
Wait-Free Algorithms for Fast, Long-Lived Renaming�Mark Moir and James H. AndersonDepartment of Computer ScienceThe University of North Carolina at Chapel HillChapel Hill, North Carolina 27599-3175, USAAugust 1994; revised February 1995AbstractIn the classic \one-time" renaming problem, processes are required to choose new names in orderto reduce the size of their name space. We introduce a new, more general version of the renamingproblem called \long-lived" renaming, in which processes may repeatedly acquire and release names. Wealso present several wait-free algorithms for both one-time and wait-free renaming on shared-memorymultiprocessing systems. Previous wait-free renaming algorithms have time complexity that is dependenton the size of the original name space. In contrast, most of our algorithms have time complexity that isindependent of the size of the original name space.1 IntroductionIn the M -renaming problem [2], each of k processes is required to choose a distinct value, called a name,that ranges over f0; :::;M � 1g. Each process is assumed to have a unique process identi�er ranging overf0; :::; N � 1g. It is further required that k � M < N . Thus, an M -renaming algorithm is invoked by kprocesses in order to reduce the size of their name space from N to M .Renaming is useful when processes perform a computation whose time complexity is dependent on thesize of the name space containing the processes. By �rst using an e�cient renaming algorithm to reduce thesize of the name space, the time complexity of that computation can be made independent of the size of theoriginal name space.The renaming problem has been studied previously for both message-passing [2] and shared-memorymultiprocessing systems [3, 5]. In this paper, we consider wait-free implementations of renaming in asyn-chronous, shared-memory systems. A renaming algorithm is wait-free i� each process is guaranteed to acquirea name after a �nite number of that process's steps, even if other processes halt undetectably.Previous research on the renaming problem has focused on one-time renaming: each process acquires aname only once. In this paper, we also consider long-lived renaming, a new, more general version of renamingin which processes may repeatedly acquire and release names.A solution to the long-lived renaming problem is useful in settings in which processes repeatedly accessidentical resources. The speci�c application that motivated us to study this problem is the implementation ofshared objects. The complexity of a shared object implementation is often dependent on the size of the namespace containing the processes that access that implementation. For such implementations, performance canbe improved by restricting the number of processes that concurrently access the implementation, and by�Work supported, in part, by NSF Contract CCR-9216421. Authors' e-mail addresses: fmoir,andersong@cs.unc.edu. Apreliminaryversion [9] of this paperwas presentedat the Eighth InternationalWorkshop on DistributedAlgorithms, Terschelling,The Netherlands, September, 1994. 1

Reference M Time Complexity Long-Lived?[3] k(k+ 1)=2 �(Nk) No[3] 2k� 1 �(N4k) No[5] 2k� 1 �(Nk2) NoThm. 1 k(k+ 1)=2 �(k) NoThm. 2 2k� 1 �(k4) NoThm. 3 k(k+ 1)=2 �(Nk) YesTable 1: A comparison of wait-free M -renaming algorithms that employ only atomic reads and writes.using long-lived renaming to acquire a name from a reduced name space. This is the essence of an approachwe previously presented for the implementation of resilient, scalable shared objects [1]. This approach onlyrestricts the number of processes that access the implementation concurrently. Over time, many processesmay access the implementation. Thus, it is not su�cient to simply acquire a name once and retain thatname for future use: a process must be able to release its name so that another process may later acquirethe same name. In [1], a simple long-lived renaming algorithm is presented in order to address this issue.To our knowledge, this is the only previous work on long-lived renaming. In this paper, we present severalnew long-lived renaming algorithms, one of which is a generalization of the algorithm presented in [1].In the �rst part of the paper, we present renaming algorithms that use only atomic read and writeinstructions. It has been shown that if M < 2k� 1, then M -renaming cannot be implemented in a wait-freemanner using only atomic reads and writes [7]. Wait-free, read/write algorithms for one-time renaming thatyield an optimal name space of size M = 2k� 1 have been proposed in [3, 5]. However, in these algorithms,the time complexity of choosing a name is dependent on N , the size of the original name space. Thus, thesealgorithms su�er from the same shortcoming that the renaming problem is intended to overcome, namelytime complexity that is dependent on the size of the original name space.We present a read/write algorithm for long-lived renaming that yields a name space of size k(k + 1)=2.To facilitate the presentation of this algorithm, we �rst present two read/write algorithms for one-timerenaming, one of which has an optimal name space of size M = 2k� 1. In contrast to prior algorithms, ourone-time renaming algorithms have time complexity that depends only on k, the number of participatingprocesses. These algorithms employ a novel technique that uses \building blocks" based on the \fast path"mechanism employed by Lamport's fast mutual exclusion algorithm [8]. Our read/write algorithm for long-lived renaming algorithm uses a modi�ed version of the one-time building block that allows processes to\reset" the building block so that it may be used repeatedly. Unfortunately, this results in time complexitythat is dependent on N . Nevertheless, this result breaks new ground by showing that long-lived renamingcan be implemented with only reads and writes.Previous and new renaming algorithms that use only read and write operations are summarized in Table1. We leave open the question of whether read and write operations can be used to implement long-livedrenaming with a name space of size 2k � 1 and with time complexity that depends only on k.In the second part of the paper, we consider long-lived k-renaming algorithms. By de�nition,M -renamingfor M < k is impossible, so with respect to the size of the name space, k-renaming is optimal. As previouslymentioned, it is impossible to implement k-renaming using only atomic read and write operations. Thus, allof our k-renaming algorithms employ stronger, read-modify-write operations.We present three wait-free, long-lived k-renaming algorithms. The �rst such algorithm uses two read-modify-write operations, set �rst zero and clr bit. The set �rst zero operation is applied to a b-bit sharedvariable X whose bits are indexed from 0 to b � 1. If some bit of X is clear, then set �rst zero(X) setsthe �rst clear bit of X, and returns its index. If all bits of X are set, then set �rst zero(X) leaves Xunchanged and returns b. Note that for b = 1, set �rst zero is equivalent to test and set. The set �rst zerooperation for b > 1 can be implemented, for example, using the atom�0andset operation available on the2

Reference Time Complexity Bits / Variable Instructions UsedThm. 4 �(k) 1 write and test and setThm. 4 �(k=b) b set �rst zero and clr bitThm. 5 �(log k) �(log k) bounded decrement and fetch and addThm. 6 �(log(k=b)) �(log k) bounded decrement, fetch and add, set �rst zero, and clr bitTable 2: A comparison of wait-free long-lived k-renaming algorithms.BBN TC2000 multiprocessor [4]. The clr bit(X; i) operation clears the ith bit of the b-bit shared variableX. For b = 1, clr bit is a simple write operation. For b > 1, clr bit can be implemented, for example, usingthe fetch and and operation available on the BBN TC2000.Our second long-lived k-renaming algorithm employs the commonly-available fetch and add operationand the bounded decrement operation. The bounded decrement operation is similar to fetch and add(X;�1),except that bounded decrement does not modify a variable whose value is zero. We do not know of anysystems that provide bounded decrement as a primitive operation. However, at the end of Section 5, weshow that bounded decrement can be approximated in a lock-free manner using the fetch and add operation.This allows us to obtain a lock-free, long-lived k-renaming algorithm based on fetch and add. A renamingalgorithm is lock-free i� it is guaranteed that each attempt by some process p to acquire or release a nameterminates unless some other process acquires and releases a name in�nitely often.Our third long-lived k-renaming algorithm combines both algorithms discussed above, improving on theperformance of each. Our wait-free, long-lived k-renaming algorithms are summarized in Table 2.The remainder of the paper is organized as follows. Section 2 contains de�nitions used in the rest ofthe paper. In Sections 3 and 4, we present one-time and long-lived renaming algorithms that employ onlyatomic reads and writes. In Section 5, we present long-lived renaming algorithms that employ strongerread-modify-write operations. Concluding remarks appear in Section 6.2 De�nitionsOur programming notation should be self-explanatory; as an example of this notation, see Figure 2. In thisand subsequent �gures, each labeled program fragment is assumed to be atomic,1 unless no labels are given,in which case each line of code is assumed to be atomic.Notational Conventions: We assume that 1 < k � M < N , and that p and q range over 0; :::; N � 1.Other free variables are assumed to be universally quanti�ed. We use P x1;x2;:::;xny1;y2;:::;yn to denote the expressionP with each occurrence of xi replaced by yi. The predicate p@s holds i� statement s is the next statementto be executed by process p. We use p@S as shorthand for (9s : s 2 S :: p@s), p:s to denote statement s ofprocess p, and p:var to denote p's local variable var. The following is a list of symbols we use in our proofs,in increasing order of binding power: �,), _, ^, (=; 6=; <;>;�;�), (+;�), (multiplication,=), :, (:;@),(f; g). Symbols in parentheses have the same binding power. We sometimes use parentheses to overridethese binding rules. We sometimes use Hoare triples [6] to denote the e�ects of a statement execution. 2In the one-time M -renaming problem, each of k processes, with distinct process identi�ers ranging overf0; :::; N � 1g, chooses a distinct value ranging over f0; :::;M � 1g. A solution to the M -renaming problem1To simplify our proofs, we sometimes label somewhat lengthy blocks of code. Nonetheless, such code blocks are in keepingwith the atomic instructionsused. For example, statement 3 in Figure 4 is assumed to atomically readX[i; j], assign stop := trueor i := i+ 1 depending on the value read, check the loop condition, and set the program counter of the executing process to 0or 4, accordingly. Note, however, that X[i; j] is the only shared variable accessed by statement 3. Because all other variablesaccessed by this statement are private, statement 3 can be easily implemented using a single atomic read of a shared variable.This is in keeping with the read/write atomicity assumed for this algorithm.3

process p =� 0 � p < N �=private variable name : 0::M � 1 =� Name received �=while true doRemainder Section; =� Ensure at most k processes rename concurrently �=Getname Section; =� Assigns a value ranging over f0; :::;M � 1g to p:name �=Working Section;Putname Section =� Release the name obtained �=od Figure 1: Organization of processes accessing a long-lived renaming algorithm.consists of a wait-free code fragment for each process p that assigns a value ranging over f0; :::;M � 1g to aprivate variable p:name and then halts. For p 6= q, the same value should not be assigned to both p:nameand q:name.In the long-lived M -renaming problem, each of N distinct processes repeatedly executes a remaindersection, acquires a name by executing a getname section, uses that name in a working section, and thenreleases the name by executing a putname section. The organization of these processes is shown in Figure 1.It is assumed that each process is initially in its remainder section, and that the remainder section guaranteesthat at most k processes are outside their remainder sections at any time. A solution to the long-lived M -renaming problem consists of wait-free code fragments that implement the getname and putname sectionsshown in Figure 1, along with associated shared variables. The getname section for process p is requiredto assign a value ranging over f0; :::;M � 1g to p:name. If distinct processes p and q are in their workingsections, then it is required that p:name 6= q:name.As discussed in the introduction, our algorithms use the set �rst zero, clr bit, and bounded decrementoperations, among other well-known operations. We de�ne these operations formally by the following atomiccode fragments, where X is a b-bit shared variable whose bits are indexed from 0 to b � 1, and Y is a non-negative integer. We stress that these code fragments are de�nitions, and should not be interpreted asimplementations of the given operations.set �rst zero(X) � if (9n : 0 � n < b :: :X[n]) thenm := (min n : 0 � n < b :: :X[n]); X[m] := true; return melsereturn b�clr bit(X; i) � X[i] := falsebounded decrement(Y) � m := Y ; if Y 6= 0 then Y := Y � 1 �; return mIn each of our algorithms, each atomically-accessible shared variable can be stored in one machine word forall reasonable values of N . For example, our read/write algorithms require shared variables of approximatelylog2N bits. Thus, on a 32-bit shared-memory multiprocessor, these shared variables can be accessed withone shared variable access if N < 232. We measure the time complexity of our algorithms in terms of theworst-case number of shared variable accesses required to acquire (and release, if long-lived) a name once.3 One-Time Renaming using Reads and WritesIn this section, we present two one-time renaming algorithms that employ only atomic read and writeoperations. The �rst of these algorithms serves to introduce the main ideas of our �rst long-lived renaming4

n

n−1

n−1

1
stop right

down

shared variable X : f?g [f0::N � 1g;Y : booleaninitially X = ? ^ Y = falseprivate variable move : fstop; right;downgX := p;if Y then move := rightelseY := true;if X = p then move := stopelse move := down��Figure 2: The one-time building block and the code fragment that implements it.algorithm. Both algorithms are also of interest in their own right, because they signi�cantly improve overprevious read/write algorithms for one-time renaming.We start by presenting a one-time (k(k + 1)=2)-renaming algorithm that has �(k) time complexity. Wethen describe how this algorithm can be combined with previous results [5] to obtain a (2k � 1)-renamingalgorithm with �(k4) time complexity. It has been shown that renaming is impossible for fewer than 2k� 1names when using only reads and writes so, with respect to the size of the resulting name space, thisalgorithm is optimal. Our one-time (k(k + 1)=2)-renaming algorithm is based on a \building block", whichwe describe next.3.1 The One-Time Building BlockThe one-time building block, depicted in Figure 2, is in the form of a wait-free code fragment that assignsto a private variable move one of three values: stop, right, or down. If each of n processes executes this codefragment at most once, then at most one process receives a value of stop, at most n � 1 processes receive avalue of right, and at most n � 1 processes receive a value of down. We say that a process that receives avalue of down \goes down", a process that receives a value of right \goes right", and a process that receivesa value of stop \stops". Figure 2 shows n processes accessing a building block, and the maximum number ofprocesses that receive each value.The code fragment shown in Figure 2 shows how the building block can be implemented using atomicread and write operations. The technique employed is essentially that of the \fast path" mechanism used inLamport's fast mutual exclusion algorithm [8]. A process that stops corresponds to a process successfully\taking the fast path" in Lamport's algorithm. The value assigned to move by a process p that fails to \takethe fast path" is determined by the branch p takes: if p detects that Y holds, then p goes right, and if pdetects that X 6= p holds, then p goes down.To see why the code fragment shown in Figure 2 satis�es the requirements of our building block, �rstnote that it is impossible for all n processes to go right | a process can go right only if another processpreviously assigned Y := true. Second, the last process p to assign X := p cannot go down because if ittests X, then it detects that X = p and therefore stops. Thus, it is impossible for all n processes to go5

