

COMP/MATH 553 Algorithmic Game Theory Lecture 19& 20: Revenue Maximization in Multi-item Settings

Nov 10, 2016

Yang Cai

Menu

Recap: Challenges for Revenue Maximization in Multi-item Settings

Duality and Upper Bound of the Optimal Revenue

SREV and **BREV**

Optimal Multi-Item Auctions

□ Large body of work in the literature :

e.g. [Laffont-Maskin-Rochet'87], [McAfee-McMillan'88], [Wilson'93],
 [Armstrong'96], [Rochet-Chone'98], [Armstrong'99], [Zheng'00],
 [Basov'01], [Kazumori'01], [Thanassoulis'04], [Vincent-Manelli '06,'07],
 [Figalli-Kim-McCann'10], [Pavlov'11], [Hart-Nisan'12], ...

□ No general approach.

□ Challenge already with selling 2 items to 1 bidder:

□ Simple and closed-form solution seems unlikely to exist in general.

□ Simple and Approximately Optimal Auctions.

Selling Separately and Grand Bundling

- □ Theorem: For a single additive bidder, either selling separately or grand bundling is a 6-approximation [Babaioff et. al. '14].
 - Selling separately: post a price for each item and let the bidder choose whatever he wants. Let SREV be the optimal revenue one can generate from this mechanism.

□ Grand bundling: bundle all the items together and sell the bundle. Let BREV be the optimal revenue one can generate from this mechanism.

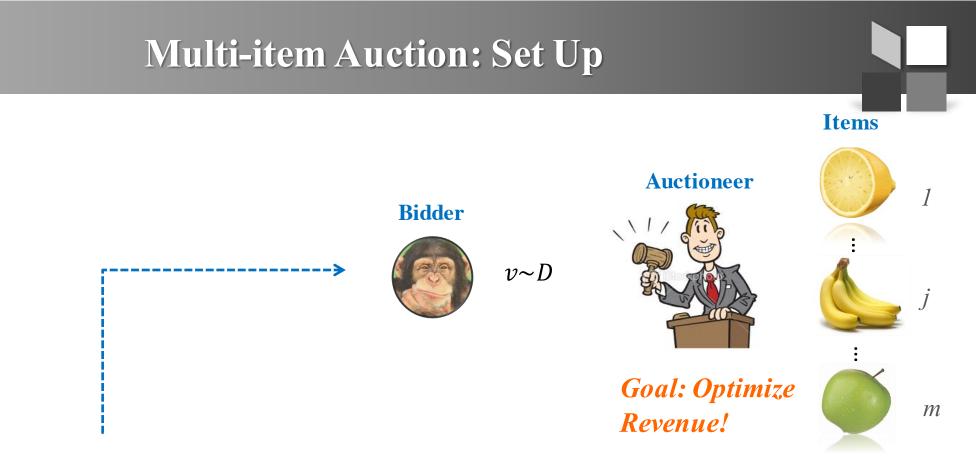
□ We will show that Optimal Revenue $\leq 2BREV + 4SREV$.

Upper Bound for the Optimal Revenue

- □ Social Welfare is an upper bound for revenue.
- □ Unfortunately, could be arbitrarily bad.
- Consider the following 1 item 1 bidder case, and suppose the bidder's value is drawn from the equal revenue distribution, e.g., $v \in [1, +\infty), f(v) = \frac{1}{v^2}$ and $F(v) = 1 - \frac{1}{v}$.
- \Box The optimal revenue = 1.
- □ What is the optimal social welfare?

- □ Suppose we have 2 items for sale. r_1 is the optimal revenue for selling the first item and r_2 is the optimal revenue for selling the second item.
- □ Is the optimal revenue upper bounded by $r_1 + r_2$?
 - NO... We have seen an example.
- What is a good upper bound for the optimal revenue,
 i.e., within a constant factor?

