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1 Criticism of Myerson’s Optimal Auction

Last time we criticised the Myerson’s Auction. In Myerson’s Auction, we get maximum revenue with
DSIC. However, it relies on knowing the probability distribution of the bidders. If there are many bidders
and a lot of past data (market is ”rich”) then assuming we know the underlying distribution is reasonable.
But, sometimes there is not enough data to learn the distribution (market is ”thin”). Another problem
with this mechanism is that we may end up with weird Allocation and Payment Rules. Last time we saw
such an example with 2 bidders following U [0, 1] and U [0, 100] . This property is undesirable because in
practice the auctioneers might have to explain the allocation and pricing to the bidders (e.g. if Google
runs an auction). Last week we saw a simple 1

2 -approximation (using Prophet Inequality) that has a
very simple form (Vickrey with reserve) avoiding the weird allocation and pricing rule. This time we
will address the other issue of Myerson’s auction, its heavy dependence on the distribution.

2 Prior-Independent Auctions

Can we design auctions that know nothing about the probability distribution of the bidders and do
(almost) as good as the auctions tailored for specific distributions? This is an active research area,
called prior-independent mechanism design. While results are known for single-dimensional case, not
much is known for the multi-dimensional scenario.

The classical result in this field is the Bulow-Klemperer Theorem below. This was proven by two
economists in the 90’s, and has later inspired computer scientists to study prior-independent auctions.

Theorem 1 (Bulow-Lemperer ’96). For any regular distribution F and integer n

Ev1,...vn+1 [REV(Vickrey)] ≥ Ev1,...,vn [REV(Myerson)]

Remark 1. Note that Vickrey’s auction is prior-independent as we are not using any information about
the underlying probability distributions. The theorem says that, for one item, Vickrey’s Auction is very
close to Myerson’s Optimal Revenue Auction (in fact n−1

n -close). In practice, sometimes it is better
to find more competition than to find the right auction format (but, e.g. for Google’s sponsored search
auction, almost everyone is in the auction so we can not really get more competition).

Proof: In order to prove the theorem, we introduce an intermediary auction. Consider an auction M
with n + 1 bidders defined as follows:

1. Run Myerson’s Auction on the first n bidders.

2. If the item is unallocated, give it to the last bidder for free.

Note that this auction is introduced as a proof technique, we will not really apply this auction
anywhere, so don’t try to optimize it. In fact, we just want to use the following two properties of this
auction 1) it has the same revenue as Myerson’s Auction with n bidders; 2) the item is always allocated
(hence giving it out for free if the first n bidders are unsuccessful in securing it).
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Notice that the first n bidders are exactly the same as in Myerson’s Auction and the last bidder’s bid
does not matter. Thus, M is a DSIC mechanism, so its revenue is no greater than the revenue of the
optimal DSIC mechanism that always allocates the item. Now, let’s ask the following question: among
all DSIC mechanisms for n+ 1 bidders that always allocates the item, which one optimizes the revenue.
The answer is simple – it must be the one that always allocates the item to the bidder who has the
highest virtual value. Since the distributions are i.i.d. and regular, the bidder with the highest virtual
value is exactly the bidder with the highest bid. Thus, the auction is exactly the Vickrey auction.

=⇒ Ev1,...vn+1
[REV(Vickrey)] ≥ Ev1,...vn+1

[REV(M)] = Ev1,...,vn [REV(Myerson)]

�

3 General Mechanism Design Problem (Multi-Dimensional)

So far we have focused on single-dimensional environment, where we typically have one item or one item
with multiple copies. However, in practice bidders usually have different values for different items. For
example, for an auction of paintings, every bidder will have its own unique value for each painting. This
is when we enter the multi-dimensional environment where many things that we have learnt no longer
hold. The multi-dimensional environment has:

• n strategic bidders/participants/agents

• a set of possible outcomes Ω

• a private value vi(ω) for each bidder i and each ω ∈ Ω (abstract and could be large)

As an example of the multi-dimensional environment, consider the single-item auction. In the single-
dimensional setting there are n + 1 outcomes in Ω (the (n + 1)th outcome is to not give the item to
anybody). Bidder i has positive value for the outcome in which he wins the item and value 0 for the
other n outcomes. We can make this scenario multi-dimensional. There are still n + 1 outcomes in Ω.
However, bidder i now has different values (besides the outcome where i wins) for the other n outcomes.
For example, imagine that the item is a startup company who has a lot of valuable patents. The bidder
will not want the competitor to get the patents and, in case he can not get the item, he would prefer
someone in a different business to get the company.