0 1 2 3 4

8

9 10 11

12 13

14

6 75

Figure 3: k(k � 1)=2 building blocks in a grid, depicted for k = 5.down. Finally, because Lamport's algorithm prevents more than one processes from \taking the fast path",it is impossible for more than one process to stop.In the next section, we show how these building blocks can be used to solve the renaming problem. Thebasic approach is to use such building blocks to \split" processes into successively smaller groups. Becauseat most one process stops at any particular building block, a process that stops can be given a unique nameassociated with that building block. Furthermore, when the size of a group has been decreased enough timesthat at most one process remains, that process (if it exists) can be given a name immediately.3.2 Using the One-Time Building Block to Solve RenamingIn this section, we use k(k� 1)=2 one-time building blocks arranged in a \grid" to solve one-time renaming;this approach is depicted in Figure 3 for k = 5. In order to acquire a name, a process p accesses the buildingblock at the top left corner of the grid. If p receives a value of stop, then p acquires the name associated withthat building block. Otherwise, p moves either right or down in the grid, according to the value received.This is repeated until p receives a value of stop at some building block, or p has accessed k�1 building blocks.The name returned is calculated based on p's �nal position in the grid. In Figure 3, each grid position islabeled with the name associated with that position. Because no process takes more than k � 1 steps, onlythe upper left triangle of the grid is used, as shown in Figure 3.The algorithm is presented more formally in Figure 4. Note that each building block in the grid isimplemented using the code fragment shown in Figure 2. At most one process stops at each building block,so a process that stops at a building block receives a unique name. However, a process may also obtain aname by taking k�1 steps in the grid. In Appendix A, we show that distinct processes that take k�1 stepsin the grid acquire distinct names. Speci�cally, invariant (I9) in Appendix A implies that no two processesarrive at the same grid position after taking k�1 steps in the grid. We also prove that each process acquiresa name from f0; :::; k(k+ 1)=2� 1g (see (I14)), after accessing at most 4(k � 1) shared variables. Thus, wehave the following result.Theorem 1: Using read and write, wait-free, one-time (k(k + 1)=2)-renaming can be implemented so thatthe worst-case time complexity of acquiring a name once is 4(k � 1). 26

shared variable X : array[0::k� 2; 0::k� 2] of f?g[f0::N � 1g;Y : array[0::k� 2; 0::k� 2] of booleaninitially (8r; c : 0 � r < k � 1 ^ 0 � c < k� 1 :: X[r; c] = ? ^ Y [r; c] 6= false)process p =� k distinct processes ranging over 0::N � 1 �=private variable name : 0::k(k+ 1)=2� 1;stop : boolean;i; j : 0::k� 1initially i = 0 ^ j = 0 ^ :stopwhile i+ j < k � 1 ^ :stop do =� Move down or across grid until stopping or reaching edge �=0: X[i; j] := p;1: if Y [i; j] then j := j + 1 =� Move right �=else2: Y [i; j] := true;3: if X[i; j] = p then stop := true else i := i+ 1 � =� Stop or move down �=�od;4: name := ik� i(i� 1)=2 + j; =� Calculate name based on position in grid �=5: halt =� Preserves p@5; has no e�ect �=Figure 4: One-time renaming using a grid of building blocks.Using the algorithm described in this section, k processes can reduce the size of their name space fromN to k(k+2)=2 with time complexity �(k). Using the algorithm recently presented by Borowsky and Gafniin [5], k processes can reduce the size of their name space from N to 2k � 1 with time complexity �(Nk2).Combining the two algorithms, k processes can reduce the size of their name space from N to 2k � 1 withtime complexity �(k)+�((k(k+1)=2)k2) = �(k4). Thus, we have the following result. By results of Herlihyand Shavit [7], this algorithm is optimal with respect to the size of the name space.Theorem 2: Using read and write, wait-free, one-time (2k � 1)-renaming can be implemented so that theworst-case time complexity of acquiring a name once is �(k4). 24 Long-Lived Renaming using Reads and WritesIn this section, we present a long-lived renaming algorithm that uses only atomic read and write operations.This algorithm is based on the grid algorithm presented in the previous section. To enable processes torelease names as well as acquire names, we modify the one-time building block. The modi�cation allows aprocess to \reset" a building block that it has previously accessed. This algorithm yields a name space ofsize k(k + 1)=2 and has time complexity �(Nk). We now give an informal description of the algorithm. Acorrectness proof appears in Appendix B.4.1 Using the Long-Lived Building Block for Long-Lived RenamingOur long-lived renaming algorithm based on reads and writes is shown in Figure 5. As in the one-timealgorithm presented in the previous section, a process acquires a name by starting at the top left corner of agrid of building blocks, and by moving through the grid according to the value received from each buildingblock. The building blocks are similar to those described in the previous section, except that they can be\reset" (statement 6) after being accessed (statements 2 through 5). There are two signi�cant di�erencesbetween this algorithm and the one-time renaming algorithm.7

shared variable X : array[0::k� 2; 0::k� 2] of f?g[f0::N � 1g;Y : array[0::k� 2; 0::k� 2] of array[0::N � 1] of booleaninitially (8r; c; p : 0 � r < k � 1 ^ 0 � c < k � 1 ^ 0 � p < N :: X[r; c] = ? ^ Y [r; c][p] = false)process p =� 0 � p < N �=private variable name : 0::k(k+ 1)=2� 1;move : fstop; right;downg;i; j : 0::k� 1initially i = 0 ^ j = 0 ^ move = downwhile true do0: Remainder Section;1: i; j; move := 0; 0; down; =� Start at top left building block in grid �=while i+ j < k � 1 ^ move 6= stop do =� Move down or across grid until stopping or reaching edge �=2: X[i; j]; h; move := p; 0; stop; =� Will stop unless move later becomes right or down �=while h < N ^ move 6= right do3: if Y [i; j][h] then move := right else h := h+ 1 �od;4: if move 6= right thenY [i; j][p] := true;5: if X[i; j] 6= p then move := down else move := stop ��;6: if move 6= stop thenY [i; j][p] := false; =� Reset block if we didn't stop at it �=if move = down then i := i+ 1 else j := j + 1 � =� Move according to move �=�od;7: name := ik � i(i� 1)=2 + j; =� Calculate name based on position in grid �=Working Section;8: if i+ j < k� 1 then =� If we stopped on a building block ... �=Y [i; j][p] := false =� ... then reset that building block �=�od Figure 5: Long-lived renaming with �(k2) name space and �(Nk) time complexity.Firstly, the single Y -bit used in the one-time algorithm is replaced by N Y -bits | one for each process.Instead of setting a common Y -bit, each process p sets a distinct bit Y [p] (statement 4). This modi�cationallows a process to reset the building block by clearing its Y -bit. A process resets a building block it hasaccessed before proceeding to the next building block in the grid (statement 6), or when releasing the nameassociated with that building block (statement 8). The building blocks are reset to allow processes to reusethe grid to acquire names repeatedly. (It may seem more intuitive to reset all building blocks accessed whenreleasing a name. In fact, this does not a�ect correctness, and resetting each building block before accessingthe next avoids the need for a data structure to record which building blocks were accessed.)To see why N Y -bits are used, observe that in the one-time building block, the Y -variable is never reset,so using a single bit su�ces. However, if only one Y -bit is used in the long-lived algorithm, a process mightreset Y immediately after another process, say p, sets Y. Because the value p assigned to Y is overwritten,another process q may subsequently access the building block and fail to detect that p has accessed thebuilding block. In this case, p and q may both receive a value of stop from the same building block.The second di�erence between the one-time and long-lived building blocks is that they di�er in timecomplexity. Instead of reading a single Y -variable, each process now reads all N Y -bits. This results in�(N) time complexity for accessing the long-lived building block. It may seem that all N Y -bits should be8

read in an atomic \snapshot" because, for example, p's write to Y [p] might occur concurrently with q's scanof the Y -bits. In fact, this is unnecessary, because the fact that these operations are concurrent is su�cientto ensure that either p or q will not receive a value of stop from the building block.In Appendix B, we prove that, for distinct processes p and q, if p@8 ^ q@8 holds, then p and q holddistinct names from f0; :::; k(k+ 1)=2� 1g (see (I28) and (I29)). We also prove that a process performs atmost (N + 4)(k � 1) shared variable accesses in acquiring a name. Releasing a name requires at most oneshared variable access. Thus, we have the following result.Theorem 3: Using read and write, wait-free, long-lived (k(k+ 1)=2)-renaming can be implemented so thatthe worst-case time complexity of acquiring and releasing a name once is (N + 4)(k � 1) + 1 = �(Nk). 25 Long-Lived Renaming using Read-Modify-WritesIn this section, we present three wait-free, long-lived renaming algorithms and one lock-free, long-lived algo-rithm. By using read-modify-write operations, these algorithms signi�cantly improve upon the performanceof the algorithms in the previous section. Furthermore, these algorithms yield a name space of size k, whichis clearly optimal (the lower bound results of Herlihy and Shavit [7] do not apply to algorithms that employread-modify-write operations).The �rst algorithm uses set �rst zero and clr bit to access shared, b-bit variables and has time complexity�(k=b). As discussed in Section 1, these operations can be implemented, for example, using operationsavailable on the BBN TC2000 [4]. The second algorithm in this section has time complexity �(log k) |a signi�cant improvement over the �rst algorithm. To achieve this improvement, this algorithm uses thebounded decrement operation. We then describe how the techniques from these two algorithms can becombined to obtain an algorithm whose time complexity is better than that of either algorithm.We do not know of any systems that provide bounded decrement as a primitive operation. However, atthe end of this section, we discuss how the bounded decrement operation can be approximated in a lock-freemanner using the commonly-available fetch and add operation. We show how this approximation can beused to provide a lock-free algorithm for long-lived k-renaming.5.1 Long-Lived Renaming using set �rst zero and clr bitOur �rst long-lived k-renaming algorithm employs the set �rst zero and clr bit operations. The algorithmis shown in Figure 6. For clarity, we have explicitly used the de�nitions of set �rst zero (statement 1) andclr bit (statement 3). In order to acquire a name, a process tests each name in order. Using the set �rst zerooperation on b-bit variables, up to b names can be tested in one atomic shared variable access. If k � b,this results in a long-lived renaming algorithm that acquires a name with just one shared variable access. Ifk > b, then \segments" of size b of the name space are tested in each access. To release a name, a processclears the bit that was set by that process when the name was acquired. An example is shown in Figure 7for b = 4 and k = 10. In this �gure, process p releases name 1 by executing clr bit(X[0]; 1) and process qacquires name 5 by executing set �rst zero(X[1]).Because each process tests the available names in segments, and because processes may release andacquire names concurrently, it may seem possible for a process to reach the last segment when none of thenames in that segment are available. In Appendix C, we show that this is in fact impossible and that eachprocess acquires a distinct name from f0; :::; k� 1g after at most dk=be shared variable accesses (see (I39)and (I40)). Releasing a name requires one shared variable access. Thus, the algorithm shown in Figure 6yields the following result.Theorem 4: Using set �rst zero and clr bit on b-bit variables, wait-free, long-lived k-renaming can beimplemented so that the worst-case time complexity of acquiring and releasing a name once is dk=be + 1. 29