Upper Bound of the Optimal Revenue via Duality



Bidder:

- *Valuation* aka *type* $v \sim D$. Let **V** be the support of *D*.
- Additive and quasi-linear utility:
 - $\boldsymbol{v} = (v_1, v_2, \dots, v_m)$ and $\boldsymbol{v}(S) = \sum_{j \in S} v_j$ for any set *S*.
- Independent items: $v = (v_1, v_2, ..., v_m)$ is sampled from $D = \times_j D_j$.

Our Duality (Single Bidder)

Primal LP (Revenue Maximization for 1 bidder)

Variables:

 $x_i(v)$: the prob. for receiving item j when reporting v.

p(v): the price to pay when reporting v.

Constraints:

 $\boldsymbol{v} \cdot \boldsymbol{x}(\boldsymbol{v}) - p(\boldsymbol{v}) \geq \boldsymbol{v} \cdot \boldsymbol{x}(\boldsymbol{v}') - p(\boldsymbol{v}'), \ \forall \boldsymbol{v} \in \boldsymbol{V}, \boldsymbol{v}' \in \boldsymbol{V} \cup \{\emptyset\} \text{ (BIC & IRConstraints)}$

 $\boldsymbol{x}(\boldsymbol{v}) \in P = [0,1]^m, \forall \boldsymbol{v} \in \boldsymbol{V}$ (Feasibility Constraints)

Objective:

$$\max_{\boldsymbol{v}} f(\boldsymbol{v}) p(\boldsymbol{v})$$

Partial Lagrangian

Primal LP:

$$\max \sum_{v} f(v) p(v)$$

s.t. $v \cdot x(v) - p(v) \ge v \cdot x(v') - p(v'), \forall v \in V, v' \in V \cup \{\emptyset\}$ (BIC & IR Constraints)

 $x(v) \in P = [0,1]^m, \forall v \in V$ (Feasibility Constraints)

Partial Lagrangian (Lagrangify only the truthfulness constraints):

$$\min_{\lambda>0} \max_{x \in P, p} L(\lambda, x, p)$$

where

$$L(\lambda, x, p) = \sum_{v} f(v)p(v) + \sum_{v,v'} \lambda(v, v') \cdot (v \cdot (x(v) - x(v')) - (p(v) - p(v')))$$

Strong Duality: Opt Rev = $\max_{x \in P, p} \min_{\lambda \ge 0} L(\lambda, x, p) = \min_{\lambda \ge 0} \max_{x \in P, p} L(\lambda, x, p).$

Weak Duality: Opt Rev $\leq \max_{x \in P, p} L(\lambda, x, p)$ for all $\lambda \geq 0$.

Proof: On the board.

Partial Lagrangian Primal LP:

s.t. $v \cdot x(v)$

$$\max \sum_{v} f(v)p(v)$$

- $p(v) \ge v \cdot x(v') - p(v'), \forall v \in V, v' \in V \cup \{\emptyset\} (BIC \& IR Constraints)$

 $x(v) \in P = [0,1]^m, \forall v \in V$ (Feasibility Constraints)

Partial Lagrangian (Lagrangify only the truthfulness constraints):

$$\min_{\lambda>0} \max_{x \in P, p} L(\lambda, x, p)$$

where

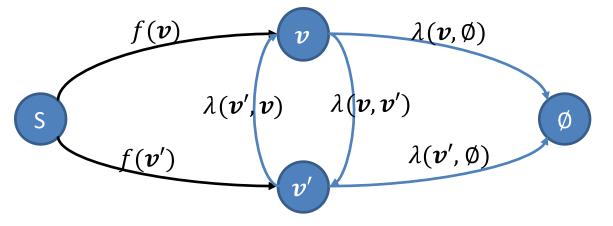
$$\begin{split} L(\lambda, x, p) &= \sum_{v} f(v) p(v) + \sum_{v, v'} \lambda(v, v') \cdot \left(v \cdot \left(x(v) - x(v') \right) - \left(p(v) - p(v') \right) \right) \\ &= \sum_{v} p(v) \left(f(v) + \sum_{v'} \lambda(v', v) - \sum_{v} \lambda(v, v') \right) \\ &+ \sum_{v} x(v) \cdot \left(v \cdot \sum_{v'} \lambda(v, v') - \left(\sum_{v'} v' \cdot \lambda(v', v) \right) \right) \end{split}$$
Better be 0, o.w. dual = +∞

