
ar
X

iv
:2

20
6.

05
24

8v
1 

 [
m

at
h.

O
C

] 
 1

0 
Ju

n 
20

22

Accelerated Algorithms for Monotone Inclusions and

Constrained Nonconvex-Nonconcave Min-Max Optimization

Yang Cai*†

Yale University
yang.cai@yale.edu

Argyris Oikonomou*†

Yale University
argyris.oikonomou@yale.edu

Weiqiang Zheng†

Yale University
weiqiang.zheng@yale.edu

June 13, 2022

Abstract

We study monotone inclusions and monotone variational inequalities, as well as their gen-
eralizations to non-monotone settings. We first show that the Extra Anchored Gradient (EAG)
algorithm, originally proposed by Yoon and Ryu [2021] for unconstrained convex-concave min-
max optimization, can be applied to solve the more general problem of Lipschitz monotone
inclusion. More specifically, we prove that the EAG solves Lipschitz monotone inclusion prob-

lems with an accelerated convergence rate of O( 1
T ), which is optimal among all first-order methods

[Diakonikolas, 2020, Yoon and Ryu, 2021]. Our second result is a new algorithm, called Extra

Anchored Gradient Plus (EAG+), which not only achieves the accelerated O( 1
T ) convergence

rate for all monotone inclusion problems, but also exhibits the same accelerated rate for a fam-
ily of general (non-monotone) inclusion problems that concern negative comonotone opera-

tors. As a special case of our second result, EAG+ enjoys the O( 1
T ) convergence rate for solving

a non-trivial class of nonconvex-nonconcave min-max optimization problems. Our analyses
are based on simple potential function arguments, which might be useful for analysing other
accelerated algorithms.
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1 Introduction

We study the monotone inclusion problem and the monotone variational inequality, as well as their
generalizations in non-monotone settings. Given a closed convex set Z ⊆ R

n and a single-valued
and monotone operator F : Z → R

n, i.e.,

〈

F(z)− F(z′), z − z′
〉

≥ 0, ∀z, z′ ∈ Z ,

the monotone inclusion problem (MI) consists in finding a z∗ ∈ Z such that

0 ∈ F(z∗) + ∂IZ (z
∗),

where IZ(·) is the indicator function for set Z ,1 and ∂IZ (·) is the subdifferential operator of IZ .
The corresponding monotone variational inequality shares the same input, and asks for a z∗ ∈ Z
such that

〈F(z∗), z∗ − z〉 ≥ 0, ∀z ∈ Z .

The monotone inclusion problem and the related monotone variational inequality play a cru-
cial role in mathematical programming, providing unifying settings for the study of optimization
and equilibrium problems. They also serve as computational frameworks for numerous impor-
tant applications in fields such as economics, engineering, probability and statistics, and machine
learning [Facchinei and Pang, 2003, Bauschke and Combettes, 2011, Ryu and Boyd, 2016]. It is not
hard to observe that the exact solutions to the monotone inclusion problem coincide with the exact
solutions to the corresponding variational inequality. Due to the different selected performance
measures, the approximate solutions to these two problems differ. Take the unconstrained case
for example, i.e., Z = R

n, an point z approximates the monotone inclusion problem implies that
its operator norm ‖F(z)‖ is small, while an approximate solution to the variational inequality
only satisfies a weaker condition, i.e., its gap function is small.2 Indeed, it is well-known that an
approximate solution to the monotone inclusion problem is also an approximate solution to the
monotone variational equality, but the reverse is not true in general. Additionally, the type of per-
formance measure used in quantifying the sub-optimality of an approximate solution to monotone
inclusion problems is readily extendable to non-monotone settings, e.g., nonconvex-nonconcave
min-max optimization, while it is unclear how to provide a meaningful generalization of the gap
function to non-monotone settings. We focus on algorithms for inclusion problems for the rest of
the paper, but as explained earlier, these algorithms are also applicable to variational inequalities.
For computational purposes, we make the standard assumption that the operator F is L-Lipschitz.