shared variable X : array[0::bk=bc] of array[0::b� 1] of boolean =� b-bit \segments" of the name space �=initially (8i; j : 0 � i � bk=bc ^ 0 � j < b :: X[i][j] = false)process p =� 0 � p < N �=private variable h : 0::bk=bc+ 1; v : 0::b; name : 0::k� 1initially h = 0while true do0: Remainder Section;h; v := 0; b; =� Initialize h and v after remainder section �=while v = b do =� Loop until a bit is set �=1: if (9n : 0 � n < b :: :X[h][n]) then =� set �rst zero operation, as de�ned in Section 2 �=m := (min n : 0 � n < b :: :X[h][n]); X[h][m]; v := true; melsev := b�;if v = b then h := h+ 1 �od;2: name := bh+ v; =� Calculate name �=Working Section;3: X[h][v] := false =� Clear the bit that was set �=od Figure 6: Long-lived k-renaming using set �rst zero and clear bit.As discussed in Section 1, when b = 1, the set �rst zero and clr bit operations are equivalent to thetest and set and write operations, respectively. Thus, we have the following.Corollary: Using test and set and write, wait-free, long-lived k-renaming can be implemented with timecomplexity k + 1. 25.2 Long-Lived Renaming using bounded decrement and fetch and addIn this section, we present a long-lived k-renaming algorithm that employs the bounded decrement andfetch and add operations. In this algorithm, shown in Figure 8, the bounded decrement operation is used toseparate processes into two groups left and right. The right group contains at most dk=2e processes and theleft group contains at most bk=2c processes. This is achieved by initializing a shared variable X to dk=2e,and having each process perform a bounded decrement operation on X. Processes that receive positive returnvalues join the right group, and processes that receive zero join the left group. To leave the right group, aprocess increments X. To leave the left group, no shared variables are updated.It might seem possible to implement this \splitting" mechanism by having a process join the left groupi� it receives a nonpositive return value from a normal fetch and add(X;�1) operation. However, becauseprocesses must be able to repeatedly join and leave the groups, the normal fetch and add operation is notsuitable for this \splitting" mechanism. If X is decremented below zero, then it is possible for too manyprocesses to be in the left group at once. To see this, suppose that all k processes decrement X. Thus,dk=2e processes receive positive return values, and therefore join the right group, and bk=2c processes receivenon-positive return values, and therefore join the left group. Now, X = �bk=2c. If a process leaves theright group by incrementing X, and then decrements X as the result of a subsequent attempt to acquire aname, then that process receives a non-positive return value, and thus joins the left group. Repeating thisfor each process in the right group, it is possible for all processes to be in the left group simultaneously. Thebounded decrement operation prevents this by ensuring that X does not become negative.The algorithm employs an instance of long-lived dk=2e-renaming for the right group, and an instance of10

names 0 1 2 3 4 5 6 7 8 9

1 1 1 1 1 0 0 1 0 1 0 0

X[0] X[1] X[2]

p q(a) In this state, p@3 ^ p:h = 1 ^ p:v = 1 holds, so p is about to execute clr bit(X[0];1), thereby releasing name1. For process q, q@1 ^ q:h = 1 holds, so q is about to execute set �rst zero(X[1]). As X[1][1] is the �rst clear bitin X[1], q:1 will establish q@2 ^ q:h = 2 ^ q:v = 1, and will therefore acquire name 5.
names 0 1 2 3 4 5 6 7 8 9

1 1 1 1 0 1 0 1 0 0

X[0] X[1] X[2]

p q

0 1(b) Process p has released name 1 and process q has acquired name 5.Figure 7: Example steps of the k-renaming algorithm shown in Figure 6 for b = 4 and k = 10.long-lived bk=2c-renaming for the left group, which are inductively assumed to be correct. For notationalconvenience, we assume that a name is acquired from the left instance by calling Getname left and releasedby calling Putname left; similarly for the right instance. (These functions are easy to implement giventhe inductively-assumed instances.) The algorithm that results from \unfolding" this inductively-de�nedalgorithm forms a tree. To acquire a name, a process goes down a path in this tree from the root to a leaf.As the processes progress down the tree, the number of processes that can simultaneously go down the samepath is halved at each level. When this number becomes one, a name can be assigned. Thus, the timecomplexity of acquiring a name is dlog2 ke. To release a name, a process retraces the path it took throughthe tree in reverse order, incrementing X at any node at which it received a positive return value.Note that, with b-bit variables, if b < log2dk=2e, then X cannot be initialized to dk=2e, so this algorithmcannot be implemented. However, in any practical setting, this will not be the case. In Appendix D, weprove the following result.Theorem 5: Using b-bit variables and bounded decrement and fetch and add, wait-free, long-lived k-renamingcan be implemented so that the worst-case time complexity of acquiring and releasing a name once is 2dlog2 kefor k � 2(2b � 1). 2Note that if the set �rst zero and clr bit operations are available, then it is unnecessary to completely\unfold" the tree algorithm described above. If the tree is deep enough that at most b processes canreach a leaf, then by Theorem 4, a name can be assigned with one more shared access. This amounts to\chopping o�" the bottom blog2 bc levels of the tree. The time complexity of the resulting algorithm is�(log k � log b) = �(log(k=b)). Thus, using all the operations employed by the �rst two algorithms, we canimprove on the time complexity of both. The following result is proved in Appendix D.Theorem 6: Using b-bit variables and set �rst zero, clear bit, bounded decrement, and fetch and add, wait-free, long-lived k-renaming can be implemented so that the worst-case time complexity of acquiring andreleasing a name once is 2(dlog2dk=bee + 1) for 1 � k � 2(2b � 1). 211

shared variable X : 0::dk=2e =� Counter of names available on right �=initially X = dk=2eprocess p =� 0 � p < N �=private variable side : fleft; rightgwhile true do0: Remainder Section;1: if bounded decrement(X) > 0 then =� Ensure at most dk=2e access right and at most bk=2c access left �=2: side;name := right;Getname right() =� Get name from right instance �=else3: side;name := left; dk=2e+Getname left() =� Get name from left instance �=�;Working Section;4: if side = right then5: Putname right(name); =� Return name to right instance �=6: fetch and add(X; 1) =� Increment counter again �=else7: Putname left(name� dk=2e) =� Return name to left instance �=�odFigure 8: k-renaming using bounded decrement. Getname left and Putname left are inductively assumed to imple-ment long-lived bk=2c-renaming. Similarly, Getname right and Putname right are inductively assumed to implementlong-lived dk=2e-renaming.5.3 Lock-Free, Long-Lived k-Renaming using fetch and addThe k-renaming algorithm presented in Figure 8 is the basis of our fastest wait-free k-renaming solutions,as shown by Theorems 5 and 6. Unfortunately, the bounded decrement operation employed by that al-gorithm is not widely available. While the bounded decrement operation is similar to the well-knownfetch and add operation, we have been unable to design an e�cient wait-free implementation of the for-mer using the latter. We have, however, designed a lock-free k-renaming algorithm that is based on theidea of bounded decrement. The algorithm is presented in Figure 9. The fetch and add operation is used toapproximate the bounded decrement operation in such a way that it ensures that at most dk=2e processesaccess the right instance of dk=2e-renaming, and similarly for the left instance.Roughly speaking, this split is achieved by having processes that obtain positive values from X go right,and processes that obtain non-positive values go left (see statements 1 and 2 in Figure 9). However, aprocess, say p, that decrements the counter X below zero \compensates" by incrementing X again beforeproceeding left. If p detects that X becomes positive again before this compensation is made, then it ispossible that some other process has incremented X and joined the left group. In this case, there is a riskthat process p should in fact go right, rather than left. In this case, process p restarts the loop.The algorithm is lock-free because in order for a process to repeat the loop at statements 1 and 2, someother process must modify X between the execution of statements 1 and 2. In Appendix E, we show that ifthis happens repeatedly, then eventually some process makes progress. Thus, we have the following result.Theorem 7: Using b-bit variables and fetch and add, lock-free, long-lived k-renaming can be implementedso that the worst-case, contention-free time complexity of acquiring and releasing a name once is 2dlog2 kefor k � 2(2b � 1). 212

shared variable X : �bk=2c::dk=2e =� Counter of names available on right �=initially X = dk=2eprocess p =� 0 � p < N �=private variable side : fleft; right;nonegwhile true do0: Remainder Section;side := none;while side = none do1: if fetch and add(X;�1) > 0 then side := right2: else if fetch and add(X;1) < 0 then side := left ��od;3: if side = right then4: name := Getname right() =� Get name from right instance �=else5: name := dk=2e+Getname left() =� Get name from left instance �=�;Working Section;6: if side = right then7: Putname right(name); =� Return name to right instance �=8: fetch and add(X; 1) =� Increment counter again �=else9: Putname left(name� dk=2e) =� Return name to left instance �=�od Figure 9: Lock-free k-renaming using fetch and add.6 Concluding RemarksIn this paper, we have de�ned a new version of the renaming problem called long-lived renaming, in whichprocesses can release names as well as acquire names. We have provided several solutions to this problem,including one that employs only read and write operations. In obtaining the read/write algorithm for long-lived renaming, we have also presented two one-time renaming algorithms, one of which yields an optimal-size name space. These algorithms improve on previous read/write renaming algorithms in that their timecomplexity is independent of the size of the original name space.Our algorithms exhibit a trade-o� between time complexity, name space size, and the availability ofprimitives used. It is also worth mentioning that all of our wait-free algorithms, except the one shown inFigure 8, have the desirable property that time complexity is proportional to contention. Thus, if fewerthan k processes concurrently use a particular renaming algorithm, then the worst-case time complexityof acquiring and releasing a name is lower than the time complexity stated in our theorems. This is animportant practical advantage because contention should be low in most well-designed applications [8]. Thealgorithm in Figure 8 has time complexity that is logarithmic in k, regardless of the level of contention.There are several questions left open by our research. For example, we have shown that one-time (2k�1)-renaming can be solved using reads and writes with time complexity �(k4). We would like to improve onthis time complexity while still providing an optimal-size name space. Our fastest read/write algorithm hastime complexity �(k) and yields a name space of size k(k + 1)=2.The long-lived renaming algorithm presented in Section 4 yields a name space of size k(k + 1)=2 withtime complexity �(Nk). We would like to improve on this result by obtaining an optimal name space of size2k � 1 using only read and write operations, and by making the time complexity independent of N .13

Our most e�cient wait-free, long-lived renaming algorithmuses a bounded decrement operation. Althoughthis operation is similar to the standard fetch and add operation, we have been unable to design an e�cientwait-free implementation of the former using the latter. We have, however, designed an e�cient lock-freeimplementation of k-renaming based on this idea. In this implementation, a process can only be delayed bya very unlikely sequence of events. We believe this implementation will perform well in practice. It remainsto be seen whether fetch and add can be used to implement wait-free, long-lived renaming with sub-lineartime complexity.Acknowledgement: We would like to thank Gadi Taubenfeld and Rajeev Alur for helpful discussions. We are alsograteful to the anonymous referees for their e�orts to improve the presentation of this paper.References[1] J. Anderson and M. Moir, \Using k-Exclusion to Implement Resilient, Scalable Shared Objects", Pro-ceedings of the 13th Annual ACM Symposium on Principles of Distributed Computing , August 1994,pp. 141-150.[2] H. Attiya, A. Bar-Noy, D. Dolev, D. Koller, D. Peleg, and R. Reischuk, \Achievable Cases in an Asyn-chronous Environment", Proceedings of the 28th Annual IEEE Symposium on Foundations of ComputerScience, October 1987, pp. 337-346.[3] A. Bar-Noy and D. Dolev, \Shared Memory versus Message-Passing in an Asynchronous DistributedEnvironment", Proceedings of the 8th Annual ACM Symposium on Principles of Distributed Computing ,August 1989, pp. 307-318.[4] BBN Advanced Computers, Inside the TC2000 Computer, February, 1990.[5] E. Borowsky and E. Gafni, \Immediate Atomic Snapshots and Fast Renaming", Proceedings of the 12thAnnual ACM Symposium on Principles of Distributed Computing , August 1993, pp. 41-50.[6] C. A. R. Hoare, \An Axiomatic Basis for Computer Programming", Communications of the ACM 12,October 1969, pp. 576-580,583.[7] M. Herlihy and N. Shavit, \The Asynchronous Computability Theorem for t-Resilient Tasks", Proceed-ings of the 25th ACM Symposium on Theory of Computing , 1993, pp. 111-120.[8] L. Lamport, \A Fast Mutual Exclusion Algorithm", ACM Transactions on Computer Systems, Vol. 5,No. 1, February 1987, pp. 1-11.[9] M. Moir and J. Anderson, \Fast, Long-Lived Renaming", Proceedings of the 8th International Workshopon Distributed Algorithms, September, 1994, pp. 141-155.
14

