. Like renaming, any protocol
that implements WSB must be anonymous.

We represent tasks and protocol executions following the
combinatorial topology notation of [1]. An initial or final
state of a process is modeled as a vertex v = (P,w), a pair
consisting of a process id P and a value w which represents
its state, possibly including its output value. We say the ver-
tex is colored with the process id, but we will also use other

3This well-known topology theorem states that two maps
f1, f2 : X → S from a compact manifold X to a sphere S of
the same dimension are homotopic if and only if they have
the same Brouwer degree.
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colorings for vertexes, especially colors 0 and 1 (this binary
coloring will be represented in all the pictures with white
and black circles). A set of n + 1 mutually compatible ini-
tial or final states is modeled as an n-simplex (a nonempty
set with n + 1 elements) σn = (a0, . . . , an), of dimension
dim(σn) = n. A nonempty subset of a simplex is called a
face. Notice that the number of i-faces (the faces of dimen-
sion i) of an n-simplex is

�
n+1
i+1

�
. Also, the coloring with ids

of a simplex is proper, as it gives different values to different
vertexes of the same simplex. We denote the id color of a
simplex σ by id(τ). If a coloring of a simplex gives the same
value b to every vertex of the simplex then the coloring is
b-monochromatic. A complex K is a set of simplexes, closed
under containment4. The star complex of a vertex v in Kn,
denoted by st(v,Kn), is the complex consisting of those n-
simplexes of Kn that contain the vertex v, together with
all their faces. Also, for simplex σn, we denote by M(σn)
the complex consisting of σn together with all its faces. A
function from the vertexes of a complex K to the vertexes
of a complex L is simplicial if the image of every simplex of
K is a simplex of L.

The j-graph of a complex has a vertex for every j-simplex
and an edge between two vertexes if they share a (j−1)-face.
The complex is j-connected if its j-graph is connected, or if
it consists of a single vertex when j = 0. A j-path P is a
path in the j-graph. The size of P , |P |, is the number of its
j-simplexes. Unless otherwise specified, we always consider
simple paths.

A task is a problem where each process starts with a pri-
vate input value, communicates with the others, and halts
with a private output value. It is given by a colored input
complex I, a colored output complex O, and a recursive rela-
tion ∆ carrying each m-simplex of I to a set of m-simplexes
of O, for each 0 ≤ m ≤ n. ∆ has the following interpreta-
tion: if the (m + 1) processes named in σm start with the
designated input values, and the remaining n−m processes
fail without taking any steps, then each simplex in ∆(σm)
corresponds to a legal final state of the non-faulty processes.

Any protocol has an associated protocol complex P, in
which each vertex is labeled with a process id and that pro-
cess’s final state (called its view). Each simplex thus corre-
sponds to an equivalence class of executions that “look the
same” to the processes at its vertexes. The protocol complex
corresponding to executions starting from an input simplex
σm is denoted P(σm). A protocol solves a task if there ex-
ists a color-preserving simplicial decision map δ : P → O
such that for each simplex τm ∈ P(σm), δ(τm) ∈ ∆(σm).

A fundamental result of [6, 15, 18] is that for any wait-
free protocol there is a protocol complex P(σm) which is a
chromatic subdivision of σm, for every σm in I. Thus, the
union of these complexes, over all σm ∈ I, is a complex
Kn = P(I), that is a chromatic subdivision of I. If the
protocol solves the task < I,O,∆ > then each vertex of P
is colored with an output value, defining a decision function
δ, which is a color-preserving (on ids) simplicial map from
Kn toO that respects ∆. Also, if the protocol is anonymous,
the subdivision of σm will be symmetric as explained later
on. This is one direction of the (Anonymous) Asynchronous
Computability Theorem [15]. The theorem says that this
is an if and only if characterization of wait-free read/write
computability. An algorithmic proof appears in [5].

4Sometimes it is convenient permits that a complex contains
the empty simplex.

2.2 Combinatorial Topology
The combinatorial properties of the complex Kn = P(I)

that are important for renaming, were identified in [1]: Kn

is a symmetric, chromatic, orientable and connected divided
image of I. We briefly review what this means.

Pseudomanifolds and orientability.
We say that a complex Kn is complete for dimension i,

i ≤ n, if every j-simplex, j ≤ i, of Kn is a face of at least
one i-simplex of Kn. If the complex Kn is complete for
dimension n then a simplex σn−1 of Kn is external if it
is a face of exactly one n-simplex of Kn, otherwise it is
internal. The boundary of a complex Kn, bd(Kn), is the
subcomplex with all the faces of the external simplexes of
Kn. A vertex of Kn is external if it is contained in a simplex
of bd(Kn), otherwise, it is internal. A complex Kn is an n-
pseudomanifold if it is complete for dimension n and every
(n − 1)-simplex of Kn is contained in either one or two n-
simplexes of Kn. A pseudomanifold Kn is chromatic if it
has a coloring id with IDn such that every n-simplex of Kn

is properly colored under id.
Let σn be a simplex. An orientation of σn, n > 0, is a set

