
Supplemental Notes on String Algorithms

James Aspnes

April 17, 2004

Note: These notes will make more sense if you read Chapter 32 of [CLRS01]
first. Section 1 describes suffix trees and suffix arrays, and some of their ap-
plications for substring problems. Section 2 describes the Burrows-Wheeler
transform, which is closely related to suffix arrays, and which is the basis
of some of the best general-purpose text-compression algorithms currently
known.

There is a vast literature on string matching algorithms, which have
become very popular recently because of applications to DNA sequencing.
A very thorough survey of string matching algorithms and their biological
applications is [Gus97].

1 Suffix trees and suffix arrays

Suffix trees and suffix arrays are data structures for representing texts that
allow substring queries like “where does this pattern appear in the text”
or “how many times does this pattern occur in the text” to be answered
quickly. Both work by storing all suffixes of a text, where a suffix is a
substring that runs to the end of the text. Of course, storing actual copies
of all suffixes of an n-character text would take O(n2) space, so instead each
suffix is represented by a pointer to its first character.

In a suffix array, the suffixes are sorted in dictionary order. For example,
a suffix array of the string abracadabra is depicted in Figure 1.

A suffix tree is similar, but instead using an array, we use some sort of tree
data structure to hold the sorted list. A common choice given an alphabet of
some fixed size k is a trie, in which each node at depth d represents a string of
length d, and its up to k children represent all (d + 1)-character extensions
of the string. The advantage of using a suffix trie is that searching for a
string of length m takes O(m) time, since we can just walk down the trie at
the rate of one node per character in m. A further optimization is to replace

1

10 a
7 abra
0 abracadabra
3 acadabra
5 adabra
8 bra
1 bracadabra
4 cadabra
6 dabra
9 ra
2 racadabra

Figure 1: Suffix array for abracadabra. The actual contents of the array
are the indices in the left-hand column; the right hand column shows the
corresponding suffixes.

any long chain of single-child nodes with a “compressed” edge labeled with
the concatenation all the characters in the chain. Such compressed suffix
tries can not only be searched in linear time but can also be constructed
in linear time with a sufficiently clever algorithm. See [Gus97, Chapter 6].
Of course, we could also use a simple balanced binary tree, which might be
preferable if the alphabet is large.

The disadvantage of suffix trees over suffix arrays is that they tend to
require more space to store all the internal pointers in the tree. If we are
indexing a huge text (or collection of texts), this extra space may be too
expensive.

1.1 Searching a suffix array

Suppose we have a suffix array corresponding to an n-character text and we
want to find all occurrences in the text of an m-character pattern. Since the
suffixes are ordered, we can do binary search for the first and last occurrences
of the pattern (if any) using O(log n) comparisons. Unfortunately, each
comparison may take as much as O(m) time, since we may have to check
all m characters of the pattern. So the total cost will be O(m log n) in the
worst case.

By storing additional information about the amount of overlap between
adjacent suffixes, it is possible to avoid having to re-examine every character
in the pattern for every comparison, reducing the search cost to O(m+log n).

2

This information can also be used to solve quickly such problems as finding
the longest duplicate substrings, or most frequently occurring strings. See
[Gus97, §7.14.4] for details.

1.2 Building a suffix array

A straightforward approach to building a suffix array is to run any decent
comparison-based sorting algorithm on the set of suffixes (represented by
pointers into the text). This will take O(n log n) comparisons, but in the
worst case each comparison will take O(n) time, for a total of O(n2 log n)
time. The original suffix array paper by Manber and Myers [MM93] gives
an O(n log n) algorithm, somewhat resembling radix sort, for building suf-
fix arrays “in place” with only a small amount of additional space. They
also note that for random text, simple radix sorting works well, since most
suffixes become distinguishable after about logk n characters (where k is the
size of the alphabet).

The fastest approach is to build a suffix tree in O(n) time and extract
the suffix array by traversing the tree. The only complication is that we
need the extra space to build the tree, although we get it back when we
throw the tree away.

2 The Burrows-Wheeler transform

Some of the best currently-known algorithms for text data compression are
based on a technique, known as the Burrows-Wheeler transform [BW94],
that is closely related to suffix arrays. The idea of the Burrows-Wheeler
Transform is to construct an array whose rows are all cyclic shifts of the
input string in dictionary order, and return the last column of the array.
The last column will tend to have long runs of identical characters, since
whenever some substring (like the) appears repeatedly in the input, shifts
that put the first character (t) in the last column will put the rest of the
substring (he) in the first columns, and the resulting rows will tend to be
sorted together. The relative regularity of the last column means that it will
compress well with even very simple compression algorithms.

Figure 2 shows the Burrows-Wheeler transform applied to the string
abracadabra$. Here $ serves as the end-of-string marker.

3

abracadabra$ abracadabra$
bracadabra$a abra$abracad
racadabra$ab acadabra$abr
acadabra$abr adabra$abrac
cadabra$abra a$abracadabr
adabra$abrac bracadabra$a
dabra$abraca --> bra$abracada
abra$abracad cadabra$abra
bra$abracada dabra$abraca
ra$abracadab racadabra$ab
a$abracadabr ra$abracadab
$abracadabra $abracadabra

Figure 2: Cyclic shifts of abracadabra$, before and after sorting. The
Burrows-Wheeler transform is $drcraaaabba, the last column of the sorted
array.