A Correctness Proof for Algorithm in Figure 4The following simple properties follow directly from the program text in Figure 4, and are stated withoutproof. Note that (I2) can be used to prove (I3) and (I5) and that (I3) can be used to prove (I4).invariant p:i � 0 ^ p:j � 0 (I1)invariant p@f0::3g) :p:stop (I2)invariant p@f0::3g _ (p@f4::5g ^ p:stop)) p:i+ p:j < k � 1 (I3)invariant p@f4::5g ^ :p:stop) p:i+ p:j = k � 1 (I4)invariant 0 � p:i+ p:j � k � 1 (I5)invariant p@5) p:name = (p:i)k � (p:i)(p:i� 1)=2 + p:j (I6)For each of the remaining invariants, a correctness proof is given.2invariant r � 0 ^ c � 0 ^ r + c < k � 1 ^ Y [r; c])(9p :: (p@f3::5g ^ p:i = r ^ p:j = c) _ (p:i > r ^ p:j = c)) (I7)Proof: Assume r � 0 ^ c � 0 ^ r+c < k�1. Initially Y [r; c] is false, so (I7) holds. To prove that (I7) is notfalsi�ed, it su�ces to consider those statements that may establish3 Y [r; c], or that may falsify p@f3::5g ormodify p:i or p:j for some p. The statements to check are q:2, p:1, and p:3, where q is any process. Observethat q:2 may establish Y [r; c] only if executed when q:i = r and q:j = c, in which case it also establishesq@3 ^ q:i = r ^ q:j = c. To show that statement p:1 does not falsify (I7), we consider the following threecases.4Case 1: p@1 ^ p:i > r ^ p:j = c ^ Y [p:i; p:j] ^ (I7)r;cp:i;p:j)p@1 ^ p:i > r ^ p:j = c ^ p:i � 0 ^ p:j � 0 ^ p:i+ p:j < k � 1 ^ Y [p:i; p:j] ^ (I7)r;cp:i;p:j, by (I1) and (I3).)p@1 ^ p:i > r ^ p:j = c ^ (9q :: (q@f3::5g ^ q:i = p:i ^ q:j = p:j) _(q:i > p:i ^ q:j = p:j)) , by de�nition of (I7), renaming p to q.)(9q : q 6= p :: q:i > r ^ q:j = c) , because p@1 ^ (q@f3::5g _ q:i > p:i) implies p 6= q.fp@1 ^ p:i > r ^ p:j = c ^ Y [p:i; p:j] ^ (I7)r;cp:i;p:jg p:1 f(9q : q 6= p :: q:i > r ^ q:j = c)g, by preceding derivation, precondition implies postcondition, which is not falsi�ed by p:1.Case 2: fp@1 ^ p:i > r ^ p:j = c ^ :Y [p:i; p:j]g p:1 fp:i > r ^ p:j = cg, p:1 does not modify p:j in this case.Case 3: fp@1 ^ :(p:i > r ^ p:j = c) ^ (I7)g p:1f:Y [r; c] _ (9q : q 6= p :: (q@f3::5g ^ q:i = r ^ q:j = c) _ (q:i > r ^ q:j = c))g, by de�nition of (I7), precondition implies postcondition, which is unchanged by p:1.2We prove that an assertion I is an invariant by showing that it holds inductivelyor that it follows from established invariants.For an inductive proof, we show that I holds initially and that I is not falsi�ed by any statement execution, i.e., if I (andperhaps other established invariants) holds before a given statement is executed then I holds afterwards.3We say that an execution of statement p:i establishes a predicate P i� :P holds before that statement execution and Pholds afterwards.4In the �rst case, we use (I7)r;cp:i;p:j in the precondition. Recall that free variables are assumed to be universally quanti�ed,so this amounts to universal instantiation of (I7) (which is assumed to hold before the execution of statement p:1).15

To show that statement p:3 does not falsify (I7), we consider the following three cases.fp@3 ^ p:i � r ^ p:j = c ^ X[p:i; p:j] = pg p:3 fp@4 ^ p:i � r ^ p:j = cg, p:i is unchanged and p:stop is established in this case.fp@3 ^ p:i � r ^ p:j = c ^ X[p:i; p:j] 6= pg p:3 fp:i > r ^ p:j = cg , p:i is incremented in this case.fp@3 ^ :(p:i � r ^ p:j = c) ^ (I7)g p:3f:Y [r; c] _ (9q : q 6= p :: (q@f3::5g ^ q:i = r ^ q:j = c) _ (q:i > r ^ q:j = c))g, by de�nition of (I7), precondition implies postcondition, which is unchanged by p:3. 2The following invariant shows that if X[r; c] has been modi�ed since process q assigned X[r; c], then thereis some process p in row r at or to the right of column c. This property is used to show that not all processesthat access building block (r; c) proceed to row r + 1.invariant r � 0 ^ c � 0 ^ r + c < k � 1 ^ q@f1::3g ^ q:i = r ^ q:j = c ^ X[r; c] 6= q)(9p : p 6= q :: p:i = r ^ ((p:j = c ^ ((p@f1::3g ^ X[r; c] = p) _ p@f4::5g)) _ p:j > c)) (I8)Proof: Assume r � 0 ^ c � 0 ^ r+ c < k� 1. Initially q@0 holds, so (I8) holds. To prove that (I8) is notfalsi�ed, it su�ces to consider those statements that may establish q@f1::3g; falsify p@f1::3g or p@f4::5g;or modify q:i, q:j, X, p:i, or p:j, where p 6= q. The statements to check are q:0, q:1, q:3, p:0, p:1, and p:3.Observe that q:i = r ^ q:j = c ^ X[r; c] 6= q does not hold after the execution of q:0, and that q:1 andq:3 both establish q@f0; 4g if they modify q:i or q:j. Furthermore, p:0 establishes X[r; c] 6= q only if p:i = rand p:j = c, in which case p@1 ^ p:i = r ^ p:j = c ^ X[r; c] = p holds afterwards. Also, statement p:1can only increment p:j. Therefore, if p:1 falsi�es p:j = c, then it establishes p:j > c, and it does not falsifyp:i = r.This leaves only statement p:3. Statement p:3 could falsify (I8) only by falsifying p:i = r ^ p:j =c ^ X[r; c] = p or by falsifying p:i = r ^ p:j > c. In the �rst case, we have fp@3 ^ p:i = r ^ p:j =c ^ X[r; c] = pg p:3 fp@4 ^ p:i = r ^ p:j = cg, so p:3 does not falsify (I8). For the second case, observethat p:3 can falsify p:i = r ^ p:j > c only if executed when p@3 ^ p:i = r ^ p:j > c ^ X[p:i; p:j] 6= pholds. To show that statement p:3 does not falsify (I3) in this case, we consider the following two cases.Case 1: fp@3 ^ p:i = r ^ p:j > c ^ X[p:i; p:j] 6= p ^ (q:i 6= r _ q:j 6= c)g p:3 fq:i 6= r _ q:j 6= cg, p:3 does not modify q:i or q:j (recall that p 6= q).Case 2: p@3 ^ p:i = r ^ p:j > c ^ X[p:i; p:j] 6= p ^ q:i = r ^ q:j = c ^ (I8)q;r;cp;p:i;p:j)p@3 ^ p:i = r ^ p:j > c ^ q:j = c ^ p:i � 0 ^ p:j � 0 ^ p:i+ p:j < k � 1 ^X[p:i; p:j] 6= p ^ (I8)q;r;cp;p:i;p:j , by (I1) and (I3).)p@3 ^ p:i = r ^ p:j > c ^ q:j = c ^ (9s : s 6= p :: s:i = p:i ^((s:j = p:j ^ ((s@f1::3g ^ X[p:i; p:j] = s) _ s@f4::5g)) _ s:j > p:j))), by de�nition of (I8), renaming p to s.)p:j > c ^ q:j = c ^ (9s : s 6= p :: s:i = r ^ s:j > c) , predicate calculus.)(9s : s 6= p ^ s 6= q :: s:i = r ^ s:j > c) , q:j = c ^ s:j > c implies s 6= q.fp@3 ^ p:i = r ^ p:j > c ^ X[p:i; p:j] 6= p ^ q:i = r ^ q:j = c ^ (I8)q;r;cp;p:i;p:jg p:3f(9s : s 6= p ^ s 6= q :: s:i = r ^ s:j > c)g, by preceding derivation, precondition implies postcondition, which is not falsi�ed by p:3. 216

The following invariant shows that at most k� (r+ c) processes access building blocks in the \sub-grid"whose top left corner is at position (r; c). In particular, it shows that at most one process accesses anybuilding block that is k � 1 \steps" away from the top left corner of the grid.invariant r � 0 ^ c � 0 ^ r + c � k � 1) (jfp :: p:i � r ^ p:j � cgj � k � (r + c)) (I9)Proof: Assume r � 0 ^ c � 0 ^ r+ c � k� 1. Initially p:i = 0 ^ p:j = 0 holds for all p, so (I9) holds. Toprove that (I9) is not falsi�ed, it su�ces to consider those statements that may establish q:i � r ^ q:j � cfor some q. There are two statements to check, namely q:1 and q:3.Observe that statement q:1 can establish q:i � r ^ q:j � c only if executed when q:i � r ^ q:j =c� 1 ^ Y [q:i; q:j] holds. To see that (I9) is not falsi�ed in this case, consider the following derivation.q@1 ^ q:i � r ^ q:j = c� 1 ^ Y [q:i; q:j] ^ (I7)r;cq:i;q:j ^ (I9)cc�1)q@1 ^ q:i � r ^ q:j = c� 1 ^ q:i � 0 ^ q:j � 0 ^ q:i+ q:j < k � 1 ^ Y [q:i; q:j] ^ (I7)r;cq:i;q:j ^c� 1 � 0 ^ (I9)cc�1 , by (I1) and (I3); note that q:j = c � 1 ^ (I1) implies c� 1 � 0.)q:i � r ^ q:j = c� 1 ^ (9s : s 6= q :: s:i � q:i ^ s:j = q:j) ^ c� 1 � 0 ^ (I9)cc�1, de�nition of (I7); note that q@1 ^ (s@f3::5g _ s:i > q:i) implies s 6= q.)(jfs :: s:i � r ^ s:j = c� 1gj � 2 ^ c� 1 � 0) ^ (jfp :: p:i � r ^ p:j � c� 1gj � k � (r + c) + 1), predicate calculus and de�nition of (I9); recall that r � 0 and r + c � k � 1.)jfp :: p:i � r ^ p:j � cgj � k � (r + c) � 1 , predicate calculus.fq@1 ^ q:i � r ^ q:j = c� 1 ^ Y [q:i; q:j] ^ (I7)r;cq:i;c�1 ^ (I9)cc�1g q:1fjfq :: q:i � r ^ q:j � cgj � k � (r + c)g, by preceding derivation; q:1 increases jfq :: q:i � r ^ q:j � cgj by at most one.Statement q:3 can establish q:i � r ^ q:j � c only if executed when q:i = r�1 ^ q:j � c ^ X[q:i; q:j] 6= qholds. The reasoning for this case is similar to that given above for statement q:1, except that (I8) is usedinstead of (I7). 2invariant p@3 _ (p@f4::5g ^ p:stop)) Y [p:i; p:j] (I10)Proof: Initially p@0 holds, so (I10) holds. (I10) is potentially falsi�ed by any statement that establishesp@3 or p@f4::5g ^ p:stop or that modi�es p:i or p:j. (Note that no statement falsi�es any element ofY .) The statements to check are p:1, p:2, and p:3. By (I2), p:1 establishes p@f0; 2; 4g ^ :p:stop, therebyfalsifying the antecedent. Also, statement p:2 establishes Y [p:i; p:j]. To show that p:3 does not falsify (I10),we consider the following two cases.fp@3 ^ X[p:i:p:j] = p ^ (I10)g p:3 fY [p:i; p:j]g, by de�nition of (I10), precondition implies postcondition; p:3 does not modify Y , p:i, or p:j in this case.fp@3 ^ X[p:i; p:j] 6= pg p:3 fp@f0; 4g ^ :p:stopg , by (I2), precondition implies :p:stop. 2The following invariant shows that if some process p stops at building block (r; c), then no other processstops at that building block. This property is used to show that processes that stop in the grid receivedistinct names.invariant p 6= q ^ p@f4::5g ^ p:stop) (q:i 6= p:i _ q:j 6= p:j _ q@0 _(q@1 ^ Y [q:i; q:j]) _ (q@f1::3g ^ X[q:i; q:j] 6= q) _ (q@f4::5g ^ :q:stop)) (I11)17