The Dual Variables as a Flow

□ Observation: If the dual is finite, for every $v \in V$

 $f(v) + \sum_{v'} \lambda(v', v) - \sum_{v'} \lambda(v, v') = \mathbf{0}$

- **\Box** This means λ is a flow on the following graph:
 - There is a super source s, a super sink \emptyset (IR type) and a node for each $v \in V$.
 - $f(\boldsymbol{v})$ flow from s to \boldsymbol{v} for all $\boldsymbol{v} \in \boldsymbol{V}$.
 - $\lambda(\boldsymbol{v}, \boldsymbol{v}')$ flow from \boldsymbol{v} to \boldsymbol{v}' , for all $\boldsymbol{v} \in \boldsymbol{V}$ and $\boldsymbol{v}' \in \boldsymbol{V} \cup \{\emptyset\}$.



\Box Suffice to only consider λ that corresponds to a **flow**!

Duality: Interpretation Partial Lagrangian Dual (after simplification) $\min_{flow \lambda} \max_{x \in P} L(\lambda, x, p)$ where $L(\lambda, x, p) = \sum_{v} f(v) \cdot x(v) \left(v - \frac{1}{f(v)} \sum_{v'} \lambda(v', v)(v' - v) \right)$ virtual welfare $=\sum_{i}f(v)\cdot\sum_{j}x_{j}(v)\cdot\Phi_{j}^{(\lambda)}(v)$ virtual valuation of \boldsymbol{v} of allocation x(m-dimensional w.r.t. $\Phi^{(\lambda)}(\cdot)$ vector) w.r.t. λ $\Phi^{(\lambda)}(\boldsymbol{v}) = \boldsymbol{v} - \frac{1}{f(\boldsymbol{v})} \sum_{\boldsymbol{r}} \lambda(\boldsymbol{v}', \boldsymbol{v})(\boldsymbol{v}' - \boldsymbol{v})$ Note: every flow λ corresponds to a virtual value function $\Phi^{(\lambda)}(\cdot)$ where $\Phi_{i}^{(\lambda)}(v) = v_{j} - \frac{1}{f(v)} \sum_{v'} \lambda(v', v) (v'_{j} - v_{j})$ Primal Dual Optimal Revenue \leq Optimal Virtual Welfare w.r.t. any λ (Weak Duality)

Optimal Revenue = Optimal Virtual Welfare w.r.t. to optimal λ^* (Strong Duality)

Duality: Implication

□ Strong duality implies Myerson's result in single-item setting.

• $\Phi^{(\lambda^*)}(v_i) =$ Myerson's virtual value.

Weak duality:

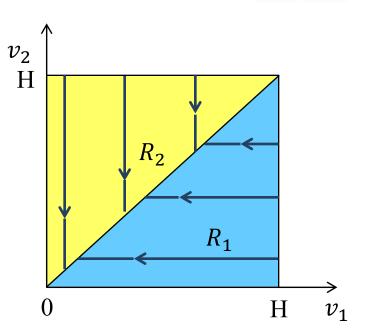
[Cai-Devanur-Weinberg '16]: A canonical way for deriving approximately tight upper bounds for the optimal revenue.

Single Bidder: Flow

- □ For simplicity, assume $V = [H]^m \subseteq \mathbb{Z}^m$ for some integer *H*.
- Divide the bidder's type set into m regions
 - R_j contains all types that have *j* as the favorite item.