consisting of a sequence of its vertexes and all even trans-
positions of this sequence. Hence, there are exactly two
possible orientations for σn. For example, the two possible
orientations of a 2-simplex are the clockwise and counter-
clockwise directions, or the two possible orientations of a
1-simplex are the one from one of its vertexes to the other,
and the other opposite direction. If σn has a properly col-
oring id with colors IDn then we denote by d = +1 the
orientation that contains the sequence 〈0, 1 . . . n〉, and de-
note by d = −1 the other orientation of σn which contains
the sequence 〈1, 0 . . . n〉. For n = 0, there is only one se-
quence of the vertexes of a simplex σ0, and then it has just
one orientation, however we can associate +1 or −1 to this
orientation. Hence, a 0-simplex also has two orientations.
An orientation d of σn, n > 0, induces an orientation to all
of its (n− 1)-faces: σn−1

i has the orientation (−1)id, where
σn−1

i is the (n− 1)-face of σn without the vertex with id i.
A pseudomanifold Kn is orientable if there is an orientation
for each of its n-simplexes such that if σn

1 , σ
n
2 ∈ Kn share

a (n − 1)-face τ then τ gets opposite induced orientations
from σn

1 and σn
2 . An orientation of Kn like this is a coherent

orientation.

0

12

1 2

0

+

++

Figure 2: An oriented and chromatic pseudomani-
fold.

Lemma 2.1 ([1, Lemma 5.12]). A chromatic pseudo-
manifold Kn is orientable if and only if its n-simplexes can
be partitioned into two disjoint classes, such that if two n-
simplexes share an (n− 1)-face then they belong to different
classes.
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We denote by +1 and −1 the two classes in the pre-
vious lemma. Moreover, the n-simplexes of class d have
orientation d. Figure 2 contains a coherently oriented and
chromatic pseudomanifold of dimension 2. Observe that all
the 2-simplexes follow the counterclockwise direction. It is
easy to verify that in a coherent orientation of a chromatic
and 2-connected pseudomanifold of dimension 2, all the 2-
simplexes follow either the clockwise or counterclockwise di-
rection.

Index Lemma.
Let Kn be a coherently oriented pseudomanifold, with an

induced orientation on its boundary. For the next definition
we count a properly colored n-simplex by orientation with
respect to a coloring c. This means that a properly colored
n-simplex counts as +1 if the order of its vertexes induced
by the sequence 〈0, 1 . . . n〉 belongs to its orientation, and
as −1 otherwise. In a similar way we count the properly
colored (n− 1)-simplexes on the boundary.

Definition 2.2 (Index and Content). Let c be a col-
oring, not necessarily proper, of Kn with IDn. The content
of Kn, C(Kn), with respect to c is the number of the prop-
erly colored n-simplexes of Kn counted by orientation. The
index of Kn, Ii(K

n), with respect to c is the number of
the properly colored (n − 1)-simplexes of bd(Kn) with IDn

i

counted by orientation.

If there is no ambiguity we simply write Cn or In
i . The

next lemma is the restatement of Corollary 2 in [10] using
our notation (see [8] for a simple proof of it).

Lemma 2.3 (Generalized Index Lemma). Let Kn be
a coherently oriented pseudomanifold colored with IDn. Then
Cn = (−1)iIn

i .

0,22,2

1,0 0,0

1,2
0,2

2,1 2,1

−1

1,1

+1

+1

Figure 3: The Index Lemma.

Figure 3 contains a pseudomanifold K2 in which every
vertex has two colorings id and c, in this order. Observe
that K2 is chromatic with respect to id. We assume that
the 2-simplexes are counterclockwise oriented and then the
unique properly colored 2-simplex τ1 by c has orientation
−1 and the 2-simplex τ2 that contains the unique properly
1-simplex ρ with 0 and 1 by c on the boundary, has orien-
tation +1. Notice that the content C2 with respect to c is
equal to 1 because the c colors 0, 1 and 2 of τ1 read in the
counterclockwise direction, as denoted by the circular arrow.
Moreover, observe that ρ has the induced orientation +1 by
τ2. That is, the direction from the vertex of ρ with id 1 to
the vertex with id 2. We have that I2

2 = +1 because the c
colors 0 and 1 of ρ agree with the orientation of ρ, as de-
noted by the straight arrow. The reader can also check that
(−1)2I2

2 = (−1)1I2
1 = (−1)0I2

0 .

The coloring c is a simplicial map from bd(Kn) to the
boundary of a properly colored n-simplex σn with IDn.
Thus, we can think of the content of Kn as the number
of times that bd(Kn) is wrapped around bd(σn) (i.e., a com-
binatorial version of the notion of degree in topology).

Divided Images.
Divided images are defined and studied in [1]. These to-

gether with the Generalized Index Lemma are the principal
tools in our combinatorial characterization of the number of
monochromatic simplexes of a pseudomanifold. Let Kn, Ln

be complexes and ψ be a function that maps every simplex of
Ln to a finite subcomplex of Kn. Figure 4 presents a divided
image of dimension 2 which maps the upper 2-simplex of L2

to the upper subdivision of a 2-simplex of K2 and the lower
2-simplex to the lower subdivision of a 2-simplex. The com-
plex Kn is a divided image of Ln under ψ if: (1) ψ(∅) = ∅ (2)
for every τ ∈ Kn exists σ ∈ Ln such that τ ∈ ψ(σ) (3) for
every σ0 ∈ Ln, ψ(σ0) is a vertex, (4) for every σ1, σ2 ∈ Ln,
ψ(σ1 ∩ σ2) = ψ(σ1) ∩ ψ(σ2) and (5) for every σ ∈ Ln, ψ(σ)
is a dim(σ)-pseudomanifold with bd(ψ(σ)) = ψ(bd(σ)).