As an example for Ω, consider two bidders, 1 and 2, and two items, A and B. Then Ω = {1 :
A and 2 : ∅, 1 : A and 2 : B, 1 : B and 2 : ∅, 1 : B and 2 : A, 1 : AB and 2 : ∅, 1 : ∅ and 2 : ∅, 1 : ∅ and 2 :
A, 1 : ∅ and 2 : B, 1 : ∅ and 2 : AB}

Optimizing the social welfare is the same as solving the following optimization problem:

ω∗ := argmaxω

∑
i

vi(ω)

Note that Ω can now be exponential in size. In this setting, how do we design a DSIC mechanism that
optimizes social welfare? We can take the same two-step approach as the single-dimensional environment.
However, the bid is no longer a single number. Instead each bid bi is a vector indexed by Ω. For the
allocation rule, assume bi’s are the true values and solve the optimization problem above to maximize
the social welfare (the optimization problem may not be tractable but more on that later). In single-
dimensional setting Myerson’s Lemma would give the payment rule. However, Myerson’s Lemma does
not apply to the multi-dimensional setting (how do we even define monotone allocation rule when bids
are vectors?). It is not immediately clear if there is even a payment rule that makes the mechanism
DSIC.
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3.1 Vickrey-Clarke-Groves (VCG) Mechanism

Theorem 2. [The Vickrey-Clarke-Groves (VCG) Mechanism] In every general mechanism design envi-
ronment, there is a DSIC mechanism that maximizes the social welfare. In particular the allocation rule
is

x(b) = argmaxω
∑
i

bi(ω) (1)

and the payment rule is

pi(b) = max
ω

∑
i6=j

bj(ω)−
∑
i 6=j

bj(ω
∗) (2)

were ω∗ = argmaxω
∑

i bi(ω) is the outcome chosen in (1)

We try and explain what the payment rule means. maxω

∑
j 6=i bj(ω) is the optimal social welfare when

bidder i is not participating. ω∗ is the optimal social welfare outcome and
∑

j 6=i bj(ω
∗) is the welfare

from all agents except i. So the difference maxω

∑
i 6=j bj(ω)−

∑
i 6=j bj(ω

∗) can be viewed as the ”welfare
loss” inflicted on the other n − 1 bidders by i’s presence (also known as ”externality” in Economics).
For example, for the single-item single-dimensional setting, if i is the winner then maxω

∑
j 6=i bj(ω) is

the second largest bid and
∑

j 6=i bj(ω
∗) = 0. In other words, it is exactly the second-price.

Proof: We argue that for every bidder, i, and for every bid vector (except i’s bid), b−i, setting bi = vi
is the optimal choice.

Let ω∗ := argmaxω∈Ω

∑
i bi(ω). The utility for bidder i for the bid vector b is:

ui(b) = vi(ω
∗)− [maxω

∑
j 6=i

bj(ω)−
∑
j 6=i

bj(ω
∗)]

= vi(ω
∗) +

∑
j 6=i

bj(ω
∗)−maxω

∑
j 6=i

bj(ω)

Bidder i has no control on maxω

∑
j 6=i bj(ω) so it can only optimize vi(ω

∗)+
∑

j 6=i bj(ω
∗). Now imagine

if bidder i is given the power to choose any ω for ω∗, then it will choose argmaxωvi(ω) +
∑

j 6=i bj(ω).
This is clearly the best outcome i could hope for. The surprising fact is that although i does not have the
power to choose ω∗, by setting bi = vi the allocation rule (1) will pick ω∗ ∈ argmaxωvi(ω) +

∑
j 6=i bj(ω).

�
We have shown a DSIC mechanism that optimizes social welfare for any mechanism design problem.

However, if Ω is really large then the problem of finding ω∗ can be intractable. For example:

• We have m items, n bidders, each bidder wants only one item. This can be done in polynomial
time (Ask yourself why.).

• We have m items, n bidders, each bidder is single-minded (only likes a particular set of items).
This is NP-hard.

• We have m items, n bidders, each bidder can take any set of items. This is obviously also NP-hard,
and probably harder than the previous one.

We might hope to find approximation algorithms for the allocation rule in polytime but the mecha-
nism may no longer be DSIC. The problem to find a computationally efficient approximation algorithm
that is DSIC is a very active research area.
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