$ a $a ab $ab abr
d a da ab dab abr
r a ra ac rac aca
c a ca ad cad ada
r a ra a$ ra$ a$a
a b ab br abr bra
a -> b ab -> br abr -> bra
a c ac ca aca cad
a d ad da ada dab
b r br ra bra rac
b r br ra bra ra$
a $ a$ $a a$a $ab

Figure 3: Inverting the Burrows-Wheeler transform the slow way. At each
step, the rightmost column is prepended to the k columns reconstructed so
far so far, and the resulting rows are sorted to get the first k + 1 columns.
Only the first three steps are shown.

4

2.1 Inverting the Burrows-Wheeler transform

The surprising feature of the Burrows-Wheeler transform is that the original
string can be recovered from this last column, provided its end is specially
marked.

We’ll describe two ways to do this; the first is less efficient, but more
easily grasped, and involves rebuilding the array one column at a time, start-
ing at the left. Observe that the leftmost column is just all the characters
in the string in sorted order; we can recover it by sorting the rightmost
column, which we have to start off with. If we paste the rightmost and
leftmost columns together, we have the list of all 2-character substrings of
the original text; sorting this list gives the first two columns of the array.
(Remember that each copy of the string wraps around from the right to the
left.) We can then paste the rightmost column at the beginning of these
two columns, sort the result, and get the first three columns. Repeating this
process eventually reconstructs the entire array, from which we can read
off the original string from any row. The initial stages of this process for
abracadabra$ are shown in Figure 3.

Rebuilding the entire array takes O(n2) time and O(n2) space. In their
paper, Burrows and Wheeler [BW94] showed that one can in fact reconstruct
the original string from just the first and last columns in the array in O(n)
time.

Here’s the idea: Suppose that all the characters were distinct. Then
after reconstructing the first column we would know all pairs of adjacent
characters. So we could just start with the last character $ and regenerate
the string by appending at each step the unique successor to the last charac-
ter so far. If all characters were distinct, we would never get confused about
which character comes next.

The problem is what to do with pairs with duplicate first characters,
like ab and ac in Figure 3. We can imagine that each a in the last column
is labeled in some unique way, so that we can talk about the first a or the
third a, but how do we know which a is the one that comes before b or d?

The trick is to look closely at how the original sort works. Look at
Figure 2. If we look at all rows that start with a, the order the are sorted in
is determined by the suffix after a. These suffixes also appear as the prefixes
of the rows that end with a, since the rows that end with a are just the rows
that start with a rotated one position. It follows that all instances of the
same letter occur in the same order in the first and last columns. So if we
use a stable sort to construct the first column, we will correctly match up
instances of letters. This method is shown in action in Figure 4.

5

$1 a1
d1 a2
r1 a3
c1 a4
r2 a5
a1 b1
a2 --> b2
a3 c1
a4 d1
b1 r1
b2 r2
a5 $1

Figure 4: Inverting the Burrows-Wheeler transform the fast way. Each letter
is annotated uniquely with a count of how many identical letters equal or
precede it. Sorting recovers the first column, and combining the last and
first columns gives a list of unique pairs of adjacent annotated characters.
Now start with $1 and construct the full sequence $1 a1 b1 r1 a3 c1 a4
d1 a2 b2 r2 a5 $1. The original string is obtained by removing the end-
of-string markers and annotations: abracadabra.

6

Because we are only sorting single characters, we can perform the sort
in linear time using counting sort. Extracting the original string also takes
linear time if implemented reasonably.

2.2 Suffix arrays and the Burrows-Wheeler transform

A useful property of the Burrows-Wheeler transform is that each row of the
sorted array is essentially the same as the corresponding row in the suffix
array, except for the rotated string prefix after the $ marker. This means,
among other things, that we can compute the Burrows-Wheeler transform
in linear time using suffix trees. Ferragina and Manzini [FM00, FM01] have
further exploited this correspondence (and some very clever additional ideas)
to design compressed suffix arrays that compress and index a text at the
same time, so that pattern searches can be done directly on the compressed
text in time close to that needed for suffix array searches.

References

[BW94] Michael Burrows and D. J. Wheeler. A block-sorting lossless
data compression algorithm. Technical Report 124, DEC Systems
Research Center, May 1994.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms. McGraw-Hill, 2001.

[FM00] Paolo Ferragina and Giovanni Manzini. Opportunistic data struc-
tures with applications. In Proceedings of the 41st IEEE Sympo-
sium on Foundations of Computer Science, 2000.

[FM01] Paolo Ferragina and Giovanni Manzini. An experimental study
of an opportunistic index. In Proceedings of the 12th ACM-SIAM
Symposium on Discrete Algorithms, 2001.

[Gus97] Dan Gusfield. Algorithms on Strings, Trees, and Sequences. Cam-
bridge University Press, 1997.

[MM93] U. Manber and G. Myers. Suffix arrays: a new method for on-
line string searches. SIAM Journal on Computing, 22(5):935–948,
October 1993.

7