L2 K2

Figure 4: An example of a divided image.

Let Kn be a divided image of σn under ψ. We say Kn is
connected if for every m-face σ of σn, if m ≥ 1 then ψ(σ)
is m-connected, and if m ≥ 2 then bd(ψ(σ)) is (m − 1)-
connected. Similarly, Kn is orientable if for every face σ
of σn, ψ(σ) is orientable. Also, we say Kn is coherently
oriented if the pseudomanifold ψ(σn) is coherently oriented.

The carrier of a simplex τ ∈ Kn, denoted carr(τ), is the
face σ of σn of smallest dimension such that τ ∈ ψ(σ). We
say that a vertex v ∈ Kn has an i dimensional carrier if
dim(carr({v})) = i.

0

1

0

1212

1 2

0
1

0

12
0

2

Figure 5: The 2-corners of a chromatic divided im-
age of a 2-simplex with a symmetric binary coloring.

Now, assume that σn is properly colored with IDn. We
denote the colors of a face σ of σn by ID(σ). The divided
image Kn has a Sperner coloring id if for every vertex v ∈
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Kn, id(v) ∈ ID(carr(v)). Also, Kn is a chromatic divided
image of σn if it has a Sperner coloring and every simplex τ ∈
Kn is properly colored with colors of carr(τ). Notice that
for every face σ of σn, ψ(σ) is a chromatic pseudomanifold
with ID(σ).

Intuitively, a divided image has structural symmetry if any
pair of divided images of faces of the same dimension have
the same subdivision. Also, Kn has a symmetric binary col-
oring if Kn has structural symmetry and a binary coloring
b that preserves it. Figure 5 presents a chromatic divided
image with symmetric binary coloring which uses white and
black circles to represent the binary colors 0 and 1. Notice
that the corners have the same binary color, and also the
subdivision of all the edges have the same binary pattern.

Let Kn be a divided image of σn under ψ. A cross edge
of Kn is a 1-simplex {u, v} ∈ bd(Kn) such that u ∈ ψ(τ)
and v ∈ ψ(ρ), where τ , ρ are distinct m-faces of σn, 0 ≤
m ≤ n − 2. This implies that if a divided image Kn has
no cross edges then the divided image of every proper face
of σn has at least one internal vertex. Figure 6 contains a
divided image of a 2-simplex and a 3-simplex, respectively.
A cross edge of the divided image of dimension 2 is the bold
edge connecting the bottom corners, and in the other case,
the bold edges are cross edges. Assuming no cross edges
facilitates our proofs.

Figure 6: Divided images with cross edges.

The n-corners of a divided image Kn are the subset of its
n-simplexes that have a face in the boundary of the divide
image of some face σi of σn, for every i, 0 ≤ i ≤ n. Figure
5 contains a divided image and its n-corners marked with
small crosses.

Lemma 2.4. Let Kn be a chromatic, connected and co-
herently oriented divided image of σn under ψ. Then n-
corners(Kn) 6= ∅ and every simplexes σn

1 , σ
n
2 of n-corners(Kn)

have the same orientation.

The following theorem summarizes the combinatorial prop-
erties of an anonymous wait-free protocol, whose outputs are
either 0 or 1, assuming (1) the shared objects are immediate
snapshots, (2) all processes execute at least one immedi-
ate snapshot operation (to guarantee that there are no cross
edges) and (3) starts on a single input simplex σn. It follows
directly from Theorem 5.14 in [1].

Theorem 2.5 ([1]). Let Pn be the complex of a proto-
col as described above. Then Pn is a chromatic, orientable
and connected divided image of a simplex σn, with a sym-
metric binary coloring and no cross edges.

In the particular case of the WSB task, using the Anony-
mous Asynchronous Computability Theorem [15] (see also
[5]) we get the other direction also:

Theorem 2.6. There exists a WSB protocol if and only
if there exists a chromatic, orientable and connected divided
image Kn of a simplex σn, with a symmetric binary coloring
and no cross edges with no monochromatic n-simplexes.

3. A COMBINATORIAL CHARACTERIZA-
TION OF THE NUMBER OF MONO-
CHROMATIC SIMPLEXES

In this section we present a characterization of the num-
ber of monochromatic n-simplexes of a chromatic, oriented
and connected divided image Kn of σn under ψ, with a
symmetric binary coloring b and no cross edges. Our char-
acterization is obtained via an inductive process described in
detail in [8]. The strategy is to start with a binary coloring
equal to 0 on the boundary and modify it step by step until
it is equal to the original binary coloring b, as explained be-
low. Finally, we count the monochromatic simplexes using
the Generalized Index Lemma. An alternate proof strategy
suggested by Eli Gafni is described in [8]. It consists of in-
serting Kn inside the boundary of an n-simplex (by doing
the join of two complexes; the definition of join is below),
and computing the number of monochromatic n-simplexes in
Kn by analyzing the number of monochromatic n-simplexes
generated by this construction.