An important special case of the monotone inclusion problem is the convex-concave min-max
optimization problem:

min
x∈X

max
y∈Y

f (x, y),

1
I(z) = 0 for all z ∈ Z and +∞ otherwise.

2There are several variations of the gap function. Depending on the exact definition, a small gap function value could
mean an approximate weak solution, i.e., approximately solve the Minty Variational Inequality, or an approximate strong
solution, i.e., approximately solve the Stampacchia Variational Inequality.
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where X and Y are a closed convex sets in R

nx and R

ny respectively, and f (·, ·) is smooth, con-
vex in x, and concave in y.3 Besides its central importance in game theory, convex optimization,
and online learning, the convex-concave min-max optimization problem has recently received a
lot of attention from the machine learning community due to several novel applications such as
the generative adversarial networks (GANS) (e.g., [Goodfellow et al., 2014, Arjovsky et al., 2017]),
adversarial examples (e.g., [Madry et al., 2017]), robust optimization (e.g., [Ben-Tal et al., 2009]),
and reinforcement learning (e.g., [Du et al., 2017, Dai et al., 2018]).

Given the importance of the monotone inclusion problem, it is crucial to understand the fol-
lowing open question.

What is the optimal convergence rate achievable by a first-order method for monotone inclusions? (*)

We provide the first algorithm that achieves the optimal convergence rate and further extend it to
a nontrivial class of general inclusion problems that includes, for example, a family of nonconvex-
nonconcave min-max optimization problems. Prior to our work, even for the special case of
convex-concave min-max optimization, the optimal convergence rate is only known for the rel-
atively weak notion of duality gap [Nemirovski, 2004, Nesterov, 2007], which is also difficult to
generalize to nonconvex-nonconcave settings, see [Yoon and Ryu, 2021] for more discussion.

1.1 Our Contributions

A point z ∈ Z is an ǫ-approximate solution to a monotone inclusion problem if

0 ∈ F(z) + ∂IZ (z) + B(0, ǫ),

where B(0, ǫ) is the ball with radius ǫ centered at 0. As we argue in Section 2.3, this is equivalent
to the tangent residual of z, a notion introduced in [Cai et al., 2022], being no more than ǫ. Our
first contribution provides an answer to question (*).

Contribution 1: We extend the Extra Anchored Gradient algorithm (EAG) , originally pro-
posed by Yoon and Ryu [2021] for unconstrained convex-concave min-max problems, to
solve monotone inclusion problems, which include constrained convex-concave min-max
optimization as a special case. We show in Theorem 4 that EAG finds an O( L

T )-approximate
solution in T iterations for monotone inclusions, where L is the Lipschitz constant of the op-
erator F. The convergence rate we obtain for EAG matches the lower bound by Diakonikolas
[2020], Yoon and Ryu [2021], and is therefore optimal for any first-order method.

For the second part of the paper, we go beyond the monotone case and study general inclusion
problems (GI) with operators that are not necessarily monotone and only satisfy the weaker ρ-
comonotoncity (Assumption 2) condition. Given a single-valued, L-Lipschitz, and possibly non-
monotone operator F and a set-valued maximally monotone operator A, we denote E = F + A. The
general inclusion problem (GI) consists in finding a point z∗ ∈ R

n that satisfies

0 ∈ E(z∗) = F(z∗) + A(z∗).

3If we set F(x, y) =

(

∇x f (x, y)
−∇y f (x, y)

)

and Z = X × Y , then (i) F(x, y) is a Lipschitz and monotone operator, and (ii)

the set of saddle points coincide with the solutions to the monotone inclusion problem for operator F and domain Z .
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The general inclusion problem (GI) captures (MI) (when ρ = 0 and A = ∂IZ ) and a class of
non-smooth nonconvex-nonconcave min-max optimization problems (when ρ < 0 and A chosen ap-
propriately, see Example 1). Our second contribution is a new algorithm that achieves accelerated
rate for solving GI.

