COMP/MATH 533: Algorithmic Game Theory

October 20, 2014

Lecture 13

Lecturer: Yang Cai

Scribe: Joseph D'silva

NOTE: The content of these notes has not been formally reviewed by the lecturer. It is recommended that they are read critically.

1 Arrow's theorem

Theorem 1. Arrows theorem states that there exists no social welfare function (which aggregates everyones preference order into one common order) that can satisfy all three desirable properties of a voting scheme.

• *Unanimity* - if everyone has the same preference or order the social welfare function should give the same order in its output.

i.e. $W(<,<,\ldots,<) =<, \forall < in L$ Where W is the social welfare function that aggregates voters preferences into a common order and L is the set of linear orders in the alternatives (permutation).

• Independence of irrelevant alternatives (IIA) - The order betweens any two alternatives a and b should be only dependent on what everyone votes for a and b and should be independent of the presence and order of any other alternatives. i,e if the social welfare function ranks a above b for the current votes, and if we change the votes, but do not change the order between a and b in each of the vote, the function should still rank a above b in its output.

In the pictorial example below the set of three votes on both left and right should produce the same outcome by the social welfare function for the ordering/preference between a and b irrespective of the presence/absence of other alternatives between them among the two scenarios.

• Not dictatorial - There should not be a person i in the system who can dictate the outcome of the social welfare function according to his own preference or order independent of the choices of others.

i.e there should not be a voter i such that

 $W(<_1,<_2,\ldots,<_n) = <_i, \forall <_1,<_2,\ldots,<_n in L$

Arrows impossibility theorem states that if there are at least three candidates, the three properties listed above cannot be simultaneously satisfied.

1.1 **Proof of Arrow's theorem**

The proof will be obtained through sequence of Lemmas, where we will see that if we insist on unanimity and independence of irrelevant alternatives, then we will get a dictatorship in the social welfare function.

Lemma 1 (Pairwise Unanimity). *if everyone thinks a is better than b, the social welfare function should think that a is better than b*

Proof: Let's construct a voting profile <' = (a, b, c, d, e, ...)If everyone submits <', by unanimity, we know that W(<', <', <', ..., <', <') = <'. On the other hand, $\forall i a <_i b \Leftrightarrow a <' b$ By IIA, we know $a < b \Leftrightarrow a <' b$. Thus, a < b.

Lemma 2 (Neutrality). Let $<_1, <_2, ..., <_n$ and $<_1', <_2', ..., <_n'$ be two profiles, $<= W(<_1, <_2, ..., <_n)$ and $<_i' = W(<_1', <_2', ..., <_n')$. If $\forall i \ a <_i \ b \Leftrightarrow c <_i' \ d$, then $a < b \Leftrightarrow c <' \ d$.

Proof: We prove this Lemma by case analysis.

Case 1: $c \neq b$. We only show the case where a < b, the case where a > b can be proved similarly. Create a single preference π_i from $<_i$ and $<'_i$: where c is just below a and d just above b. i.e.

- if $a <_i b$ then $d >_{\pi_i} b >_{\pi_i} a >_{\pi_i} c$

- if $b <_i a$ then $a >_{\pi_i} c >_{\pi_i} d >_{\pi_i} b$

Input all π_i 's to the social welfare function W and we get $<_{\pi}$.

We must have:

• Since $a <_i b \Leftrightarrow a <_{\pi_i} b$, by IIA, we have $a <_{\pi} b \Leftrightarrow a < b \because a <_{\pi} b$. Thus, $a <_{\pi} b$.

• $c <_{\pi} a$ from construction of statement of proof as c is always lower than a.

• $b <_{\pi} d$ from construction of statement of proof as b is always lower than d.

 $\therefore c <_{\pi} d$ using above constructs.

Since $c <_{\pi_i} d \Leftrightarrow c <'_i d(a <_i b \Rightarrow c <'_i d$, similarly for $b <_i a$), by IIA, $c <_{\pi} d \Leftrightarrow c <' d$. Thus, $c <'_i d$.

Case 2: c = b.