As in previous renaming lower bound proofs [13, 15], we
add a third coloring c to Kn that will be used to count
the monochromatic simplexes using the Generalized Index
Lemma. This is done through the following function. Let
Kn be a complex with a binary coloring b and a proper
coloring id with colors IDn. A function f : IDn → IDn

is a minimal permutation of IDn if f is a permutation (a
one-to-one function) of IDn and the restriction f |I to any
proper subset I ⊂ IDn is not a permutation of I.

Definition 3.1. For a minimal permutation f of IDn let

c(v) =

�
id(v) if b(v) = 0

f(id(v)) if b(v) = 1

The next lemma shows the relation between b and c.

Lemma 3.2. An n-simplex of Kn is monochromatic un-
der b if and only if it is properly colored under c.

0,0

1,2

0,0

1,12,2 1,1 2,0

0,0

2,0

1,2 2,0

0,0

Figure 7: A pseudomanifold with the three color-
ings.

Figure 7 contains a 2-pseudomanifold with the three col-
orings, id, b and c, associated to each vertex for ID2 =
{0, 1, 2}. The binary coloring b is represented by white and
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black circles, and the id and c colorings, in this order, are
the numbers near to the vertexes. Every 2-simplex is coun-
terclockwise oriented and c uses the minimal permutation
f(x) = (x + 1)mod 3. The simplex with an arrow is the
unique monochromatic simplex and it is properly colored
under c. The direction of the arrow fallows the order of
the vertexes with respect to c. As this order is opposite to
the orientation of the simplex, It is counted −1 by C2 with
respect to c.

The next lemma implies that a 0-monochromatic n-simplex
with orientation d is counted as d, but a 1-monochromatic
n-simplex with orientation d is counted as d if n is even and
as −d if n is odd.

Lemma 3.3. Let τ be a b-monochromatic n-simplex of Kn

with orientation d. The simplex τ is counted as (−1)b∗nd by
Cn.

The inductive process over Kn starts with a binary color-
ing on the boundary equal to 0.

Lemma 3.4. If for every vertex v of bd(Kn), b(v) = 0
then In

i = (−1)i, assuming that the n-corners of Kn have
the orientation +1.

Then, we process groups of vertexes (change their binary
color to 1) of bd(Kn) with carriers of the same dimension,
until we get the original given binary coloring. This action,
i.e. processing of a group of vertexes with carrier of dimen-
sion `, is called `-step, and it may be done more than once
in each dimension `. A step guarantees that after executing
it the binary coloring b of Kn remains symmetric. Steps
are done by dimension: a vertex with carrier of dimension
` + 1 is processed if and only if every vertex with carrier
of dimension ` has its correct binary color. For example,
for dimension 3, we first process (if it is necessary) the cor-
ners, then the vertexes inside the subdivision of the edges,
and finally the vertexes inside the subdivision of the trian-
gles. Notice that the vertexes inside the subdivision of the
tetrahedron are not modified and actually it does not matter
their coloring. A crucial argument in the proof is to analyze
how the steps affect the index of Kn. We can prove that all
the changes in a step affect the index in the same way. In
the next lemma, the content of a set of vertexes v1, . . . , vq of
ψ(σn−1

i ) is the number of properly colored (n−1)-simplexes
with IDn

i of st(v1, ψ(σn−1
i ))∪ . . .∪ st(vq, ψ(σn−1

i )), counted
as in the definition of content, Definition 2.2.

Lemma 3.5. Let In
i be the index of Kn before every `-

step in the process is done and În
i be the index after all

these `-steps are done. For the i-th `-step pick a vertex vi

of ψ(σn−1
i ) processed in this step. Then În

i = In
i −

�
n+1
`+1

�
k`,

where k` is the content with IDn
i of the vi vertexes before

every `-step is done.

Figure 8 presents an example of the inductive process for
n = 2. The vertexes have the colorings, id, b and c, associ-
ated to each vertex for ID2 = {0, 1, 2}. The binary coloring
b is represented by white and black circles, and the id and
c colorings, in this order, are the numbers near to the ver-
texes. Also, c is with respect to f(x) = (x+ 1) mod 3. The
−1 or +1 inside of a 2-simplexes τ is its orientation, the
arrow is the induced orientation by τ to the 1-simplex ρ on
the boundary, and the −1 or +1 outside of τ is the way in

which I2
0 counts ρ. The process begins with a binary color-

ing equal to 0 on the boundary, Figure 8(a). The index at
the beginning of the process is equal to 1. The process has
a 0-step presented in Figure 8 (b). Observe that this step
adds a multiple of three to the index because a 2-simplex has
three 0-faces. Figure 8 (c) contains one 1-step which adds
a multiple of three to the index because a 2-simplex has
three 1-faces. Something similar happens with the 1-step
contained in Figure 8 (d).
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Figure 8: An example of the inductive process.

The main result of the section is the following theorem
which is a characterization of the number of monochromatic
n-simplexes of Kn counted as in Lemma 3.3 (see Lemma
3.2).5

Theorem 3.6. Let Kn be a chromatic, connected and co-
herently oriented divided image of σn, with a symmetric
binary coloring and without cross edges. Then C(Kn) =
1 +

Pn−1
i=0

�
n+1
i+1

�
ki for ki ∈ Z, k0 ∈ {0,−1}, and assuming

that the n-corners of Kn have the orientation +1.