Contribution 2: We design a new algorithm EAG+ that finds a O( L
T )-approximate solution

to the general inclusion problem (GI) in T iterations as long as E = F + A is a ρ-comonotone
operator with ρ ≥ − 1

c·L for some c > 0.a See Theorem 7 for the formal statement.

aWe have not optimized the range of permissible ρ, and our constant c is slightly worse than some in the
literature [Diakonikolas et al., 2021, Lee and Kim, 2021]

Our result is the first to obtain accelerated rate for constrained nonconvex-nonconcave min-
max optimization and more generally non-monotone inclusion problems.

1.2 Related Work

There is a vast literature on general inclusion problems and variational inequalities, e.g., see [Facchinei and Pang,
2003, Bauschke and Combettes, 2011, Ryu and Boyd, 2016] and the references therein. We only
provide a brief discussion of the most relevant and recent results.

1.2.1 Convex-Concave and Monotone Settings

Convergence in Gap Function. [Nemirovski, 2004, Nesterov, 2007] show that the average iterate
of extragradient-type methods has O( 1

T ) convergence rate in terms of gap function defined as
maxz′∈Z 〈F(z′), z − z′〉, which means that their result only provides an approximate solution to
the weak solution. The O( 1

T ) rate is optimal for first-order methods due to the lower bound by
[Ouyang and Xu, 2021].

Convergence of the Extragradient Method in Stronger Performance Measures. For stronger
performance measures such as the norm of the operator (when Z = R

n) or the residual (in con-
strained setting), classical results [Korpelevich, 1976, Facchinei and Pang, 2003] show that the best-
iterate of the extragradient method converges at a rate of O( 1√

T
). Recently, the same convergence

rate is shown to hold even for the last-iterate of the extragradient method [Gorbunov et al., 2021,
Cai et al., 2022]. Although O( 1√

T
) convergence on the residual is optimal for all p-SCIL algorithms

[Golowich et al., 2020], a subclass of first-order methods that includes the extragradient method
and many of its variations, faster rate is possible for other first-order methods.

Faster Convergence Rate in Operator Norm or Residual. We provide a brief overview of re-
sults that achieve faster convergence rate in terms of the operator norm or residual. Note that
these results also imply essentially the same convergence rate in terms of the gap function. The
literature here is rich and fast-growing, we only discuss the ones that are close related to our
paper. Recent results show accelerated rates through Halpern iteration [Halpern, 1967] or a simi-
lar mechanism – anchoring. Implicit versions of Halpern iteration have O( 1

T ) convergence rate

3



[Kim, 2021, Lieder, 2021, Park and Ryu, 2022] for monotone operators and explicit variants of
Halpern iteration achieve the same convergence rate when F is cocoercive [Diakonikolas, 2020,
Kim, 2021]. Diakonikolas [2020] also provide a double-loop implementation of the algorithm for
monotone operators at the expense of an additional logarithmic factor in the convergence rate.
Yoon and Ryu [2021] propose the extra anchored gradient (EAG) method, which is the first ex-
plicit method with accelerated O( 1

T ) rate in the unconstrained setting for monotone operators.

They also established a matching Ω( 1
T ) lower bound that holds for all first-order methods. Con-

vergence analysis of past extragradient method with anchoring in the unconstrained setting is pro-
vided in [Tran-Dinh and Luo, 2021]. Lee and Kim [2021] proposed a generalization of EAG called
fast extraradient (FEG), which applies to comonotone operators and improves the constants in the
convergence rate, but only for the unconstrained setting. Very recently, Tran-Dinh [2022] studies
the connection between Halpern iteration and Nesterov accelerated method, and provides new al-
gorithms for monotone operators and alternative analyses for EAG and FEG in the unconstrained
setting. In Theorem 4, we show the projected version of EAG has O( 1

T ) convergence rate under
arbitrary convex constraints, achieving the optimal convergence rate for all first-order methods in
the constrained setting.

