

cocijp/ LEcindre fif Specidun fucilons End fievende jucasinjzedon in Jumbluen seduses

Nov 03, 2016

Yang Cai

Menu

Revenue Maximization in Multi-item Settings

Upper Bound of the Optimal Revenue

Sequential Single-Item Auctions

\square Run some single-item auction (e.g. first-price/second-price auction) sequentially, one item at a time.
\square Difficult to play/predict bidder behavior
\square Example: Suppose that k identical copies are sold to unit-demand bidders.

- VCG would give each of the top k bidders a copy of the item and charge them the $(k+1)$-th highest bid.
- What if we run sequential second-priceauctions?
- Easy to see that truthful bidding is not a dominant strategy, as if everyone else is bidding truthfully, I should expect prices to drop
- Bidders will try to shade their bids, but how?
- Outcome is unpredictable.
\square Moving to more general settings only exacerbatesissue.

Simultaneous Single-Item Auctions

\square Run some single-item auction (e.g. first-price/second-price auction) simultaneously for all items.
\square Bidders submit one bid per item.
\square Issues for bidders:
\square Bidding on all items aggressively, may win too many items and over-pay (if, e.g., the bidder only has value for a few items)
\square Bidding on items conservatively may not win enough items
\square What to do?

- Difficulty in bidding and coordinating gives low welfare and revenue.

Simultaneous Single-Item Auctions

In 1990, the New Zealand government auctioned off essentially identical licenses for television broadcasting using simultaneous (sealed-bid) Vickrey auctions.
\square The revenue was only $\$ 36$ million, a small fraction of the projected $\$ 250$ million.

For one license, the highest bid was $\$ 100,000$ while the second-highest bid (and selling price) was $\$ 6$! For another, the highest bid was $\$ 7$ million and the secondhighest bid was $\$ 5,000$.
\square Even worse: the top bids were made public so everyone could see how much money was left on the table.
\square They later switched to first-price auctions. Similar problems remain (but it is less embarrassing).

Simultaneous Single-Item Auctions

\square How to analyze theoretically?
\square Auction is not direct, has no dominant strategy equilibrium.
\square Hence need to make some further modeling assumptions, resort to some equilibrium concept.
\square E.g. assume a complete information setting: bidders know each other's valuations (but auctioneer does not)
\square E.g. 2 assume Bayesian incomplete information setting: bidders' valuations are drawn from distributions known to every other bidder and the auctioneer, but each bidder's realized valuation is private

Theorem [Feldman-Fu-Gravin-Lucier'13]: If bidders' valuations are subadditive, then the social welfare achieved at a mixed Nash equilibrium (under complete information), or a Bayesian Nash equilibrium (under incomplete information) of the simultaneous $1^{\text {st }} / 2^{\text {nd }}$ price auction is within a factor of 2 or 4 of the optimal social welfare.

Theorem [Cai-Papadimitriou'14]: Finding a Bayesian Nash equilibrium in a Simultaneous Single-Item Auction is highly intractable.

Simultaneous Ascending Auctions (SAAs)

\square Over the last 20 years, simultaneous ascending auctions (SAAs) form the basis of most spectrum auctions.

Conceptually, comprise several single-item English auctions running in parallel.

In every round, each bidder places a new bid on any subset of items that she wants, subject to an activity rule and some constraints on the bids.
\square Essentially the activity rule says: the number of items you bid on should decrease over time as prices rise.

Simultaneous Ascending Auctions (SAAs)

\square Big advantage: price discovery.
\square This allows bidders to do mid-course correction.
\square Another advantage: value discovery.
\square Finding out valuations might be expensive. Only need to determine the value on a need-to-know basis.

Simultaneous Ascending Auctions (SAAs)

- Poorly designed auctions still have issues.
E.g. in 1999 the German government auctioned 10 blocks of cell-phone spectrum
- 10 simultaneous ascending auctions, with the rule that each new bid on a license must be at least 10\% larger than previous bid
\square Bidders: T-Mobile, Mannesman
\square Mannesman first bid: 20 million Deutsche marks on blocks 1-5 and 18.18 on blocks 6-10
- Interestingly 18.18*1.1 = 19.99

T-Mobile interpreted those bids as an offer to split the blocks evenly for 20 million each.