Our Flow:

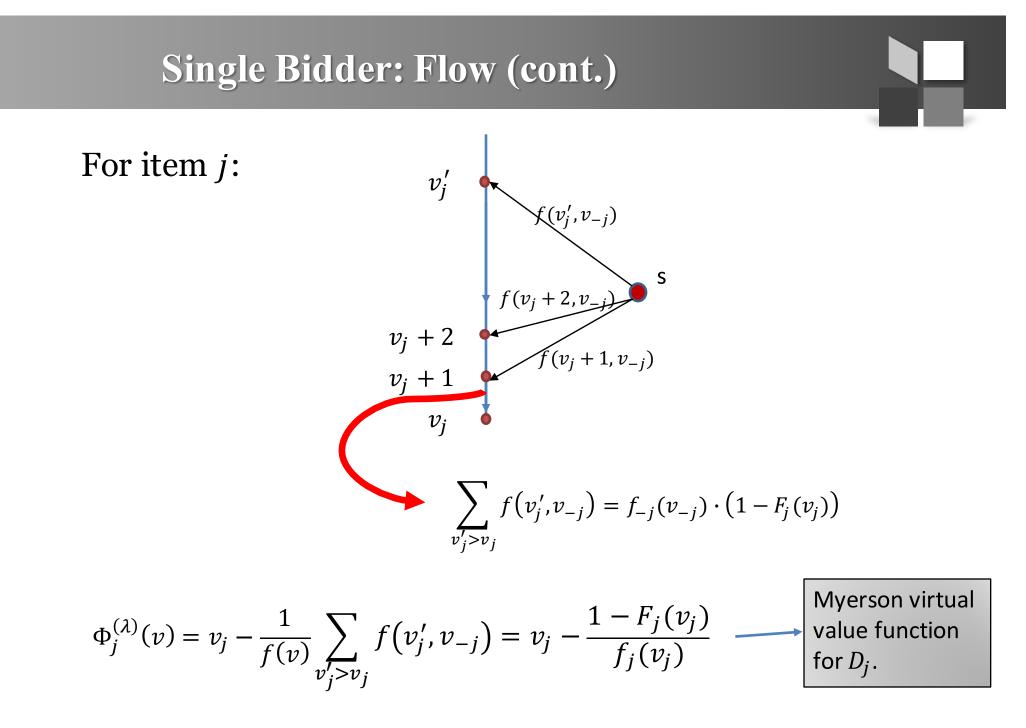
- No cross-region flow (λ(v', v) = 0 if v, v' are not in the same region).
- for any $v', v \in R_j$, $\lambda(v', v) > 0$ only if $v'_{-j} = v_{-j}$ and $v'_j = v_j + 1$.
- $\Box \quad \text{Our flow } \lambda \text{ has the following two properties: for all } j \\ \text{and } \boldsymbol{\nu} \in R_j$
 - $\Phi_{-j}^{(\lambda)}(\boldsymbol{v}) = v_{-j}.$
 - $\Phi_j^{(\lambda)}(v) = \varphi_j(v_j)$, where $\varphi_j(\cdot)$ is the Myerson's Virtual Value function for D_j .



Virtual Valuation:

$$\Phi_{j}^{(\lambda)}(v)$$

$$= v_{j} - \frac{1}{f(v)} \sum_{v'} \lambda(v', v) (v'_{j} - v_{j})$$



Intuition behind Our Flow

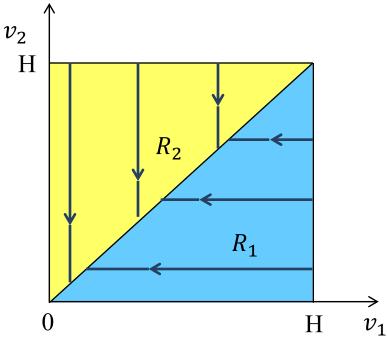
Virtual Valuation:

$$\Phi_{j}^{(\lambda)}(\boldsymbol{v})$$

$$= \boldsymbol{v}_j - \frac{1}{f(\boldsymbol{v})} \sum_{\boldsymbol{v}'} \lambda(\boldsymbol{v}', \boldsymbol{v}) (\boldsymbol{v}_j' - \boldsymbol{v}_j)$$

Intuition:

- Empty flow \rightarrow social welfare.
- Replace the terms that contribute the most to the social welfare with Myerson's virutal value.