1.2.2 Nonconvex-Nonconcave and Non-Monotone Setting

Many practical applications of min-max optimization in modern machine learning, such as GANs
and multi-agent reinforcement learning, are nonconvex-nonconcave. Without any additional struc-
ture, the problem is intractable [Daskalakis et al., 2021]. Hence, recent works study nonconvex-
nonconcave min-max optimization problems under several structural assumptions. We only in-
troduce the definitions in the unconstrained setting, as that is the setting considered by several of
the results, and all convergence rates are in terms of the the operator norm. The Minty variational
inequality (MVI) condition (also called coherence or variationally stable): there exits z∗ such that

〈F(z), z − z∗〉 ≥ 0, ∀z ∈ R

n

is studied in e.g., [Dang and Lan, 2015, Zhou et al., 2017, Liu et al., 2019, Malitsky, 2020, Song et al.,
2020, Liu et al., 2021]. Extragradient-type algorithms has O( 1√

T
) convergence rate for Lipschitz op-

erators that satisfy the MVI condition [Dang and Lan, 2015]. Diakonikolas et al. [2021] proposes a
weaker condition called weak MVI: there exits z∗ and ρ ≤ 0 such that

〈F(z), z − z∗〉 ≥ ρ · ‖F(z)‖2, ∀z ∈ R

n.

The weak MVI condition includes both MVI and negative comonotonicity [Bauschke et al., 2021]
as special cases. Diakonikolas et al. [2021] proposes the EG+ algorithm, which has O( 1√

T
) con-

vergence rate under the weak MVI condition in the unconstrained setting. Recently, Pethick et al.
[2022] generalized EG+ to CEG+ algorithm which has O( 1√

T
) under weak MVI condition in gen-

eral (constrained) setting. The result for accelerated algorithms in the nonconvex-nonconcave
setting is more sparse. FEG achieves O( 1

T ) convergence rate for comonotone operators in the
unconstrained setting [Lee and Kim, 2021]. In general (constrained) setting with comonotone op-
erators, the proximal point algorithm is known to exhibit O( 1√

T
) convergence rate [Kohlenbach,

4



Algorithm Setting Monotone
Non-Monotone

Comonotone MVI weak MVI

Normal
EG [Dang and Lan, 2015] general O( 1√

T
) O( 1√

T
)

EG+ [Diakonikolas et al., 2021] unconstrained O( 1√
T
) O( 1√

T
) O( 1√

T
) O( 1√

T
)

CEG+ [Pethick et al., 2022] general O( 1√
T
) O( 1√

T
) O( 1√

T
) O( 1√

T
)

Accelerated

Halpern [Diakonikolas, 2020] general O( log T
T )

EAG [Yoon and Ryu, 2021] unconstrained O( 1
T )

FEG [Lee and Kim, 2021] unconstrained O( 1
T ) O( 1

T )
EAG [This paper] general O( 1

T )
EAG+ [This paper] general O( 1

T ) O( 1
T )

Table 1: Existing results for inclusion problem (min-max optimization problem) with monotone
or non-monotone operators. The convergence rate is in terms of the operator norm (in the uncon-
strained setting) and the residual (in the constrained setting).

2022]. To the best of our knowledge, (EAG+) is the first explicit and efficient method that has an
accelerated O( 1

T ) convergence rate in the constrained nonconvex-nonconcave setting (Theorem 7).

2 Preliminaries

We consider the Euclidean Space (Rn, ‖ · ‖), where ‖ · ‖ is the ℓ2 norm and 〈·, ·〉 denotes inner
product on Rn.

Basic Notions about Monotone Operators. A set-valued operator A : Rn
⇒ R

n maps z ∈ R

n

to a subset A(z) ⊆ R

n. We say A is single-valued if |A(z)| ≤ 1 for all z ∈ R

n. Tha graph of an
operator A is defined as GraA = {(z, u) : z ∈ R

n, u ∈ A(z)}. The inverse operator of A is denoted
as A−1 whose graph is GraA−1 = {(u, z) : (z, u) ∈ GraA}. For two operators A and B, we denote
A + B as the operator with graph GraA+B = {(z, uA + uB) : (z, uA) ∈ GraA, (z, uB) ∈ GraB}. We
denote the identity operator as I : Rn → R

n.
For a closed convex set Z ⊆ R

n and point z ∈ R

n, we denote the normal cone operator as NZ :

NZ (z) =

{

∅, z /∈ Z ,

{v ∈ R

n : 〈v, z′ − z〉 ≤ 0, ∀z′ ∈ Z}, z ∈ Z .