T-Mobile bid 20 million on licenses 6-10
\square The auction ended; German government was unhappy.

Revenue Maximization in Multi-item Settings

Revenue Maximization

Goal: design a revenue-optimal truthful mechanism for selling a few heterogeneous items to a few heterogeneous buyers.

- 1 item and 1 buyer, buyer's value $v \sim D$.
- Optimal auction: sell at $p=\operatorname{argmax}_{x} x \cdot(1-F(x))$ where F is the cdf of D.
- [Myerson '81?] provides an optimal single-item auction that is simple, deterministic and dominant strategy incentive compatible (DSIC).

[Myerson' 81]: Optimal auction:

1. Collect bids $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{\boldsymbol{n}}$
2. For all $\boldsymbol{i}: \boldsymbol{b}_{i} \mapsto \boldsymbol{b}_{i}-\frac{1-\boldsymbol{F}_{i}\left(\boldsymbol{b}_{i}\right)}{\boldsymbol{f}_{i}\left(\boldsymbol{b}_{i}\right)} \equiv \hat{\boldsymbol{b}}_{i}$
3. Choose \boldsymbol{x} maximizing $\sum_{i} \boldsymbol{x}_{i} \hat{\boldsymbol{b}}_{i}$
4. Charge "Myerson payments"

- ensures $\boldsymbol{b}_{\boldsymbol{i}} \equiv \boldsymbol{v}_{\boldsymbol{i}}$

Big Challenge: Revenue-Optimal Multi-Item Auctions?

Optimal Multi-item Auctions

- Large body of work in the literature:
- e.g. [Laffont-Maskin-Rochet'87], [McAfee-McMillan'88], [Wilson'93], [Armstrong'96], [Rochet-Chone'98], [Armstrong'99],[Zheng'oo], [Basov'01], [Kazumori'01], [Thanassoulis'04],[Vincent-Manelli '06,'07], [Figalli-Kim-McCann'10], [Pavlov'11], [Hart-Nisan'12], ...
\square No general approach.
\square Challenge already with selling 2 items to 1 bidder:

Example 1: Two IIID Uniform Items

- Strawman approach:
- Run Myerson for each item separately
- Price each item at 1
- Each bought with probability 1
- Expected revenue: $\mathbf{2 \times 1 = \mathbf { 2 }}$
\square Optimalauction:
- Expected revenue: $\mathbf{3 \times 3 / 4 = \mathbf { 2 . 2 5 }}$

Selling items separately might not be optimal.
Bundling increases revenue.

Example 2: Two ID Uniform Items

- Unique optimalauction:
- expected revenue: $\mathbf{\$ 2 . 6 2 5}$

This item with

$\therefore \quad$ The optimal mechanism may also use randomization.

Example 3: Two Beta Distributions

$$
f_{1}\left(v_{1}\right) \propto v_{1}^{2}\left(1-v_{1}\right)^{2}
$$

$$
f_{2}\left(v_{2}\right) \propto v_{2}^{2}\left(1-v_{2}\right)^{3}
$$

\square [Daskalakis-Deckellbaum-Tzamos '13]: The optimal auction offers un-countably many randomized bundles.

$\therefore \quad$ Can't even represent as a menu!

Example 4: Non-monotonicity

D^{+}stochastically dominates D, meaning for any $p, 1-F^{+}(p) \geq 1-$ $F(p)$

Question: which is better, selling the paintings to $D \times D$ or $D^{+} \times D^{+}$?
[[Hart-Reny '13]: Sometimes, selling to $D \times D$ is better!
$\therefore \quad$ Selling to a worse distribution might generate higher revenue.