Proof: Assume that p 6= q. Initially p@0 holds, so (I11) holds. To prove that (I11) is not falsi�ed, it su�cesto consider those statements that may establish p@f4; 5g, p:stop, or q:stop; falsify q@0, q@1, q@f1::3g, orqf4; 5g; or modify p:i, p:j, q:i, q:j, X, or Y . The statements to check are p:0, p:1, p:2, p:3, q:0, q:1, q:2, andq:3. Observe that p@f4::5g is false after the execution of p:0 or p:2. Also, by (I2), p:stop is false after theexecution of p:1. For p:3, we have the following four cases.fp@3 ^ X[p:i; p:j] 6= pg p:3 fp@0 _ (p@4 ^ :p:stop)g , by (I2), precondition implies :p:stop.fp@3 ^ X[p:i; p:j] = p ^ (q:i 6= p:i _ q:j 6= p:j _ q@0)g p:3 fq:i 6= p:i _ q:j 6= p:j _ q@0g, precondition implies postcondition (recall that p 6= q); p:3 does not modify p:i in this case.fp@3 ^ X[p:i; p:j] = p ^ q:i = p:i ^ q:j = p:j ^ q@f1::3gg p:3 fq@f1::3g ^ X[q:i; q:j] 6= qg, p 6= q, so precondition implies postcondition, which is not falsi�ed by p:3.fp@3 ^ X[p:i; p:j] = p ^ q:i = p:i ^ q:j = p:j ^ q@f4::5g ^ (I11)p;qq;pg p:3 fq@f4::5g ^ :q:stopg, by the de�nition of (I11), precondition implies postcondition, which is not falsi�ed by p:3.The above assertions imply that p:3 does not falsify (I11). As for process q, �rst note that q:0 establishesq@1, which with (I10) implies that :(p@f4; 5g ^ p:stop) _ (q@1 ^ Y [p:i; p:j]) holds. The latter disjunctimplies that q:i 6= p:i _ q:j 6= p:j _ (q@1 ^ Y [q:i; q:j]) holds. Statement q:1 can falsify (I11) only ifexecuted when q@1 ^ Y [q:i; q:j] or q@f1::3g ^ X[q:i; q:j] 6= q holds. However, observe the following.fq@1 ^ Y [q:i; q:j]g q:1 fq@0 _ (q@4 ^ :q:stop)g , by (I2), precondition implies :q:stop.fq@1 ^ :Y [q:i; q:j] ^ X[q:i; q:j] 6= qg q:1 fq@2 ^ X[q:i; q:j] 6= qg , q:1 does not modify q:j in this case.Although q:2 modi�es Y , it cannot falsify any disjunct of the consequent of (I11).Statement q:3 could falsify (I11) only by falsifying q@3 ^ X[q:i; q:j] 6= q. However, because q@3 ^ (I2)implies :q:stop, we have fq@3 ^ X[q:i; q:j] 6= q ^ (I2)g q:3 fq@0 _ (q@4 ^ :q:stop)g. 2The following invariant shows that distinct processes do not acquire a name from the same grid position.invariant p 6= q ^ p@f4::5g ^ q@f4::5g) p:i 6= q:i _ q:j 6= q:j (I12)Proof: If p 6= q ^ p@f4::5g ^ q@f4::5g ^ p:stop holds, then by (I4), (I3), and (I11), the consequent holds. Ifp 6= q ^ p@f4::5g ^ q@f4::5g ^ :p:stop holds, then by (I1), (I4), and (I9), jfq :: q:i � p:i ^ q:j � p:jgj � 1holds, which implies that the consequent holds. 2Claim 1: Let c, d, c0, and d0 be nonnegative integers satisfying (c 6= c0 _ d 6= d0) ^ (c+d � k�1) ^ (c0+d0 �k � 1). Then, ck � c(c� 1)=2 + d 6= c0k � c0(c0 � 1)=2 + d0.Proof: The claim is straightforward if c = c0, so assume that c 6= c0. Without loss of generality assume thatc < c0. Then,ck � c(c� 1)=2 + d � ck � c(c � 1)=2 + k � 1� c , d � k � 1� c.= ck � c2=2� c=2 + k � 1< (c+ 1)(k � c=2)� c0k � c0(c0 � 1)=2 , c+ 1 � c0.� c0k � c0(c0 � 1)=2 + d0 , d0 is nonnegative. 2invariant p@5 ^ q@5 ^ p 6= q) p:name 6= q:name (I13)Proof: The following derivation implies that (I13) is an invariant.18

p@5 ^ q@5 ^ p 6= q)p@5 ^ q@5 ^ (p:i 6= q:i _ p:j 6= q:j) ^ p:i+ p:j � k � 1 ^ q:i+ q:j � k � 1 , by (I5) and (I12).)p@5 ^ q@5 ^ (p:i)k � (p:i)(p:i� 1)=2 + p:j 6= (q:i)k � (q:i)(q:i� 1)=2 + q:j, by Claim 1 with c = p:i, d = p:j, c0 = q:i, and d0 = q:j.)p:name 6= q:name , by (I6). 2This completes the proof that distinct processes that execute the code in Figure 4 acquire distinct names.The following claim is used to prove that each process acquires a name ranging over f0::k(k+ 1)=2� 1g.Claim 2: Let c and d be nonnegative integers satisfying c+d � k�1. Then 0 � ck�c(c�1)=2+d < k(k+1)=2.Proof: It follows from the statement of the claim that c � k � 1. Thus, k � (c � 1)=2 > 0. Also, c � 0 andd � 0. Thus, ck � c(c� 1)=2 + d � 0. To see that ck � c(c � 1)=2 + d < k(k + 1)=2, consider the followingderivation.ck � c(c� 1)=2 + d � ck � c(c � 1)=2 + d(d+ 1)=2 , d � 0.� ck � c(c � 1)=2 + (k � 1� c)(k � c)=2 , d � k � 1� c.= c+ k(k � 1)=2� k � 1 + k(k � 1)=2 , c � k � 1.< k(k + 1)=2 2invariant p@5) 0 � p:name < k(k + 1)=2 (I14)Proof: (I14) follows from (I1), (I5), (I6), and Claim 2. 2(I13) and (I14) prove that the algorithm shown in Figure 4 correctly implements (k(k+ 1)=2)-renaming.Wait-freedom is trivial because in each pass through the loop, either p:stop is established, or p:i or p:j isincremented. It is easy to see that a process executes the loop at most k� 1 times before terminating. Eachiteration performs at most four shared variable accesses. Thus, we have the following result.Theorem 1 Using read and write, wait-free, one-time (k(k + 1)=2)-renaming can be implemented so thatthe worst-case time complexity of acquiring a name once is 4(k � 1). 2B Correctness Proof for Algorithm in Figure 5In accordance with the problem speci�cation, we assume the following invariant.invariant jfp :: p@f1::8gj � k (I15)The following simple properties follow directly from the program text in Figure 5, and are stated withoutproof. Note that (I17) can be used to prove (I18) and (I19).invariant p@5 _ (p@f6::8g ^ p:move = stop)) Y [p:i; p:j][p] (I16)invariant p@f2::6g _ (p@f6::8g ^ p:move = stop)) p:i+ p:j < k � 1 (I17)invariant p@f7::8g ^ p:move 6= stop) p:i+ p:j = k � 1 (I18)invariant 0 � p:i+ p:j � k � 1 (I19)19

invariant p:i � 0 ^ p:j � 0 (I20)invariant p@3) 0 � p:h < N (I21)invariant p@8) p:name = (p:i)k � (p:i)(p:i� 1)=2 + p:j (I22)For each of the remaining invariants, a correctness proof is given. The following invariant shows that ifY [r; c][p] holds, then process p has either stopped at building block (r; c) or has decided to move down frombuilding block (r; c), but has not yet reset the building block.invariant r � 0 ^ c � 0 ^ r + c < k � 1 ^ Y [r; c][p])p@f5::8g ^ p:i = r ^ p:j = c ^ p:move 6= right (I23)Proof: Assume r � 0 ^ c � 0 ^ r + c < k � 1. Initially Y [r; c][p] is false, so (I23) holds. To prove that(I23) is not falsi�ed, it su�ces to consider statements that potentially establish Y [r; c][p], falsify p@f5::8g,modify p:i or p:j, or establish p:move = right . The statements to check are p:1, p:3, p:4, p:6 and p:8.Observe that p@f1; 3g ^ (I23)) :Y [r; c][p] and that statements p:1 and p:3 do not modify Y . Hence,these statements do not falsify (I23). Note also that :Y [r; c][p] _ p:i 6= r _ p:j 6= c holds after statementp:8 is executed (recall that r + c < k � 1). Thus, p:8 cannot falsify (I23). For statement p:4, we have thefollowing two cases.fp@4 ^ p:i = r ^ p:j = c ^ p:move 6= rightg p:4 fp@5 ^ p:i = r ^ p:j = c ^ p:move 6= rightg, by program text.fp@4 ^ (p:i 6= r _ p:j 6= c _ p:move = right) ^ (I23)g p:4 f:Y [r; c][p]g, p@4 ^ (I23) implies :Y [r; c][p]; p:4 does not modify Y [r; c][p] whenp:i 6= r _ p:j 6= c _ p:move = right holds.To show that statement p:6 does not falsify (I23), we consider the following three cases.fp@6 ^ p:i = r ^ p:j = c ^ p:move = stopg p:6 fp@7 ^ p:i = r ^ p:j = c ^ p:move 6= rightg, by program text.fp@6 ^ p:i = r ^ p:j = c ^ p:move 6= stopg p:6 f:Y [r; c][p]g , by program text.fp@6 ^ :(p:i = r ^ p:j = c) ^ (I23)g p:6 f:Y [r; c][p]g, :(p:i = r ^ p:j = c) ^ (I23) implies :Y [r; c][p]; p:6 does not establish Y [r; c][p]. 2For notational convenience, we de�ne the following predicate.De�nition: EN (p; r; c) � (p:i = r � 1 ^ p:j � c ^ p@f3::5g ^ X[r � 1; p:j] 6= p) _(p:i = r � 1 ^ p:j � c ^ p@6 ^ p:move = down) _(p:i � r ^ p:j = c� 1 ^ p@f4; 6g ^ p:move = right) _(p:i � r ^ p:j � c ^ p@f2::8g) 2Informally, EN (p; r; c) holds for any p for which p:i � r ^ p:j � c will eventually hold, regardless of thebehavior of processes other than p. Note that if the �rst disjunct holds, then the second disjunct holds afterp:5 is executed. If the second or third disjunct holds, then p:i � r ^ p:j � c holds after p:6 is executed.We use this predicate in (I25) to show that at most one process concurrently accesses a building block thatis k � 1 steps away from the top left building block in the grid. This shows why a process that takes k � 1steps in the grid can be assigned a name immediately.20