Define the indicator function

IZ(z) =

{

0 if z ∈ Z ,

+∞ otherwise.

Then it is not hard to see that the subdifferential operator ∂IZ = NZ . The projection operator

ΠZ : Rn → R

n is defined as ΠZ [z] := argminz′∈Z ‖z − z′‖2.
For L ∈ (0, ∞), a single-valued operator A : Rn → R

n is L-Lipschitz if

∥

∥A(z)− A(z′)
∥

∥ ≤ L ·
∥

∥z − z′
∥

∥, ∀z, z′ ∈ R

n.

5



Moreover, A is non-expansive if it is 1-Lipschitz. A set-valued operator A : Rn
⇒ R

n is monotone if
〈

u − u′, z − z′
〉

≥ 0, ∀(z, u), (z′, u′) ∈ GraA .

Maximally Monotone Operator. A is maximally monotone if A is monotone and there is no other
monotone operator B such that GraA ⊂ GraB. When f : Rn → R is a convex closed proper
function, then the subdifferential operator ∂ f is maximally monotone. Therefore, ∂IZ = NZ is
maximally monotone. We denote the resolvent of an operator A as JA := (I + A)−1. When A is
maximally monotone, useful properties of JA (See e.g., [Ryu and Boyd, 2016, Ryu and Yin, 2022])
include:

1. JA is well-defined on Rn;

2. JA is non-expansive thus single-valued;

3. when z = JA(z
′), then z′ − z ∈ A(z);

4. when A = ∂IZ is the normal cone operator of a closed convex set Z ⊆ R

n, then JηA = ΠZ is
the projection operator for all η > 0.

ρ-comonotonicity. A generalized notion of monotonicity is the ρ-comonotonicity [Bauschke et al.,
2021]: For ρ ∈ R, an operator A : Rn

⇒ R

n is ρ-comonotone if

〈

u − u′, z − z′
〉

≥ ρ
∥

∥u − u′∥
∥

2
, ∀(z, u), (z′, u′) ∈ GraA .

Note that when A is 0-comonotone, then A is monotone. If A is ρ-comonotone for ρ > 0, we
also say A is ρ-cocoercive (a stronger assumption than monotonicity). When A satisfies negative
comonotonicity, i.e., ρ-comonotonicity with ρ < 0, then A is possibly non-monotone. Negative
comonotonicity is the focus of this paper in the non-monotone setting.

2.1 Monotone Inclusion and Variational Inequality

Monotone Inclusion. Given a closed convex set Z ⊆ R

n and a single-valued monotone operator
F, the monotone inclusion problem is to find a point z∗ ∈ R

n that satisfies

0 ∈ F(z∗) + ∂IZ (z
∗). (MI)

We focus on monotone inclusion problem of a Lipschitz operator with a solution. The assumptions
on (MI) is summarized in Assumption 1.

Assumption 1. In (MI) problem,

1. F is monotone and L-Lipschitz on Z , i.e.,
〈

F(z)− F(z′), z − z′
〉

≥ 0 and
∥

∥F(z)− F(z′)
∥

∥ ≤ L ·
∥

∥z − z′
∥

∥, ∀z, z′ ∈ Z .

2. There exists a solution z∗ ∈ Z such that 0 ∈ F(z∗) + ∂IZ (z∗).

6



Variational Inequality. A closely related problem to (MI) is the monotone variational inequality
(VI) with operator F and feasible set Z , which has two variants. The Stampacchia Variational In-
equality (SVI) problem is to find z∗ ∈ Z such that

〈F(z∗), z∗ − z〉 ≤ 0, ∀z ∈ Z . (SVI)

Such z∗ is called a strong solution to VI. The Minty Variational Inequality (MVI) problem is to find
z∗ ∈ Z such that

〈F(z), z∗ − z〉 ≤ 0, ∀z ∈ Z . (MVI)

Such z∗ is called a weak solution to VI. When F is continuous, then every solution to (MVI) is also a
solution to (SVI). When F is monotone, every solution to (SVI) is also a solution to (MVI) and thus
the two solution sets are equivalent. Moreover, the solution set to (MI) is the same as the solution
set to (SVI).