Optimal Multi-Item Auctions

- Large body of work in the literature :
- e.g. [Laffont-Maskin-Rochet'87], [McAfee-McMillan'88], [Wilson'93], [Armstrong'96], [Rochet-Chone'98], [Armstrong'99],[Zheng'oo], [Basov'01], [Kazumori'o1], [Thanassoulis'04],[Vincent-Manelli '06,'07], [Figalli-Kim-McCann'10], [Pavlov'11], [Hart-Nisan'12], ...
\square No general approach.
\square Challenge already with selling 2 items to 1 bidder:
\square Simple and closed-form solution seems unlikely to exist in general.
- Three possible ways to proceed:

1. Special Cases: Usually with assumptions on the distributions.
2. Algorithmic Solution: There are polynomial-time computable Revenueoptimal Multi-Item Auctions [Cai-Daskalakis-Weinberg'12 '13].
3. Simple and Approximately Optimal Solution: our focus.

Selling Separately and Grand Bundling

\square Theorem: For a single additive bidder, either selling separately or grand bundling is a 6-approximation [Babaioff et. al. '14].

- Selling separately: post a price for each item and let the bidder choose whatever he wants. Let SREV be the optimal revenue one can generate from this mechanism.
- Grand bundling: bundle all the items together and sell the bundle. Let BREV be the optimal revenue one can generate from this mechanism.
- We will show that Optimal Revenue ≤ 2 BREV +4 SREV.

Upper Bound of the Optimal Revenue via Duality

Multi-item Auction: Set Up

Bidder:

- Valuation aka type $v \sim D$. Let \boldsymbol{V} be the support of D.
- Additive and quasi-linear utility:
- $\boldsymbol{v}=\left(v_{1}, v_{2}, \ldots, v_{m}\right)$ and $v(S)=\sum_{j \in S} v_{j}$ for any set S.
- Independentitems: $\boldsymbol{v}=\left(v_{1}, v_{2}, \ldots, v_{m}\right)$ is sampled from $D=\times_{j} D_{j}$.

Our Duality (Single Bidder)

Primal LP (Revenue Maximization for 1 bidder)

Variables:

$x_{j}(v)$: the prob. for receiving item j when reporting v.
$p(v)$: the price to pay when reporting v.

Constraints:

$$
\begin{aligned}
& \boldsymbol{v} \cdot \boldsymbol{x}(\boldsymbol{v})-p(\boldsymbol{v}) \geq \boldsymbol{v} \cdot \boldsymbol{x}\left(\boldsymbol{v}^{\prime}\right)-p\left(\boldsymbol{v}^{\prime}\right), \forall \boldsymbol{v}, \boldsymbol{v}^{\prime} \in \boldsymbol{V} \text { (Truthfulness Constraints) } \\
& \boldsymbol{x}(\boldsymbol{v}) \in P=[0,1]^{m}, \forall \boldsymbol{v} \in \boldsymbol{V} \text { (Feasibility Constraints) }
\end{aligned}
$$

Objective:

$$
\max \sum_{\boldsymbol{v}} f(\boldsymbol{v}) p(\boldsymbol{v})
$$

Partial Lagrangian

Primal LP:

$$
\max \sum_{v} f(v) p(v)
$$

s.t. $v \cdot x(\boldsymbol{v})-p(v) \geq v \cdot x\left(\boldsymbol{v}^{\prime}\right)-p\left(v^{\prime}\right), \forall v, v^{\prime} \in \boldsymbol{V}$ (Truthfulness Constraints)

$$
x(v) \in P=[0,1]^{m}, \forall v \in \boldsymbol{V} \text { (Feasibility Constraints) }
$$

Partial Lagrangian (Lagrangify only the truthfulness constraints):

$$
\min _{\lambda>0} \max _{x \in P, p} L(\lambda, x, p)
$$

where

$$
\begin{aligned}
L(\lambda, x, p)= & \sum_{v} f(v) p(v)+\sum_{v, v^{\prime}} \lambda\left(v, v^{\prime}\right) \cdot\left(v \cdot\left(x(v)-x\left(v^{\prime}\right)\right)-\left(p(v)-p\left(v^{\prime}\right)\right)\right. \\
= & \sum_{v} p(v) \xrightarrow[v^{\prime}]{f(v)+\sum_{v^{\prime}} \lambda\left(v^{\prime}, v\right)-\sum_{v} \lambda\left(v, v^{\prime}\right)} \quad \begin{array}{l}
\text { Better be } \\
0, \text { o.w. } \\
\text { dual }=+\infty
\end{array} \\
& +\sum_{v} x(v) \cdot\left(v \cdot \sum_{v^{\prime}} \lambda\left(v, v^{\prime}\right)-\left(\sum_{v^{\prime}} v^{\prime} \cdot \lambda\left(v^{\prime}, v\right)\right)\right)
\end{aligned}
$$