Again we will show the case where a < b, you are asked to prove the a > b case in Problem set 2. Create a single preference $<_i^*$ for all i based on $<_i$,

- if $a <_i b$, create $<_i^*$ such that $d >_i^* a >_i^* b = c$.

- if $a >_i b$ create $<_i^*$ such that $a >_i^* b = c >_i^* d$.

Notice that $a <_i b \Leftrightarrow a <_i^* d$ for all *i*. Since $a \neq b$, we can apply Case 1 on this case¹ and show $a < b \Leftrightarrow a <^* d$. Since a < b, $a <^* d$. Now we look at *a* and *c*, as $a >_i^* c$ for all *i*, Lemma 1 tells us $a >^* c$. Therefore, $d >^* c$.

On the other hand, because $c <_i^* d \Leftrightarrow c <_i' d$, by IIA, $c >^{'} d \Leftrightarrow c >^* d$. Thus, $c <^{'} d$.

1.2 Proof of Arrow's theorem: i* is the dictator

Consider a sequence of votes, we care only about a and b in this case. In profile 0, everyone favors a over b. In profile 1, we switch the order for voter 1, and in profile 2, we do it for voter 2 as well and so forth till n^{th} round.

Now we have n + 1 profiles.

¹Think of $<_{i}^{*}$ is the order <', and *a* is the candidate "*c*" in Case 1.

We know that in profile 0, a is above b and in n^{th} profile, b is above a. This implies that at some point the order must have swapped.

This means that the change must have happened at least at some profile i^* (the first profile in which b < a)

Claim 1. Claim : i^* is the dictator. we can show that social welfare function will always use i^* 's profile. for any $<_1, <_2, \ldots, <_n$ and $<= W(<_1, <_2, \ldots, <_n)$ and c, d in A. If $c <_{i^*} d$ then c < d.

Proof: Take $e \neq c$, d and create a new preference list $<_i^i$ for all i by modifying $<_i$ in the following way:

- for $i < i^*$, move e to the bottom of the preference list $<_i'$

- for $i > i^*$, move e to the top of the preference list $<_i'$

- for $i = i^*$, move e to the middle of c and d, such that $c <_i e <_i d$.

Now compare the votes in $<_{i'}$ for c, e with the votes for a, b in the $(i^* - 1)$ -th preference profile

Voters	$<_i$	$<_{\pi_{i}^{(i^{*}-1)}}$	
1	ec	ba	
2	ec	ba	
:			
•			
$i^{*} - 1$	ec	ba	
i^*	ce	ab	
$i^{*} + 1$	ce	ab	
:			
•			
n	ce	ab	
Let $<' = W(<'_1, \ldots, <'_n)$ e			

 $\overline{\text{Let } < = W(<_{1}^{'}, \dots, <_{n}^{'})} \text{ and } <_{\pi^{(i^{*}-1)}} = W(<_{\pi^{(i^{*}-1)}}, \dots, <_{\pi^{(i^{*}-1)}}). \text{ Since } \forall i, e <_{i}^{'} c \Leftrightarrow b <_{\pi^{(i^{*}-1)}} a, \text{ by Lemma 2, } e <_{i}^{'} c \Leftrightarrow b <_{\pi^{(i^{*}-1)}} a. \text{ Thus, } c <_{i}^{'} e (1).$

Similarly, we compare the votes for e and d in $<_{i'}$ with the votes for a, b in the i^* -th preference profile.

$ $ $<_i'$	$<_{\pi_{i}^{i^{*}}}$
ed	ba
ed	ba
ed	ba
ed	ba
de	ab
de	ab
	$\begin{array}{c} <_i \\ \text{ed} \\ \text{ed} \\ \text{ed} \\ \text{ed} \\ \text{ed} \\ \text{de} \\ \\ \dots \\ \text{de} \end{array}$

Since $c <_{i} a \Leftrightarrow b <_{\pi_{i}^{i}} a$ $e < d \Leftrightarrow b < a$ $\Rightarrow e < d (2)$ Combining (1) and (2), we know c < d. And hence i^{*} is the dictator