invariant EN (p; r; c)) EN (p; r; c� 1) ^ EN (p; r � 1; c) (I24)Proof: (I24) follows directly from the de�nition of EN (p; r; c). If either of the �rst two disjuncts of EN (p; r; c)holds, then that disjunct of EN (p; r; c� 1) also holds because c > c � 1. If either of the last two disjunctsof EN (p; r; c) holds, then the last disjunct of EN (p; r; c� 1) holds. If the �rst, second, or last disjunct ofEN (p; r; c) holds, then the last disjunct of EN (p; r � 1; c) holds. Finally, if the third disjunct of EN (p; r; c)holds, then the third disjunct of EN (p; r � 1; c) holds because r > r � 1. 2The following invariant is analogous to (I9).invariant r � 0 ^ c � 0 ^ r + c � k � 1) (jfp :: EN (p; r; c)gj � k � (r + c)) (I25)Proof: Assume r � 0 ^ c � 0 ^ r+ c � k� 1. Initially p@0 holds for all p, which implies that :EN (p; r; c)holds. Therefore, (I25) holds initially because r + c � k � 1, which implies that k � (r + c) � 0. To provethat (I25) is not falsi�ed, it su�ces to consider those statements that may establish EN (p; r; c) for some p.EN (p; r; c) can be established by modifying p:i or p:j, or by establishing X[r � 1; p:j] 6= p, p@f3::5g, p@6,p@f4; 6g, p@f2::8g, p:move = down, or p:move = right. The statements to check are p:1 p:2, p:3, p:4, p:5,p:6, and q:2 for q 6= p.By (I15), if r+c = 0, then (I25) is an invariant. Henceforth, we assume that r+c > 0. Statement p:1 couldestablish only the last disjunct of EN (p; r; c). However, fp@1 ^ r+ c > 0g p:1 fp@2 ^ (p:i < r _ p:j < c)g.Thus, statement p:1 does not establish EN (p; r; c).Statement p:2 can establish only the �rst disjunct of EN (p; r; c). However, if executed when p:i =r � 1 ^ p:j � c holds, p:2 also establishes X[r � 1; p:j] = p.Statement p:4 does not establish p@f3::5g, p@6 ^ p:move = down , or p@f4; 6g, nor does it modifyp:move, p:i, p:j, or X.Statement p:5 establishes p@6 ^ p:move 6= right, and hence can establish only the second disjunct ofEN (p; r; c). However, it does so only if executed when p@5 ^ p:i = r� 1 ^ p:j � c ^ X[p:i; p:j] 6= p holds,in which case EN (p; r; c) already holds.Statement p:6 establishes p@f2; 7g, and hence can establish only the last disjunct of EN (p; r; c). State-ment p:6 can do this only if executed when either p:i = r � 1 ^ p:j � c ^ p@6 ^ p:move = down orp:i � r ^ p:j = c� 1 ^ p@6 ^ p:move = right holds. In either case, EN (p; r; c) already holds.It remains to consider statements p:3 and q:2. Statement p:3 can establish only the third disjunct ofEN (p; r; c). It does so only if executed when p@3 ^ p:i � r ^ p:j = c � 1 ^ Y [p:i; p:j][p:h] holds. Thefollowing assertions imply that (I25) holds after statement p:3 is executed in this case.p@3 ^ p:i � r ^ p:j = c� 1 ^ Y [p:i; p:j][p:h] ^ (I23)r;c;pp:i;p:j;p:h ^ (I25)cc�1)p@3 ^ p:i � r ^ p:j = c� 1 ^ p:i � 0 ^ p:j � 0 ^ p:i+ p:j < k � 1 ^ 0 � p:h < N ^Y [p:i; p:j][p:h] ^ (I23)r;c;pp:i;p:j;p:h ^ (I25)cc�1 , by (I17), (I20), and (I21).)p@3 ^ p:i � r ^ p:j = c� 1 ^ c� 1 � 0 ^ (I25)cc�1 ^(9s : s = p:h ^ s 6= p :: s@f5::8g ^ s:i = p:i ^ s:j = p:j ^ s:move 6= right), by (I23); note that p@3 ^ s@f5::8g implies s 6= p.)(9s : s 6= p :: s@f5::8g ^ s:i � r ^ s:j = c� 1 ^ s:move 6= right) ^(jfs :: EN (s; r; c� 1)gj � k � (r + c) + 1) , by (I25)cc�1; recall that r � 0 and r + c � k � 1.fp@3 ^ p:i � r ^ p:j = c � 1 ^ Y [p:i; p:j][p:h] ^ (I23)r;c;pp:i;p:j;p:h ^ (I25)cc�1g p:3 f(9s : s 6= p ::s@f5::8g ^ s:i � r ^ s:j = c� 1 ^ s:move 6= right) ^ (jfs :: EN (s; r; c� 1)gj � k � (r + c) + 1)g, by above derivation, precondition implies postcondition; p:3 does not modify private variables of s;note also that the precondition implies EN (p; r; c� 1); EN (s; r; c� 1) is not established for s 6= p.21

(9s : s 6= p :: s@f5::8g ^ s:i � r ^ s:j = c� 1 ^ s:move 6= right) ^(jfs :: EN (s; r; c� 1)gj � k � (r + c) + 1))(9s : s 6= p :: :EN (s; r; c) ^ EN (s; r; c� 1)) ^ jfs :: EN (s; r; c� 1)gj � k � (r + c) + 1, by the de�nition of EN.)jfs :: EN (s; r; c)gj � k � (r + c) , by (I24).Statement q:2 for q 6= p can establish EN (p; r; c) only if executed when q@2 ^ q:i = r � 1 ^ q:j =p:j ^ p:i = r � 1 ^ p:j � c ^ X[r � 1; p:j] = p holds. The following assertions imply that q:2 does notfalsify (I25) in this case.q@2 ^ q:i = r � 1 ^ q:j = p:j ^ p:i = r � 1 ^ p:j � c ^ X[r � 1; p:j] = p ^ (I25)rr�1)(8s : s 6= p ^ s 6= q :: s:j 6= q:j _ X[r � 1; s:j] 6= s) ^ r � 1 � 0 ^ (I25)rr�1, predicate calculus and (I20).)(8s : s 6= p ^ s 6= q :: s:j 6= q:j _ X[r � 1; s:j] 6= s) ^ (jfs :: EN (s; r � 1; c)gj � k � (r + c) + 1), de�nition of (I25); recall that c � 0 ^ r + c � k � 1.fq@2 ^ q:i = r � 1 ^ q:j = p:j ^ p:i = r � 1 ^ p:j � c ^ X[r � 1; p:j] = p ^ (I25)rr�1g q:2fq@3 ^ q:i = r � 1 ^ q:j � c ^ X[q:i; q:j] = q ^ (jfs :: EN (s; r � 1; c)gj � k � (r + c) + 1), by above derivation and program text; q:2 does not establish EN (s; r � 1; c) for any s in this case.q@3 ^ q:i = r � 1 ^ q:j � c ^ X[q:i; q:j] = q ^ (jfs :: EN (s; r � 1; c)gj � k � (r + c) + 1)):EN (q; r; c) ^ EN (q; r � 1; c) ^ jfs :: EN (s; r � 1; c)gj � k � (r + c) + 1 , by the de�nition of EN.)jfs :: EN (s; r; c)gj � k � (r + c) , by (I24). 2The following invariant is analogous to (I11).invariant p 6= q ^ p@f6::8g ^ p:move = stop)(q:i 6= p:i _ q:j 6= p:j _ q@f0::2g _ (q@3 ^ q:h � p) _ (q@4 ^ q:move = right) _(q@f3::5g ^ X[q:i; q:j] 6= q) _ (q@f6::8g ^ q:move 6= stop)) (I26)Proof: Assume that p 6= q. Initially p@0 holds, so (I26) holds. To prove that (I26) is not falsi�ed, it su�cesto consider statements that potentially establish p@f6::8g ^ p:move = stop, statements that modify p:i, orp:j, or process q's private variables. The statements to check are p:5, p:6, and all statements of process q.After the execution of statement q:0, q:1, q:2, or q:8, we have q@f0::2g _ (q@3 ^ q:h � p). If statement q:5falsi�es q@f3::5g ^ X[q:i; q:j] 6= q, then q@6 ^ q:move 6= stop holds afterwards. Statement q:7 does notfalsify q@f6::8g ^ q:move 6= stop. Statement p:6 does not establish the antecedent and if the antecedentholds before statement p:6 is executed, then p:6 does not assign p:i or p:j, and hence does not a�ect theconsequent. It remains to consider statements p:5, q:3, q:4, and q:6. To show that statement p:5 does notfalsify (I26), we consider the following four cases.Case 1: fp@5 ^ (q:i 6= p:i _ q:j 6= p:j _ q@f0::2g _ X[p:i; p:j] 6= p)g p:5fq:i 6= p:i _ q:j 6= p:j _ q@f0::2g _ p:move 6= stopg, q:i 6= p:i _ q:j 6= p:j _ q@f0::2g implies the postcondition, and is unchanged by p:5.if X[p:i; p:j] 6= p, then p:5 assigns p:move := down22

Case 2: fp@5 ^ q:i = p:i ^ q:j = p:j ^ q@f6::8g ^ q:move 6= stopg p:5 fq@f6::8g ^ q:move 6= stopg, precondition implies postcondition, which is unchanged by p:5.Case 3: p@5 ^ q:i = p:i ^ q:j = p:j ^ q@f6::8g ^ q:move = stop ^ (I26)p;qq;p)p@5 ^ X[p:i; p:j] 6= p , by the de�nition of (I26).fp@5 ^ X[p:i; p:j] 6= pg p:5 fp@6 ^ p:move 6= stopg , by program text.fp@5 ^ q:i = p:i ^ q:j = p:j ^ q@f6::8g ^ q:move = stop ^ (I26)p;qq;pg p:5fp@6 ^ p:move 6= stopg , by two previous assertions.Case 4: fp@5 ^ q:i = p:i ^ q:j = p:j ^ :q@f0::2; 6::8g ^ X[p:i; p:j] = pg p:5fq@f3::5g ^ X[q:i; q:j] 6= q)g, p 6= q, so precondition implies postcondition, which is unchanged by p:5.To show that statement q:3 does not falsify (I26), we consider the following four cases.fq@3 ^ (:p@f6::8g _ p:move 6= stop _ q:i 6= p:i _ q:j 6= p:j)g q:3f:p@f6::8g _ p:move 6= stop _ q:i 6= p:i _ q:j 6= p:jg, precondition implies postcondition, which is unchanged by q:3.fq@3 ^ p@f6::8g ^ p:move = stop ^ q:i = p:i ^ q:j = p:j ^ q:h = pg q:3fq@4 ^ q:move = rightg , by (I16), precondition implies q@3 ^ Y [q:i; q:j][q:h].fq@3 ^ p@f6::8g ^ p:move = stop ^ q:h > p ^ (I26)g q:3fq:i 6= p:i _ q:j 6= p:j _ (q@f3::5g ^ X[q:i; q:j] 6= q)g, by de�nition of (I26), precondition implies postcondition, which is unchanged by q:3.fq@3 ^ q:h < pg q:3 f(q@3 ^ q:h � p) _ (q@4 ^ q:move = right)g, loop at statement 3 either repeats or terminates.To show that statement q:4 does not falsify (I26), we consider the following three cases.fq@4 ^ q:move = rightg q:4 fq@6 ^ q:move 6= stopg , by program text.fq@4 ^ (:p@f6::8g _ p:move 6= stop)g q:4 f:p@f6::8g _ p:move 6= stopg, precondition implies postcondition, which is unchanged by q:4.fq@4 ^ p@f6::8g ^ p:move = stop ^ q:move 6= right ^ (I26)g q:4fq:i 6= p:i _ q:j 6= p:j _ (q@f3::5g ^ X[q:i; q:j] 6= q)g, by de�nition of (I26), precondition implies postcondition, which is unchanged by q:4.To show that statement q:6 does not falsify (I26), we consider the following two cases.fq@6 ^ q:move 6= stopg q:6 fq@2 _ (q@7 ^ q:move 6= stop)g , by program text.fq@6 ^ q:move = stop ^ (I26)p;qq;pg q:6 f:p@f6::8g _ p:move 6= stop _ p:i 6= q:i _ p:j 6= q:jg, by de�nition of (I26), precondition implies postcondition;postcondition is unchanged by q:6 because q:move = stop. 223