The Dual Variables as a Flow

- Observation: If the dual is finite, for every $\boldsymbol{v} \in \boldsymbol{V}$

$$
f(v)+\sum_{v^{\prime}} \lambda\left(v^{\prime}, v\right)-\sum_{v^{\prime}} \lambda\left(v, v^{\prime}\right)=0
$$

\square This means λ is a flow on the following graph:

- There is a super source s, a super $\operatorname{sink} \emptyset$ and a node for each $v \in V$.
- $f(\boldsymbol{v})$ flow from s to \boldsymbol{v} for all $\boldsymbol{v} \in \boldsymbol{V}$.
- $\lambda\left(\boldsymbol{v}, \boldsymbol{v}^{\prime}\right)$ flow from \boldsymbol{v} to \boldsymbol{v}^{\prime}, for all $\boldsymbol{v} \in \boldsymbol{V}$ and $\boldsymbol{v}^{\prime} \in \boldsymbol{V} \cup\{\varnothing\}$.

- Suffice to only consider λ that corresponds to a flow!

Duality: Interpretation

- Partial Lagrangian Dual (after simplification)

$$
\min _{\text {flow } \lambda} \max _{x \in P} L(\lambda, x, p)
$$

where

$$
L(\lambda, x, p)=\sum_{v} f(v) \cdot x(v)\left(v-\frac{1}{f(v)} \sum_{v^{\prime}} \lambda\left(v^{\prime}, v\right)\left(v^{\prime}-v\right)\right)
$$

$$
\begin{aligned}
& \text { virtual welfare } \\
& \text { of allocation } \boldsymbol{x} \\
& \text { w.r.t. } \Phi^{(\lambda)}(\cdot) \\
& =\sum_{v} f(v) \cdot \sum_{j} x_{j}(v) \cdot \Phi_{j}^{(\lambda)}(v)
\end{aligned}
$$

virtual valuation of v
(m-dimensional
vector) w.r.t. λ

Note: every flow λ corresponds to a virtual value function $\Phi^{(\lambda)}(\cdot)$

$$
\begin{gathered}
\boldsymbol{\Phi}^{(\lambda)}(\boldsymbol{v})=\boldsymbol{v}-\frac{1}{f(\boldsymbol{v})} \sum_{\boldsymbol{v}^{\prime}} \lambda\left(\boldsymbol{v}^{\prime}, \boldsymbol{v}\right)\left(\boldsymbol{v}^{\prime}-\boldsymbol{v}\right) \\
\text { where } \Phi_{\mathrm{j}}^{(\lambda)}(v)=v_{j}-\frac{1}{f(\boldsymbol{v})} \sum_{v^{\prime}} \lambda\left(\boldsymbol{v}^{\prime}, \boldsymbol{v}\right)\left(v_{j}^{\prime}-v_{j}\right)
\end{gathered}
$$

(Weak Duality)

Optimal Revenue $=$ Optimal Virtual Welfare w.r.t. to optimal λ^{*} (Strong Duality)

Duality: Implication

\square Strong duality implies Myerson's result in single-item setting.

- $\Phi^{\left(\lambda^{*}\right)}\left(v_{i}\right)=$ Myerson's virtual value.
\square Weak duality:
[Cai-Devanur-Weinberg '16]: A canonical way for deriving approximately tight upper bounds for the optimal revenue.

Single Bidder: Flow

- For simplicity, assume $\boldsymbol{V}=[H]^{m} \subseteq \mathbb{Z}^{m}$ for some integer H.
- Divide the bidder's type set into m regions
- R_{j} contains all types that have j as the favorite item.
\square Our Flow:
- No cross-region flow $\left(\lambda\left(v^{\prime}, v\right)=0\right.$ if v, v^{\prime} are not in the same region).