4. CONSTRUCTING DIVIDED IMAGES
Consider integers k0, k1 . . . kn−1, with k0 ∈ {0,−1}, and

let x = 1 +
Pn−1

i=0

�
n+1
i+1

�
ki. In Section 4.1 we show how to

construct a divided image Kn of σn under ψ, as assumed
in Theorem 3.6, with x monochromatic n-simplexes counted
by orientation. In fact, the content of this divided image
will be (−1)nx due to Lemma 3.3. Also, in Section 4.2 we
present an algorithm that modifies the divided image, to
make sure it has exactly x monochromatic n-simplexes all
oriented sign(x). The construction and the algorithm are
generalized in [8] to any n and x. We explain in Section 5

5Kn does not actually need to be connected, but for sim-
plicity we leave the assumption in this paper.
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why the construction together whit the algorithm imply a
renaming protocol for K = 2n − 1. First, some basic tools
are presented.

Let σ and τ be two simplexes. The join of σ and τ , σ ∗ τ ,
is the simplex σ∪τ . If σ and τ are properly colored under id
then we say that σ and τ are compatible if id(σ)∩ id(τ) = ∅.
Now, if K and L are properly colored complexes under id
then the join of K and L, K ∗ L, is the complex {σ ∗ τ |σ ∈
K, τ ∈ L and σ and τ are compatible}, assuming that every
complex contains the empty simplex (the general definition
of join complex does not require compatibility). Notice that
due to the previous assumption, K,L ⊂ K ∗ L.

0

1

0

12

0

1

1 2

0
0

1

2

2

Figure 9: The cone construction.

Assume we are given ψ(bd(σn)), a chromatic, connected
and orientable divided image of bd(σn), and a properly col-
ored n-simplex τ with IDn. The cone over ψ(bd(σn)) for
τ is obtained by putting the n-simplex τ at the center of
ψ(bd(σn)) and joining every i-simplex of ψ(σi), 0 ≤ i ≤
n−1, with the simplexes ofM(τ) with compatible colors, for-
mally, it is the complex consisting of the simplexes in the set
{σ∗ρ |σ ∈ ψ(bd(σn)), ρ ∈M(τ), σ and ρ are compatible and
dim(σ) = dim(carr(σ))}, and all their faces. Figure 9
presents an example of the cone construction of dimension 2.
This construction can be used to build inductively a divided
image.

Lemma 4.1. The cone ψ(σn) is a chromatic, orientable
and connected divided image of σn.

The next subdivision is a particular case of the cone con-
struction. The basic chromatic subdivision of two properly
colored n-simplexes σ and τ with IDn, is the cone over
bd(M(σ)) for τ . The basic chromatic subdivision of a prop-
erly colored 2-simplex with colors ID2 is illustrated in Figure
2.

Corollary 4.2. A basic chromatic subdivision of an n-
simplex σ is a chromatic, orientable and connected pseudo-
manifold.

4.1 Constructing Divided Images Counting by
Orientation

We describe here how to construct a divided image K5

with x = 0 (0 monochromatic n-simplexes counted by ori-
entation). This gives a counterexample to Theorem 6.2[1].
The construction is generalized in [8] to any n and x and
also it implies the next theorem:

Theorem 4.3. Let k0, k1 . . . kn−1 be integers such that
k0 ∈ {0,−1}. There exists a chromatic, orientable and con-
nected divided image Kn of σn, with symmetric binary col-
oring, such that it has 1 +

Pn−1
i=0

�
n+1
i+1

�
ki monochromatic

n-simplexes counted by orientation.

For our example with x = 0, let k0 = −1, k1 = −1, k2 =
1, k3 = 0, k4 = 0, as 1−

�
6
1

�
k0−

�
6
2

�
k1+

�
6
3

�
k2+

�
6
4

�
k3+

�
6
5

�
k4 =

1 + 6k0 + 15k1 + 20k2 + 15k3 + 6k4 = 0. The idea is to con-
struct K5 such that it has 42 monochromatic 5-simplexes,
partitioned in two sets A− and A+: 21 negatively oriented
and 21 positively oriented. We use the cone construction.
Recall that in this construction, for every proper face σi of
σ5, every i-simplex of ψ(σi) generates a 5-simplex in K5.
At the end of the construction, K5 has a 1-monochromatic
5-simplex τ5 at the center, and we orient it positively. The
simplex τ5 is 1-monochromatic, and every other vertex of
K5 is colored 0 unless explicitly stated otherwise below.

We construct K5, the divided image of σ5 under ψ, in-
ductively by dimension. Recall that we denote the colors of
a face σ of σ5 by ID(σ). First, for each face σ0 of σ5,
ψ(σ0) is a vertex v with id(v) = ID(σ0) and b(v) = 1
(because k0 = −1). Each such v is going to generate a
1-monochromatic 5-simplex τv in K5. There are

�
6
1

�
such

1-monochromatic simplexes, and they all have the same ori-
entation in a coherent orientation of K5, because they all
are adjacent to τ5 (τv ∩ τ5 is a 4-simplex), by Lemma 2.1.
Namely, they all are negatively oriented, as we assume τ5

is positively oriented. Thus, we have so far six 5-simplex in
A− and one in A+.

(a)

(b)

(c)

Figure 10: The construction for k1.