The following invariant shows that distinct processes do not concurrently hold names at the same gridposition.invariant p 6= q ^ p@f7::8g ^ q@f7::8g) p:i 6= q:i _ q:j 6= q:j (I27)Proof: If p 6= q ^ p@f7::8g ^ q@f7::8g ^ p:move = stop holds, then by (I17), (I18), and (I26), theconsequent holds. If p 6= q ^ p@f7::8g ^ q@f7::8g ^ p:move 6= stop holds, then by (I17), (I18), (I20),and (I25)r;cp:i;p:j, it follows that jfs :: EN (s; p:i; p:j)gj � 1. By the de�nition of EN , the antecedent impliesEN (p; p:i; p:j) ^ EN (q; q:i; q:j). Thus, if p:i = q:i ^ p:j = q:j holds then jfs :: EN (s; p:i; p:j)gj � 2.Therefore, the consequent holds in this case. 2The following two invariants show that distinct processes in their working sections hold distinct namesfrom f0; :::; k(k+ 1)=2� 1g.invariant p 6= q ^ p@8 ^ q@8) p:name 6= q:name (I28)Proof: The following derivation implies that (I28) is an invariant.p 6= q ^ p@8 ^ q@8)p@8 ^ q@8 ^ (p:i 6= q:i _ p:j 6= q:j) ^ p:i+ p:j � k � 1 ^ q:i+ q:j � k � 1 ^p:i � 0 ^ p:j � 0 ^ q:i � 0 ^ q:j � 0 , by (I19), (I20), and (I27).)p@8 ^ q@8 ^ (p:i)k � (p:i)(p:i� 1)=2 + p:j 6= (q:i)k � (q:i)(q:i� 1)=2 + q:j, by Claim 1 (Section A) with c = p:i, d = p:j, c0 = q:i, and d0 = q:j.)p:name 6= q:name , by (I22). 2invariant p@5) 0 � p:name < k(k + 1)=2 (I29)Proof: (I29) follows from (I19), (I20), (I22), and Claim 2 (Section A). 2(I28) and (I29) prove that the algorithm shown in Figure 5 correctly implements long-lived k-renaming.To see that the wait-freedom requirement is satis�ed, consider the two loops in Figure 5. The inner loopclearly terminates after at most N iterations. To see that the outer loop terminates, consider statementp:4. If p:move = right holds before statement p:4 is executed, then p:j is incremented when statement p:6is executed. Otherwise, statement p:5 establishes either p:move = stop or p:move = down . In the �rst case,the outer loop terminates. In the second case, p:i is incremented when statement p:6 is executed. Becauseof the loop condition p:i + p:j < k � 1, the outer loop is therefore executed at most k � 1 times. The innerloop executes at most N shared references, and the outer loop executes at most four more. Releasing a namerequires at most 1 shared access. Thus, we have the following result.Theorem 3 Using read and write, wait-free, long-lived (k(k + 1)=2)-renaming can be implemented so thatthe worst-case time complexity of acquiring and releasing a name once is (N + 4)(k � 1) + 1 = �(Nk). 2C Correctness Proof for Algorithm in Figure 6In accordance with the problem speci�cation, we assume the following invariant.invariant jfp :: p@f1::3ggj � k (I30)The following invariants follow directly from the program text in Figure 6, and are stated without proof.24

invariant p@3) p:name = b(p:h) + p:v (I31)invariant p:h � 0 (I32)invariant p@f2::3g) 0 � p:v < b (I33)Correctness proofs are given below for the remaining invariants. Although each of the following twoassertions is an invariant in its own right, it is convenient to prove that their conjunction is an invariantbecause this way we may inductively assume that both hold before any statement execution. These assertionsshow that two processes do not concurrently \hold" the same bit and that for each set bit, some process rholds that bit.q 6= p ^ q@f2::3g ^ p@f2::3g ^ 0 � p:h < dk=be) q:h 6= p:h _ q:v 6= p:v (A1)0 � i < dk=be ^ 0 � j < b) (X[i][j] � (9r :: r@f2; 3g ^ r:h = i ^ r:v = j)) (A2)invariant (A1) ^ (A2) (I34)Proof: Initially (8p :: p@0) ^ :X[i][j] holds, so (I34) holds. We �rst consider statements that potentiallyfalsify (A1). Assume that q 6= p. By (I32), only p:0 can establish 0 � p:h < dk=be, and the antecedent doesnot hold after p:0 is executed. Therefore, by symmetry, we need only consider statements that may establishq@f2::3g or modify q:h or q:v. The statements to check are q:0 and q:1. The antecedent does not hold afterq:0 is executed. To show that statement q:1 does not falsify (A1), we consider the following three cases.fq@1 ^ (8n : 0 � n < b :: X[q:h][n])g q:1 fq@1g , q:1 assigns q:v = b so loop does not terminate.fq@1 ^ (9n : 0 � n < b :: :X[q:h][n]) ^ (:p@f2::3g _ q:h 6= p:h _ p:h < 0 _ p:h � dk=be)g q:1f:p@f2::3g _ q:h 6= p:h _ p:h < 0 _ p:h � dk=beg , q:h is not modi�ed; also q 6= p.q@1 ^ (9n : 0 � n < b :: :X[q:h][n]) ^ p@f2::3g ^ q:h = p:h ^ 0 � p:h < dk=be ^ (A2)i;jp:h;p:v)(9n : 0 � n < b :: :X[q:h][n]) ^ p@f2::3g ^ q:h = p:h ^ 0 � p:h < dk=be ^ 0 � p:v < b ^ (A2)i;jp:h;p:v, by (I33).)(9n : 0 � n < b :: :X[q:h][n]) ^ X[p:h; p:v] ^ q:h = p:h , by de�nition of (A2).)(minn : 0 � n < b :: :X[q:h; n]) 6= p:v , predicate calculus.fq@1 ^ (9n : 0 � n < b :: :X[q:h][n]) ^ p@f2::3g ^ q:h = p:h ^ 0 � p:h < dk=be ^ (A2)i;jp:h;p:vg q:1fq:v 6= p:vg , by above derivation and program text.For (A2), assume that 0 � i < dk=be ^ 0 � j < b. (A2) can be falsi�ed by statements that modify X,establish or falsify r@f2::3g, or modify r:h or r:v for some r. The statements to check are r:0, r:1, and r:3.Statement r:0 does not modify X; also r@f2; 3g (and hence r@f2; 3g ^ r:h = i ^ r:v = j) is false bothbefore and after the execution of r:0. To show that r:1 does not falsify (A2), we consider the following fourcases.fr@1 ^ (8n : 0 � n < b ::X[r:h][n]) ^ (A2)g r:1 fr@1 ^ (A2)g, by program text, r:1 does not modify X[i][j], and the loop does not terminate;also pre- and post-conditions imply :(r@f2::3g ^ r:h = i ^ r:v = j).fr@1 ^ (9n : 0 � n < b :: :X[r:h][n]) ^ r:h 6= i ^ (A2)g r:1 fr:h 6= i ^ (A2)g, r:1 does not modify X[i][j] because r:h 6= i;25

also pre- and post-conditions imply :(r@f2::3g ^ r:h = i ^ r:v = j).fr@1 ^ (9n : 0 � n < b :: :X[r:h][n]) ^ r:h = i ^ (minn : 0 � n < b :: :X[r:h][n]) = j ^ (A2)g r:1fX[i][j] ^ r@f2; 3g ^ r:h = i ^ r:v = jg, by program text.fr@1 ^ (9n : 0 � n < j :: :X[i][n]) ^ r:h = i ^ (minn : 0 � n < b :: :X[r:h][n]) 6= j ^ (A2)g r:1fX[i][j] � (9r :: r@f2; 3g ^ r:h = i ^ r:v = j)g, precondition implies postcondition; r:1 does not modify X[i][j], establishr@f2; 3g ^ r:h = i ^ r:v = j, or a�ect q@f2; 3g ^ q:h = i ^ q:v = j for q 6= r.To show that r:3 does not falsify (A2), we consider the following two cases.fr@3 ^ (r:h 6= i _ r:v 6= j) ^ (A2)g r:3 fr@0 ^ (r:h 6= i _ r:v 6= j) ^ (A2)g, r:3 does not modify X[i][j], establish r@f2; 3g ^ r:h = i ^ r:v = j,or a�ect q@f2; 3g ^ q:h = i ^ q:v = j for q 6= r.fr@3 ^ r:h = i ^ r:v = j ^ (A1)g r:3f:X[i][j] ^ r@0 ^ (8s : s 6= r :: :s@f2::3g _ s:h 6= i _ s:v 6= j)g, because 0 � i < dk=be, the precondition implies that 0 < r:h < dk=be; thus, byde�nition of (A1), the precondition implies (8s : s 6= r :: :s@f2::3g _ s:h 6= i _ s:v 6= j),which is not falsi�ed by r:3; also, r:3 establishes :X[i][j] ^ r@0 in this case. 2The following invariant shows that, for each i, 0 � i < dk=be, there are always enough names left for thenumber of processes seeking names from X[i]:::X[dk=be � 1].invariant 0 � i < dk=be) (jfp :: p@f1::3g ^ p:h � igj � k � ib) (I35)Proof: By (I30), (I35) holds if i = 0. Henceforth, assume 0 < i < dk=be. Initially (8p :: p@0) holds, andbecause i < dk=be, it follows that k�ib � 0, so (I35) holds initially. (I35) can be falsi�ed only by establishingq@1 or by incrementing q:h for some process q. The statements to check are q:0 and q:1. After statementq:0 is executed, q:h < i holds because i > 0. Statement q:1 can establish q@f1::3g ^ q:h � i only if executedwhen q@1 ^ q:h = i�1 holds. To show that q:1 does not falsify (I35) in this case, we consider the followingtwo cases.fq@1 ^ q:h = i � 1 ^ (9n : 0 � n < b :: :X[i� 1][n]) ^ (I35)g q:1 fq@2 ^ q:h = i� 1 ^ (I35)g, by program text; loop terminates because q:1 establishes q:v < b.q@1 ^ q:h = i� 1 ^ (8n : 0 � n < b ::X[i � 1][n] ^ (I34)i;ji�1;n) ^ (I35)ii�1) q@1 ^ q:h = i� 1 ^ jfp :: p@f2::3g ^ p:h = i � 1gj � b ^ (I35)ii�1, (I34) implies (A2); recall that 0 < i < dk=be.) q@1 ^ q:h = i� 1 ^ jfp :: p@f2::3g ^ p:h = i � 1gj � b ^jfp :: p@f1::3g ^ p:h � i� 1gj � k � ib+ b , de�nition of (I35).)jfp :: p@f1::3g ^ p:h � i)gj � k � ib� 1, predicate calculus; note that q:h = i � 1) q:h � i� 1 ^ :(q:h � i).fq@1 ^ q:h = i � 1 ^ (8n : 0 � n < b :: X[i � 1][n] ^ (I34)i;ji�1;n) ^ (I35)ii�1g q:1 f(I35)g, by above derivation; q:1 does not establish p@f1::3g ^ p:h � i for p 6= q. 226

The following invariant shows that if a process reaches X[dk=be � 1], then its set �rst zero will succeed,so it will acquire a name.invariant p@1 ^ p:h = dk=be � 1) (9n : 0 � n < k � b(dk=be � 1) :: :X[dk=be � 1][n]) (I36)Proof: Consider the following derivation.p@1 ^ p:h = dk=be � 1 ^ (I35)idk=be�1)p@1 ^ p:h = dk=be � 1 ^ (jfp :: p@f1::3g ^ p:h � dk=be � 1)gj � k � b(dk=be � 1)) , by (I35).)p:h = dk=be � 1 ^ (jfp :: p@f2::3g ^ p:h = dk=be � 1gj < k � b(dk=be) � 1) , predicate calculus.)jfn : 0 � n < k � b(dk=be � 1) :: X[dk=be � 1][n]gj < k � b(dk=be � 1), observe that 0 � n < k � b(dk=be � 1) implies 0 � n < b; thus, by (I34),jfn : 0 � n < k � b(dk=be � 1) ::X[dk=be � 1][n]gj � jfp :: p@f2::3g ^ p:h = dk=be � 1gj.)(9n : 0 � n < k � b(dk=be � 1) :: :X[dk=be � 1][n]) , pigeonhole principle. 2The following invariants are used to show that process p acquires a name in f0; :::; k� 1g from one of the�rst dk=be segments of names.invariant p@1) 0 � p:h < dk=be (I37)Proof: Initially p@0 holds, so (I37) holds. Only statements p:0 and p:1 a�ect (I37). Because k > 1 andb > 0, (I37) holds after p:0 is executed. Statement p:1 can falsify (I37) only if executed when p:h = dk=be�1.However, by (I36), (9n : 0 � n < k � b(dk=be � 1) :: :X[p:h][n]) holds before p:1 is executed in this case.This implies that (9n : 0 � n < b :: :X[p:h][n]), so the antecedent does not hold after p:1 is executed. 2invariant p@f2; 3g) 0 � p:h < dk=be � 1 _ (p:h = dk=be � 1 ^ 0 � p:v < k � b(dk=be � 1)) (I38)Proof: Initially, p@0 holds, so (I38) holds. Only statements p:0 and p:1 potentially falsify (I38). Theantecedent does not hold after p:0 is executed. For p:1 we have the following.p@1 ^ (p:h < 0 _ p:h � dk=be)) false , by (I37).fp@1 ^ 0 � p:h < dk=be � 1g p:1 fp@1 _ 0 � p:h < dk=be � 1g, if p:1 increases p:h then it also assigns v := b, so the loop does not terminate.fp@1 ^ p:h = dk=be � 1g p:1 fp@2 ^ p:h = dk=be � 1 ^ 0 � p:v < k � b(dk=be � 1)g, by (I36) and program text. 2Claim 3: Let c, d, c0, and d0 be nonnegative integers satisfying (c 6= c0 _ d 6= d0) ^ 0 � d < b ^ 0 � d0 < b.Then, bc+ d 6= bc0 + d0.Proof: The claim is straightforward if c = c0, so assume that c 6= c0. Without loss of generality assume thatc < c0. Then,bc+ d < b(c+ 1) , d < b.� bc0 , c < c0.� bc0 + d0 , d0 � 0. 2invariant p 6= q ^ p@3 ^ q@3) p:name 6= q:name (I39)Proof: Consider the following derivation. 27