- for any $v^{\prime}, v \in R_{j}, \lambda\left(v^{\prime}, v\right)>0$ only if

$$
v_{-j}^{\prime}=v_{-j} \text { and } v_{j}^{\prime}=v_{j}+1
$$

Our flow λ has the following two properties: for all j and $\boldsymbol{v} \in R_{j}$

- $\Phi_{-j}^{(\lambda)}(v)=v_{-j}$.
- $\Phi_{j}^{(\lambda)}(v)=\varphi_{j}\left(v_{j}\right)$, where $\varphi_{j}(\cdot)$ is the Myerson's Virtual Value function for D_{j}.

Virtual Valuation:

$\Phi_{\mathrm{j}}^{(\lambda)}(\boldsymbol{v})$
$=\boldsymbol{v}_{\boldsymbol{j}}-\frac{1}{f(\boldsymbol{v})} \sum_{\boldsymbol{v}^{\prime}} \lambda\left(\boldsymbol{v}^{\prime}, \boldsymbol{v}\right)\left(\boldsymbol{v}_{\boldsymbol{j}}^{\prime}-\boldsymbol{v}_{\boldsymbol{j}}\right)$

Single Bidder: Flow (cont.)

For item j :

$$
\Phi_{j}^{(\lambda)}(v)=v_{j}-\frac{1}{f(v)} \sum_{v_{j}^{\prime}>v_{j}} f\left(v_{j}^{\prime}, v_{-j}\right)=v_{j}-\frac{1-F_{j}\left(v_{j}\right)}{f_{j}\left(v_{j}\right)} \longrightarrow \begin{aligned}
& \text { Myerson virtual } \\
& \text { value function } \\
& \text { for } D_{j}
\end{aligned}
$$

Intuition behind Our Flow

\square Virtual Valuation:

$$
\begin{aligned}
& \Phi_{\mathrm{j}}^{(\lambda)}(v) \\
& =v_{j}-\frac{1}{f(v)} \sum_{v^{\prime}} \lambda\left(\boldsymbol{v}^{\prime}, v\right)\left(v_{j}^{\prime}-v_{j}\right)
\end{aligned}
$$

\square Intuition:

- Empty flow \rightarrow social welfare.
- Replace the terms that contribute the most to the social welfare with Myerson's virutal value.

\square Our flow λ has the following two properties: for all j and $v \in R_{j}$
- $\Phi_{-j}^{(\lambda)}(\boldsymbol{v})=v_{-j}$.
- $\Phi_{j}^{(\lambda)}(v)=\varphi_{j}\left(v_{j}\right)$, where $\varphi_{j}(\cdot)$ is the Myerson's Virtual Value function for D_{j}.

Upper Bound for a Single Bidder

$$
\text { Corollary: } \Phi_{j}^{(\lambda)}(v)=v_{j} \cdot \mathbb{I}\left[v \notin R_{j}\right]+\varphi_{j}\left(v_{j}\right) \cdot \mathbb{I}\left[v \in R_{j}\right] .
$$

Upper Bound for Revenue (single-bidder):

$$
\operatorname{REV} \leq \max _{x \in P} L(\lambda, x, p)=\sum_{v} \sum_{j} f(v) x_{j}(v) \cdot\left(v_{j} \cdot \mathbb{\mathbb { L }}\left[v \notin R_{j}\right]+\varphi_{j}\left(v_{j}\right) \cdot \mathbb{\mathbb { L }}\left[v \in R_{j}\right]\right)
$$

Interpretaion: the optimal attainable revenue is no more than the welfare of all nonfavorite items plus some term related to the Myerson's single item virtual values.

Theorem: Selling separately or grand bundling achieves at least $1 / 6$ of the upper bound above. This recovers the result by Babaioff et. al. [BILW '14].

Remark: the same upper bound can be easily extended to unit-demand valuations.
Theorem: Posted price mechanism achieves $1 / 4$ of the upper bound above. This recovers the result by Chawla et. al. [CMS '10, '15].