The general idea, described in more detail below for this
example, is to assume we have constructed ψ(bd(σi)), for
every σi ⊂ σ5. Then, take a face σi of σn, and construct the
cone over ψ(bd(σi)) with some new simplex, τ i. Once this is
done, we chromatically subdivide ψ(σi) iteratively using the
basic chromatic subdivision, until |ki| internal i-simplexes
are produced with the orientation required by sign(ki). We
repeat the same construction for each such face, preserving
id ranking, to make sure ψ(σi) is symmetric. By Lemma
4.1 and Corollary 4.2, ψ(σi) is chromatic, connected and
orientable pseudomanifold. After repeating the procedure
for i = 1, 2, 3, 4, 5, we obtainK5, a chromatic, connected and
orientable divided image of σ5. Also, by construction, it has
a symmetric binary coloring and does not have cross edges.
To check that is has zero 1-monochromatic 5-simplexes by
orientation, we will use the fact that every 5-simplex of K5

contains at least one vertex of τ5. Thus, K5 does not contain
0-monochromatic 5-simplexes.

The case of i = 1 is illustrated in Figure 10(a) (recall that
the binary coloring is represented with white and black cir-
cles). The goal is to create exactly one 1-monochromatic
1-simplex in the interior of ψ(σ1) (because |k1| = 1) with a
specific orientation, and we want that the 1-monochromatic
5-simplex generated by this 1-simplex in the cone construc-
tion is negatively oriented (because sign(k1) = −). We can-
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not color τ1 with 1 because we would create two other 1-
monochromatic simplexes (the 1-corners), and also we can-
not color with 1 just one of the vertexes of τ because the
1-monochromatic 1-simplex created would not have the cor-
rect orientation. Thus we subdivide chromatically ψ(σ1)
once, as in Figure 10(b), but here we still cannot obtain ex-
actly one 1-monochromatic 1-simplex with the correct orien-
tation, so we subdivide it once more, as in Figure 10(c), and
we color 1 the 1-simplex in the center, call it τ1. It is easy to
verify that the induced 5-simplex from τ1 by the cone con-
struction is negatively oriented. We have 15 more simplexes
in A−, because the same construction (preserving id′s rank-
ing) is done for each face of dimension 1 of σ5, and hence
there will be

�
6
2

�
induced 1-monochromatic 5-simplexes, and

with the same orientation in a coherent orientation of K5

(they all are at the same distance from τ5, Lemma 2.1).
And we get a a chromatic, orientable and connected divided
image ψ(sk1(σ5)), with symmetric binary coloring (skeli is
the subcomplex of all faces of dimension at most i).

Figure 11: The construction for k2.

We repeat this procedure to construct ψ(sk2(σ5)). For a
2-face σ2 of σ5, do the cone over ψ(σ2) (we do the same for
each such face, preserving id ranking). Figure 11 presents an
example of ψ(σ2). Now we need exactly one 1-monochromatic
2-simplex in the interior of ψ(σ2) (because |k2| = 1), and
we want that the 1-monochromatic 5-simplex generated by
τ2 by the cone construction is positively oriented (because
sign(k2) = +). There are

�
6
3

�
such 1-monochromatic sim-

plexes, and they all have the same orientation in a coherent
orientation of K5, because they all are at the same distance
from τ5. In this case we just have to color with 1 exactly
one vertex of the 2-simplex at the center to obtain one 1-
monochromatic 2-simplex τ2 with the correct orientation.
It is easy to verify that the induced 5-simplex from τ2 by
the cone construction is positively oriented, so we have 20
more simplexes in A+. We get a chromatic, orientable and
connected divided image ψ(sk2(σ5)), with symmetric binary
coloring.

Finally, since k3 = k4 = 0, for 3 ≤ i ≤ 5, ψ(σi) is cone
constructed with τ i, without further subdivisions and no
internal vertexes colored 1. Thus, |A−| = |A+| = 21.

Consider the content of K5, C5, with respect to a col-
oring c as presented in Definition 3.1. By Lemma 3.3, Cn

counts a 1-monochromatic n-simplex with orientation d as

d if n is even, and as −d if n is odd. Since K5 has only 1-
monochromatic 5-simplexes and we have counted these sim-
plexes by orientation, then C5 = −x.

4.2 Eliminating monochromatic simplexes
In this section we present an algorithm which takes as in-

put an orientable and chromatic pseudomanifold Kn with
x monochromatic n-simplexes counted by orientation and
modifiesKn, using basic chromatic subdivisions and without
touching its boundary, so that it has exactly |x| monochro-
matic n-simplexes, all oriented sign(x) (see [8] for a detailed
description). We can assume, as explained below, that Kn

has no 0-monochromatic n-simplexes. This algorithm to-
gether with Theorem 4.3 implies:

Theorem 4.4. Let k0, k1 . . . kn−1 be integers such that
k0 ∈ {0,−1}, and x = 1 +

Pn−1
i=0

�
n+1
i+1

�
ki. There exists a

chromatic, orientable and connected divided image Kn of
σn, with symmetric binary coloring, such that it has exactly
|x| monochromatic n-simplexes all oriented sign(x).

eliminate(Kn)

(1) while ∃ 1-monochromatic n-simplexes with opposite orientation

(2) let P be a path in standard form

(3) eliminatePath(P )

Figure 12: Algorithm eliminate.