Approximate Solutions. We say z ∈ Z is an ǫ-approximate solution to (MI) if

0 ∈ F(z) + ∂IZ (z) + B(0, ǫ),

where we use B(u, r) to denote a ball in R

n centered at u with radius r. We say z ∈ Z is an
ǫ-approximate solution to (SVI) or (MVI) if

〈

F(z), z − z′
〉

≤ ǫ, ∀z′ ∈ Z , or
〈

F(z′), z − z′
〉

≤ ǫ, ∀z′ ∈ Z , respectively.

When F is monotone, it is clear that every ǫ-approximate solution to (SVI) is also an ǫ-approximate
solution to (MVI); but the reverse does not hold in general. When F is monotone and Z is
bounded by D, then any ǫ

D -approximate solution to (MI) is an ǫ-approximate solution to (SVI)
[Diakonikolas, 2020, Fact 1]. Note that when Z is unbounded, neither (SVI) nor (MVI) can be
approximated. If we restrict the domain to be a bounded subset of (possibly unbounded) Z , then
we can define the (restricted) gap functions as

GAP
SVI
F,D (z) := max

z′∈Z∩B(z,D)

〈

F(z), z − z′
〉

,

GAP
MVI
F,D (z) := max

z′∈Z∩B(z,D)

〈

F(z′), z − z′
〉

.

The O( 1
T ) convergence rate for extragradient-type algorithm [Nemirovski, 2004, Nesterov, 2007]

is provided in terms of GAP
MVI
F,D (z), which means convergence to an approximate weak solution.

Prior to our work, the O( 1
T ) convergence rate on GAP

SVI
F,D (z) was only known in the unconstrained

setting [Yoon and Ryu, 2021]. When F is monotone, then the tangent residual rtan(z) ≤ ǫ
D (defini-

tion in section 2.3) implies GAP
SVI
F,D (z) ≤ ǫ [Cai et al., 2022, Lemma 2]. Therefore, our result also

implies an O( 1
T ) convergence rate on GAP

SVI
F,D (z) when Z is arbitrary convex set (Theorem 4).

7



2.2 General Inclusion.

We study inclusion problem (GI) with (non)-monotone operators that satisfies ρ-comonotoncity (As-
sumption 2), which captures (MI) (when ρ = 0) and a class of nonconvex-nonconcave min-max
optimization problems (when ρ < 0). Given a single-valued and possibly non-monotone operator
F and a set-valued maximally monotone operator A, we denote E = F + A. The inclusion problem is
to find a point z∗ ∈ R

n that satisfies

0 ∈ E(z∗) = F(z∗) + A(z∗). (GI)

Similar to (MI) , we say z is an ǫ-approximate solution to (GI) if

0 ∈ F(z) + A(z) + B(0, ǫ).

We summarize the assumptions on (GI) below.

Assumption 2. In (GI) problem,

1. F : Rn → R

n is L-Lipschitz.

2. A : Rn
⇒ R

n is maximally monotone.

3. E = F + A is ρ-comonotone, i.e., there exists ρ ≤ 0 such that

〈

u − u′, z − z′
〉

≥ ρ
∥

∥u − u′∥
∥

2
, ∀(z, u), (z′, u′) ∈ GraE .

4. There exists a solution z∗ ∈ R

n such that 0 ∈ E(z∗).

The formulation of (GI) provides a unified treatment for a range of problems, such as min-max
optimization and multi-player games. We present one detailed example below and refer readers
to [Facchinei and Pang, 2003] for more examples.