 $\Box \quad \text{Our flow } \lambda \text{ has the following two} \\ \text{properties: for all } j \text{ and } v \in R_j$

- $\Phi_{-j}^{(\lambda)}(\boldsymbol{v}) = v_{-j}.$
- $\Phi_j^{(\lambda)}(v) = \varphi_j(v_j)$, where $\varphi_j(\cdot)$ is the Myerson's Virtual Value function for D_j .

Corollary:
$$\Phi_j^{(\lambda)}(\boldsymbol{v}) = v_j \cdot \mathbb{I}\left[\boldsymbol{v} \notin R_j\right] + \varphi_j(v_j) \cdot \mathbb{I}[\boldsymbol{v} \in R_j].$$

Upper Bound for Revenue (single-bidder):

$$\operatorname{REV} \leq \max_{\boldsymbol{x} \in P} L(\lambda, \boldsymbol{x}, p) = \sum_{\boldsymbol{v}} \sum_{j} f(\boldsymbol{v}) x_{j}(\boldsymbol{v}) \cdot (v_{j} \cdot \mathbb{I}[\boldsymbol{v} \notin R_{j}] + \varphi_{j}(v_{j}) \cdot \mathbb{I}[\boldsymbol{v} \in R_{j}])$$

Interpretaion: the optimal attainable revenue is no more than the welfare of all non-favorite items plus some term related to the Myerson's single item virtual values.

Theorem: Selling separately or grand bundling achieves at least **1/6** of the upper bound above. This recovers the result by Babaioff et. al. [BILW '14].

Remark: the same upper bound can be easily extended to unit-demand valuations.

Theorem: Posted price mechanism achieves **1/4** of the upper bound above. This recovers the result by Chawla et. al. [CMS '10, '15].

- □ [BILW '14] The optimal revenue of selling *m* independent items to an additive bidder, whose valuation *v* is drawn from $D = \times_j D_j$ is no more than 6 max{SREV(D), BREV(D)}.
 - SREV(D) is the optimal revenue for selling the items separately.
 - Formally, SREV(D) = $\sum_{j} r_j = r$, where $r_j = \max_{x} x \cdot \Pr_{v_j} [v_j \ge x]$.
 - BREV(D) is the optimal revenue for selling the grand bundle.
 - Formally, BREV(D) = $\max_{x} x \cdot \Pr_{v} [\sum_{j} v_{j} \ge x].$

Corollary:
$$\Phi_j^{(\lambda)}(\boldsymbol{v}) \leq v_j \cdot \mathbb{I}[\boldsymbol{v} \notin R_j] + \varphi_j(v_j) \cdot \mathbb{I}[\boldsymbol{v} \in R_j].$$

Goal: upper bound $L(\lambda, x, p)$ for any $x \in P$ using SREV and BREV.

$$L(\lambda, x, p) = \sum_{v} \sum_{j} f(v) x_{j}(v) \cdot (v_{j} \cdot \mathbb{I}[v \notin R_{j}] + \varphi_{j}(v_{j}) \cdot \mathbb{I}[v \in R_{j}])$$
$$= \sum_{v} \sum_{j} f(v) x_{j}(v) \cdot v_{j} \cdot \mathbb{I}[v \notin R_{j}] + \sum_{v} \sum_{j} f(v) x_{j}(v) \cdot \varphi_{j}(v_{j}) \cdot \mathbb{I}[v \in R_{j}]$$
$$NON-FAVORITE$$
SINGLE

Bounding SINGLE

 $\Box \quad \text{SINGLE} = \sum_{\boldsymbol{v}} \sum_{j} f(\boldsymbol{v}) x_{j}(\boldsymbol{v}) \cdot \varphi_{j}(v_{j}) \cdot \mathbb{I}[\boldsymbol{v} \in R_{j}]$

$$= \sum_{j} \sum_{v_j} f_j(v_j) \cdot \varphi_j(v_j) \cdot \left(\sum_{v_{-j}} f_{-j}(v_{-j}) \cdot x_j(v) \cdot \mathbb{I}[v \in R_j] \right)$$

view as the probability of
allocating item *j* to the bidder
when her value for *j* is v_j .