First we present some definitions. Let P be an n-path of
size |P | = 2(q+1), P : S0−S1 · · ·S2q+1, q ≥ 0, such that the
n-simplexes at its ends S0 and S2q+1 are 1-monochromatic
and it has no other monochromatic n-simplex. We say that
P is in standard form. Notice that S0 and S2q+1 have oppo-
site orientation and then the content of P , C(P ), with re-
spect to a coloring c as presented in Definition 3.1, is equal
to zero and hence the index I(P ) is equal to zero by the
Generalized Index Lemma 2.3. We denote by Sa,a+1 the
(n − 1)-face shared by Sa and Sa+1, by x(S) the face of
S with all the vertexes of S with binary color x and by
#x(S) = |x(S)|. A good chromatic subdivision of P is a
chromatic subdivision sub(P ) that contains two disjoint (in
the sense that they do not share n-simplexes) paths P1 and
P2 in standard form, has no other monochromatic n-simplex
and bd(P ) = bd(sub(P )). And a complete chromatic subdi-
vision of P is a chromatic subdivision sub(P ) that has no
monochromatic n-simplex and bd(P ) = bd(sub(P )). For all
the figures in this section the id colors are the numbers near
to the vertexes.

eliminatePath(P : S0 − S1 · · ·S2q+1)

(01) if |P | = 2 then

(02) subdivideComp(P )

(03) else

(04) let m← 0

(05) while true do

(06) if #1(Sm+1,m+2) ≥ n + 1−m then

(07) P1, P2← subdivideGood(P, m)

(08) eliminatePath(P1)

(09) eliminatePath(P2)

(10) break %end of while loop%

(11) m + +

Figure 13: Algorithm eliminatePath.
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Algorithm eliminate (Figure 12) uses Algorithm elimi-
natePath (Figure 13) to produce a complete chromatic sub-
division of a path in standard form. Notice that at the end of
the execution of eliminate, Kn has exactly |x| monochro-
matic n-simplexes, all oriented sign(x) (recall that Kn has
x monochromatic n-simplexes counted by orientation).

2 2

0

1

2 2

0

1
(a) (b)

0

1

Figure 14: A path of size two.

We now describe how Algorithm eliminatePath produces
a complete chromatic subdivision of a path P in standard
form. If the input has size two, that is, P consists only of
two 1-monochromatic n-simplexes, then it just subdivides
their shared (n− 1)-face with a 0-monochromatic n-simplex
to obtain a complete chromatic subdivision of P . The func-
tion subdivideComp (line 2) does this subdivision. Figure
14 (a) presents en example of dimension 2 of this situation
and Figure 14 (b) presents the result of subdivideComp.
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Figure 15: A path of size four.

Now, if P has size greater than two then eliminatePath
inspects one by one the shared (n − 1)-faces of P starting
with S1,2, to find the cutting point in which the algorithm
will subdivide a shared (n − 1)-face. The cutting point is
identified when line 6 is true and the face that will be sub-
divided is Sm−1,m or Sm,m+1. Also, eliminatePath sub-
divides this face using function subdivideGood. which
creates a good chromatic subdivision of P such that P1 and
P2 have sizes smaller or equal than |P |. The idea behind
this subdivision is that since the boundary has to be the
same, and so I(sub(P )) = 0, we can create exactly two 1-
monochromatic n-simplexes with opposite orientation into
P (adding zero to the index) to obtain two new paths in
standard form. Finally, eliminatePath recursively calls it-
self on the two paths P1 and P2. Now, if |Pi| < |P |, i ∈ {1, 2}
then we say that the cutting point was progressive. We prove
in [8], if |Pi| = |P |, for some i ∈ {1, 2}, then Pi always has a
progressive cutting point. Observe that this condition guar-
antees progress of the algorithm.

We now present some examples of the subdivisions ob-
tained by eliminatePath. Figure 15 (a) presents a path of
size four which has the cutting point on 1 (i.e., #1(S2,3) ≥
n = 2). eliminatePath subdivides the face S1,2, Figure 15

(b), to add two 1-monochromatic n-simplexes and thus cre-
ate two disjoint paths in standard form of size two. Then,
the two resulting paths will be subdivided as in the case
presented in Figure 14 on the next recursive call of elimi-
natePath on them, Figure 15 (c).
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Figure 16: A path of size six.

As mentioned above, there exists cases which eliminate-
Path cannot obtain two paths of size smaller than the orig-
inal path. Consider the path of size 6 in Figure 16 (a).
Observe that it has the cutting point on 2 (i.e., #1(S3,4) ≥
n− 1 = 1). In this case eliminatePath subdivides the face
S1,2 to obtain one path of size smaller than 6 and another
path P ′ of size 6, Figure 16 (b). However, on the next re-
cursive call on P ′, eliminatePath always can obtain paths
of size 4, Figure 16 (c).
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Figure 17: A path of size eight.

Sometimes eliminatePath does not obtain disjoint paths
in the subdivision of a face in the cutting point, and then
it has to do an extra subdivision. Figure 17 (a) presents a
path of size 8 with the cutting point on 2. The subdivision
of the face S2,3, Figure 17 (b), generates two paths of size
smaller than 8 but they share one 2-simplex. Therefore,
elminatePath has to do an extra subdivision, Figure 17
(c), to create two paths of size 6 and one path of size 2
which is eliminated using subdivideComp.
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Figure 18: Changing the color.
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Finally, we have been focusing on 1-monochromatic n-
simplexes because a 0-monochromatic n-simplex can be eas-
ily transformed to a 1-monochromatic n-simplex using a ba-
sic chromatic subdivision, Figure 18.