p 6= q ^ p@3 ^ q@3)p 6= q ^ p@3 ^ q@3 ^ 0 � p:h < dk=be , by (I38).)p 6= q ^ p@3 ^ q@3 ^ (q:h 6= p:h _ q:v 6= p:v) , by (A1) ((I34) implies (A1)).)(q:h 6= p:h _ q:v 6= p:v) ^ 0 � p:v < b ^ 0 � q:v < b ^ p:h � 0 ^ q:h � 0 , by (I32) and (I33).)b(p:h) + p:v 6= b(q:h) + q:v , by Claim 3 with c = p:h, d = p:v, c0 = q:h, and d0 = q:v.)p:name 6= q:name , by (I31). 2This concludes the proof that no two processes in their working sections have the same name. Thefollowing invariant shows that that each process acquires a name ranging over 0::k� 1.invariant p@3) 0 � p:name < k (I40)Proof: Initially p@0 holds, so (I40) holds. Only statement p:2 potentially falsi�es (I40). To show that p:2does not falsify (I40), we consider the following three cases.Case 1: p@2 ^ (p:h < 0 _ p:h � dk=be)) false , by (I38).Case 2: p@2 ^ 0 � p:h < dk=be � 1)(0 � b(p:h) � k � b) ^ (0 � p:v < b) , by (I33) and predicate calculus.fp@2 ^ 0 � p:h < dk=be � 1g p:2 f0 � p:name < kg , above derivation and program text.Case 3: p@2 ^ p:h = dk=be � 1)(p:h = dk=be � 1) ^ (0 � p:v < k � b(dk=be � 1)) , by (I38).)0 � (b(p:h) + p:v) < (b(dk=be � 1) + k � b(dk=be � 1)) , predicate calculus, b > 0, k > 0.)0 � (b(p:h) + p:v) < k , predicate calculus.fp@2 ^ p:h = dk=be � 1g p:2 f0 � p:name < kg , above derivation and program text. 2(I39) and (I40) prove that the algorithm shown in Figure 6 correctly implements long-lived k-renaming.Observe that each time a shared variable is accessed when acquiring a name, either the loop terminatesor p:h is incremented. Thus, by (I37), p executes at most dk=be shared accesses before the loop terminates.Also, releasing a name requires 1 shared variable access. Thus, we have the following result.Theorem 4 Using set �rst zero and clr bit on b-bit variables, wait-free, long-lived k-renaming can be im-plemented so that the worst-case time complexity of acquiring and releasing a name once is dk=be + 1. 2D Correctness Proof for Algorithm in Figure 8We inductively assume correctness for the right instance of dk=2e-renaming and the left instance of bk=2c-renaming. In accordance with the problem speci�cation, we assume that the following invariant holds.28

invariant jfp :: p@f1::7ggj � k (I41)The following two invariants follow directly from the program text in Figure 8.invariant p@f5::6g) p:side = right (I42)invariant p@7) p:side 6= right (I43)Proofs for the remaining invariants are provided below. Although each of the following two assertionsis an invariant in its own right, it is convenient to prove that their conjunction is an invariant because thisway we may inductively assume that both hold before any statement execution. These assertions are usedto prove that too many processes do not access the left and right instances. This is required so that thecorrectness of these instances can be used to prove the algorithm correct inductively.0 � X � dk=2e (A3)jfp :: p@2 _ (p@f4::7g ^ p:side = right)gj = dk=2e �X (A4)invariant (A3) ^ (A4) (I44)Proof: Initially (A3) ^ (A4) holds. (A3) can only be falsi�ed by decrementing X when X = 0 holds, orby incrementing X when X = dk=2e holds. By the de�nition of bounded decrement, the �rst case does notarise. Only statement p:6 increments X. However, consider the following.p@6 ^ X = dk=2e ^ p:side 6= right ^ (I42)) false , by (I42).p@6 ^ X = dk=2e ^ p:side = right ^ (A4)) false , by de�nition of (A4).(A4) is potentially falsi�ed by any statement that modi�es p:side or X, or establishes or falsi�es p@2or p@f4::7g. The statements to check are p:1, p:2, p:3, p:6, and p:7 where p is any process. Statement p:2preserves p@2 _ (p@f4::7g ^ p:side = right) and statement p:3 preserves :(p@2 _ (p@f4::7g ^ p:side =right)). Also, neither statement modi�es X. By (I42), statement p:6 decreases both sides of (A4) by 1. By(I43), statement p:7 does not a�ect either side. The following assertions imply that statement p:1 does notfalsify (A4).p@1 ^ X < 0 ^ (A3)) false , de�nition of (A3).fp@1 ^ X = 0 ^ (A4)g p:1 fp@3 ^ (A4)g , by de�nition of bounded decrement, p:1 does not modify X.fp@1 ^ X > 0 ^ (A4)g p:1 fp@2 ^ (A4)g , both sides of (A4) are increased by 1 in this case. 2invariant jfp :: p@2 _ (p@f4::7g ^ p:side = right)gj � dk=2e (I45)Proof: (I45) follows directly from (I44). 2invariant jfp :: p@3 _ (p@f4::7g ^ p:side = left)gj � bk=2c (I46)Proof: Initially, (8p :: p@0) holds, so (I46) holds because k > 0. (I46) is potentially falsi�ed by anystatement that establishes p@3 _ (p@f4::7g ^ p:side = left) for some p. The statements to check arep:1, p:2, and p:3. For statement p:2, we have fp@2g p:2 fp@4 ^ p:side = rightg. Statement p:3 preservesp@3 _ (p@f4::7g ^ p:side = left). The following assertions imply that statement p:1 does not falsify (I46).29

p@1 ^ X < 0) false , by (A3) ((I44) implies (A3)).fp@1 ^ X > 0g p:1 fp@2g , de�nition of bounded decrement.p@1 ^ X = 0)p@1 ^ jfq :: q@2 _ (q@f4::7g ^ q:side = right)gj = dk=2e , by (A4) ((I44) implies (A4)).)jfq :: q@3 _ (q@f4::7g ^ q:side = left)gj < bk=2c , by (I41).fp@1 ^ X = 0g p:1 fjfq :: q@3 _ (q@f4::7g ^ q:side = left)gj � bk=2c, by preceding derivation; p:1 increases the left-hand side of (I46) by at most 1. 2By (I45) and (I46), the right instance is accessed by at most dk=2e processes concurrently and the leftinstance is accessed by at most bk=2c processes concurrently. By assumption, these instances are correct.Therefore, the following invariants follow easily from the correctness conditions.invariant p@f4; 5g ^ p:side = right) 0 � p:name < dk=2e (I47)invariant p@f4; 7g ^ p:side = left) dk=2e � p:name < k (I48)invariant p 6= q ^ p@f4::7g ^ q@f4::7g ^ p:side = q:side) p:name 6= q:name (I49)Correctness of the k-renaming algorithm shown in Figure 8 follows from (I47), (I48), and (I49). Notethat, given the assumption that the left and right instances are correct, wait-freedom is trivial. This allowsus to prove the following result.Theorem 5 Using b-bit variables and bounded decrement and fetch and add, wait-free, long-lived k-renamingcan be implemented so that the worst-case time complexity of acquiring and releasing a name once is 2dlog2 kefor k � 2(2b � 1).Proof: By induction on k.Basis: k = 2. 1-renaming can be trivially implemented with no shared accesses. Thus, in this case, thealgorithm in Figure 8 implements 2-renaming with two shared accesses.Induction: k > 2. Inductively assume that dk=2e-renaming and bk=2c-renaming can be implemented withtime complexity at most 2dlog2dk=2ee and 2dlog2bk=2ce, respectively. Thus, the algorithm in Figure 8 hastime complexity at most 2 + 2dlog2dk=2ee = 2 + 2dlog2 k � 1e = 2dlog2 ke, so the theorem holds. Note thatbecause the shared counter X must be represented with b bits, this algorithm can only be implemented ifdk=2e � 2b � 1. Thus, the proof only holds if k � 2(2b � 1). 2As noted in Section 5.2, the set �rst zero and clr bit operations can be used to further improve the timecomplexity of this algorithm by \chopping o�" the bottom blog2 bc levels of the tree. This approach yieldsthe following result.Theorem 6 Using b-bit variables and set �rst zero, clr bit, bounded decrement, and fetch and add, wait-free, long-lived k-renaming can be implemented so that the worst-case time complexity of acquiring andreleasing a name once is 2(dlog2dk=bee + 1) for 1 � k � 2(2b � 1).Proof: By induction on k.Basis: k � b. By Theorem 4, wait-free k-renaming can be implemented with time complexity dk=be + 1 =2 = 2(dlog2dk=bee + 1) when k � b. 30

Induction: k > b. Inductively assume that dk=2e-renaming and bk=2c-renaming can each be implementedwith time complexity 2(dlog2dk=2bee + 1) = 2dlog2dk=bee. Then, the algorithm in Figure 8 implements thek-renaming with time complexity at most 2 + 2dlog2dk=bee = 2(dlog2dk=bee + 1) shared accesses. As forTheorem 5, this proof only holds if k � 2(2b � 1). 2E Proof for Algorithm in Figure 9The di�erences between the safety proofs for the algorithms shown in Figures 8 and 9 are captured by thefollowing three invariants. These invariants are easy to prove, and are therefore stated without proof.invariant jfp :: (p@2 ^ p:side = none) _ (p@f3::9g ^ p:side = right)gj = dk=2e �X (I50)invariant jfp@f3::9g ^ p:side = rightgj � dk=2e (I51)invariant jfp@f3::9g ^ p:side = leftgj � bk=2c (I52)These invariants are analogous to (A4), (I45), and (I46), respectively. As with the proof for the algorithmshown in Figure 8, (I51) and (I52) are used to show that the left and right instances are not accessed by toomany processes concurrently. The rest of the proof is similar to the previous one. The lock-freedom propertyfor the algorithm shown in Figure 9 is captured formally by the following property.Lock-Freedom: If a non-faulty process p attempts to reach its working section, then eventually someprocess (not necessarily p) reaches its working section.Proof:We inductively assume that the left and right instances are lock-free. Thus, it is easy to see that theonly risk to lock-freedom is that some non-faulty process p executes statements p:1 and p:2 forever, withoutany other process reaching its working section. Assume, towards a contradiction, that process p repeatedlyexecutes statements p:1 and p:2. Consider consecutive statement executions, of p:2 and p:1, respectively. Bythe assumption that the loop executes repeatedly, it follows that X > 0 holds immediately after statementp:2 is executed, and that X � 0 holds immediately before statement p:1 is executed. Thus, X is decrementedat least once between the execution of statements p:2 and p:1. Consider the �rst such decrement by someprocess q. The only statement that decrements X is statement q:1. As q:1 is the �rst decrement ofX after theexecution of p:2, it follows thatX > 0 holds when q:1 is executed. Thus, q:1 establishes q@3 ^ q:side = right.Note that process q can only decrement X again after reaching its working section. Thus, if some process prepeats the loop at p:1 and p:2 N times, then some process q reaches its working section. 2Because a process may repeatedly execute statements p:1 and p:2 (while other processes make progress),the worst-case time complexity for the algorithm in Figure 9 is unbounded. However, if no other processtakes a step between statements p:1 and p:2 being executed, then the test at statement p:2 will succeed.Therefore, if there is no contention, then the number of shared accesses generated by a process acquiringand releasing a name once is at most 2 plus the contention-free time complexity for the inductively-assumedinstances. Thus, by an inductive proof similar to the proof of Theorem 5, we have the following result. Thisresult can be extended, as Theorem 5 was in the previous section, to give a result analogous to Theorem 6.Theorem 7 Using b-bit variables and fetch and add, lock-free, long-lived k-renaming can be implementedso that the worst-case, contention-free time complexity of acquiring and releasing a name once is 2dlog2 kefor k � 2(2b � 1). 231