- □ For each item *j*, this is Myerson's virtual welfare $\leq r_j$.
- $\Box \quad \text{SINGLE} \le r$

D NON-FAVORITE =
$$\sum_{\boldsymbol{v}} \sum_{j} f(\boldsymbol{v}) x_{j}(\boldsymbol{v}) \cdot v_{j} \cdot \mathbb{I}[\boldsymbol{v} \notin R_{j}]$$

$$\leq \sum_{v} \sum_{j} f(v) \cdot v_{j} \cdot \mathbb{I}[v \notin R_{j}] = \sum_{j} \sum_{v_{j}} f_{j}(v_{j}) \cdot v_{j} \cdot \Pr_{v_{-j}}[v \notin R_{j}]$$

$$\leq \sum_{j} \sum_{v_{j} \geq r} f_{j}(v_{j}) \cdot v_{j} \cdot \Pr_{v_{-j}}[\exists k \neq j, v_{k} \geq v_{j}] + \sum_{j} \sum_{v_{j} < r} f_{j}(v_{j}) \cdot v_{j}$$
TAIL
CORE

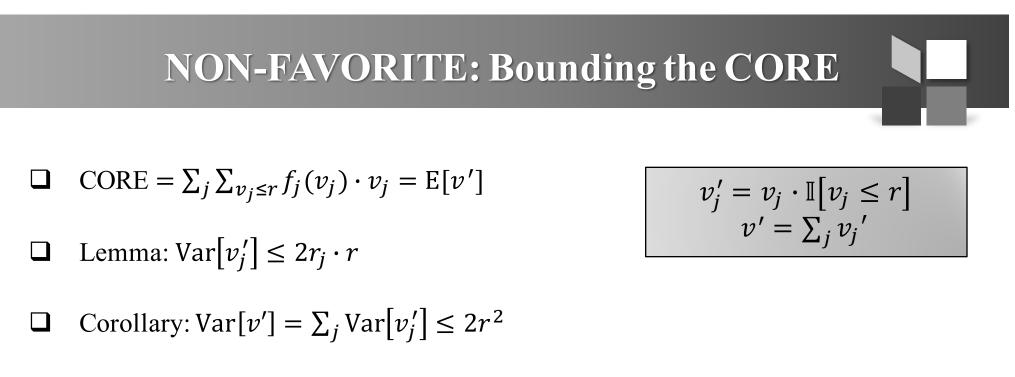
TAIL =
$$\sum_{j} \sum_{v_j \ge r} f_j(v_j) \cdot v_j \cdot \Pr_{v_{-j}} [\exists k \neq j, v_k \ge v_j]$$

 \Box Sell each item separately at price v_i :

$$v_j \cdot \Pr_{v_{-j}} \left[\exists k \neq j, v_k \ge v_j \right] \le \sum_{k \neq j} v_j \cdot \Pr_{v_k} \left[v_k \ge v_j \right] \le \sum_{k \neq j} r_k \le r, \forall v_j$$

 \Box Sell each item separately at price r:

$$\text{TAIL} \leq \sum_{j} \sum_{v_j \geq r} f_j(v_j) \cdot r = \sum_{j} r \cdot \Pr_{v_j}[v_j \geq r] \leq \sum_{j} r_j \leq r$$



□ Chebyshev Inequality: for any random variable *X*, $\Pr[|X - E[X]| \ge a] \le \frac{\operatorname{Var}[X]}{a^2}$.

$$\Pr[v' < \text{CORE} - 2r] \le \frac{\operatorname{Var}[v']}{4r^2} \le \frac{1}{2}$$

□ $\Pr[\sum_{j} v_j \ge CORE - 2r] \ge 1/2$. If selling the grand bundle at price CORE-2r, the bidder will buy it with prob. $\ge 1/2$.

 $\Box \quad 2BREV+2r \ge CORE$

Putting Everything Together

$\square REV \le \max_{x \in P} L(\lambda, x, p) \le SINGLE + TAIL + CORE$

- SINGLE $\leq r$
- TAIL $\leq r$
- CORE $\leq 2BREV + 2r$

BILW '14] Optimal Revenue $\leq 2BREV + 4SREV$.