5. CONCLUSIONS
One direction of Theorem 2.6 states that if there is a WSB

protocol then there exists a chromatic, orientable and con-
nected divided image Kn of a simplex σn, with a symmetric
binary coloring and no cross edges with no monochromatic
n-simplexes. That is, with C(Kn) = 0, by Lemma 3.2.
However, by Theorem 3.6

C(Kn) = 1 +

n−1X
i=0

 
n+ 1

i+ 1

!
ki

That is, if there is a WSB protocol then the linear Dio-
phantine equation 

n+ 1

1

!
k0 +

 
n+ 1

2

!
k2 + . . .+

 
n+ 1

n

!
kn−1 = 1 (1)

has a solution. It is well known that there exist integers
ki ∈ Z, 0 ≤ i ≤ n − 1, which satisfy (1) [9] if and only
if
�

n+1
1

�
,
�

n+1
2

�
. . .
�

n+1
n

�
are relatively prime. Since

�
n+1
i+1

�
=�

n+1
n−i

�
, we focus on {

�
n+1
i+1

�
: 0 ≤ i ≤ bn−1

2
c}. We have the

following result which is a special case of Theorem 6.2 in [13]
and Theorem 6.3 in [15], recalling the WSB is equivalent to
K-renaming, K = 2n− 1.

Corollary 5.1. If {
�

n+1
i+1

�
: 0 ≤ i ≤ bn−1

2
c} are not rel-

atively prime then there does not exist an anonymous wait-
free protocol that solves the K-renaming, K < 2n.

For example, it is easy to check that if n+1 is prime then
Cn ≡ 1mod (n+1). Also, we can easily verify C3 ≡ 1mod 4.
Therefore, if n + 1 is prime or n = 3 then there does not
exists an anonymous wait-free protocol that solves the K-
renaming, K < 2n.

Now, by Theorem 4.4, if {
�

n+1
i+1

�
: 0 ≤ i ≤ bn−1

2
c} are rel-

atively prime then there exists a chromatic, orientable and
connected divided image Kn, with a symmetric binary col-
oring and without monochromatic n-simplexes. The other
direction of Theorem 2.6 implies that there is a WSB pro-
tocol. As the (2n − 1)-renaming and the weak-symmetry
breaking are equivalent [11] we have

Corollary 5.2. If {
�

n+1
i+1

�
: 0 ≤ i ≤ bn−1

2
c} are rela-

tively prime then there exists an anonymous wait-free pro-
tocol that solves K-renaming, K = 2n− 1.

Consider a prime p ≥ 3. If n + 1 = 2p then {
�

n+1
i+1

�
: 0 ≤

i ≤ bn−1
2
c} are relatively prime. Just notice that

�
2p
1

�
= 2p

and 2 is not factor of
�
2p
2

�
= p(2p−1). Also, it is well known

that
�
2p
p

�
= 2p(1∗3∗5...(2p−1))

p!
= 2p(1∗3∗5...(p−2)∗(p+2)...(2p−1))

(p−1)!

and hence p is not factor of
�
2p
p

�
. Thus, we have an infinite

number of cases for which WSB, or a K-renaming protocol
exists, K = 2n− 1.

Theorem 5.3 (Main). There exists an anonymous wait-
free protocol that solves K-renaming for K < 2n if and only
if {
�

n+1
i+1

�
: 0 ≤ i ≤ bn−1

2
c} are relatively prime.

Acknowledgments
We would like to thank Eli Gafni for enlightening discus-
sions, his involvement at the early stages of this work and
his suggestion of an alternate proof strategy for Theorem
3.6 described in [8].

6. REFERENCES
[1] H. Attiya & S. Rajsbaum. The Combinatorial Structure

of Wait-Free Solvable Tasks.
SIAM Journal on Computing 31(4): 1286–1313 (2002).

[2] H. Attiya, A. Bar-Noy & D. Dolev. Sharing Memory
Robustly in Message-Passage Systems
Journal of the ACM 42(1): 124–142 (1995).

[3] H. Attiya, A. Bar-Noy, D. Dolev, D. Peleg & R.
Reischuck. Renaming in Asynchronous Environment.
Journal of the ACM 37(3): 524–548 (1990).

[4] H. Attiya & J. Welch. Distributed Computing:
Fundamentals, Simulations and Advanced Topics.
McGraw-Hill 1998.

[5] E. Borowsky & E. Gafni. A Simple Algorithmically
Reasoned Characterization of Wait-Free Computations.
In: Proceedings of the 16th. Annual ACM Symposium
on Principles on Distributed Computing, pp. 189–198
(1997).

[6] E. Borowsky & E. Gafni. Generalized FLP Impossibility
Result for t-Resilient Asynchronous Computations. In:
Proceedings of the 25th. Annual ACM Symposium on
Theory of Computing, pp. 91–100 (1993).

[7] E. Borowsky & E. Gafni. Immediate Atomic Snapshots
and Fast Renaming. In: Proceedings of the 12th.
Annual ACM Symposium on Principles on Distributed
Computing, pp. 41–51 (1993).
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