Example 1 (Min-Max Optimization). The following structured min-max optimization problem captures
a wide range of applications in machine learning such as GANs, adversarial examples, robust optimization,
and reinforcement learning:

min
x∈Rnx

max
y∈Rny

f (x, y) + g(x)− h(y), (1)

where f (·, ·) is possibly non-convex in x and non-concave in y. Regularized and constrained min-max
problems are covered by appropriate choices of lower semicontinuous and convex functions g and h. Ex-
amples include ℓ1-norm, ℓ2-norm, and indicator function of a convex feasible set. Let z = (x, y), if we
define F(z) = (∂x f (x, y),−∂y f (x, y)) and A(z) = (∂g(x), ∂h(y)), where A is maximally monotone,
then the first-order optimality condition of (1) has the form of (GI) . See [Lee and Kim, 2021, Example 1]
for examples of nonconvex-nonconcave conditions that are implied by negative comonotonicity,.

8



2.3 Convergence Criteria

An appropriate convergence criterion is the tangent residual rtan
F,A(z) := minc∈A(z) ‖F(z) + c‖ de-

fined in [Cai et al., 2022]. It is not hard to see that rtan
F,A(z) ≤ ǫ implies that z is an ǫ-approximate

solution to (GI) . If A = ∂IZ , and Z is bounded and has diameter no more than D, then z is an
ǫ-approximate solution to (MI) and also an (ǫ · D)-approximate solution to (SVI).

Another commonly-used convergence criterion that captures the stationarity of a solution is

the natural residual rnat
F,A := ‖z − JA

[

z − F(z)
]

‖. Note that z∗ is a solution to (GI) iff z∗ = JA

[

z∗ −

F(z∗)
]

. The definition of the natural residual for (MI) is similar: rnat
F,∂IZ

:= ‖z − ΠZ
[

z − F(z)
]

‖.

Fact 1. In (GI) , rnat
F,A(z) ≤ rtan

F,A(z).

Proof. For any c ∈ A(z), we have

rnat
F,A(z) =

∥

∥

∥
z − JA

[

z − F(z)
]
∥

∥

∥

=
∥

∥

∥
JA

[

z + c
]

− JA

[

z − F(z)
]
∥

∥

∥
(z = JA[z + c])

≤ ‖F(z) + c‖. (non-expansiveness of JA)

Thus rnat
F,A(z) ≤ minc∈A(z) ‖F(z) + c‖ = rtan

F,A(z).

In this paper, we state our convergence rates in terms of the tangent residual rtan
F,A(z), which

implies (i) convergence rates in terms of the natural residual rnat
F,A(z), and (ii) z is an approximate

solution to (GI) , (MI) , (SVI), or (MVI).

3 Optimal Monotone Inclusion via EAG

In this section, we study constrained monotone inclusion problem (MI) with closed convex feasi-
ble set Z ⊆ R

n and monotone and L-Lipschitz operator F, as summarized in Assumption 1. We
analyse the (projected) Extra Anchored Gradient Method (EAG) , which is proposed by Yoon and Ryu
[2021] in the unprojected form for Z = R

n. Let z0 ∈ Z be an arbitrary starting point and
{zk, zk+ 1

2
}k≥0 be the iterates of (EAG) with step size η > 0, whose update rule is as follows:

zk+ 1
2
= ΠZ

[

zk − ηF(zk) +
1

k + 1
(z0 − zk)

]

,

zk+1 = ΠZ
[

zk − ηF(zk+ 1
2
) +

1

k + 1
(z0 − zk)

]

.

(EAG)

Our analysis is based on the following potential function

Vk :=
k(k + 1)

2
· ‖ηF(zk) + ηck‖2 + k · 〈ηF(zk) + ηck, zk − z0〉, k ≥ 1,
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where

ck :=
zk−1 − ηF(zk− 1

2
) + 1

k (z0 − zk−1)− zk

η
, k ≥ 1.

From the update rule of (EAG) , we know ck ∈ NZ (zk). Thus ‖F(zk) + ck‖ ≥ minc∈NZ (zk) ‖F(zk) + c‖ =

rtan(zk). In Theorem 3, we show Vk is “approximately” non-increasing, i.e., Vk+1 ≤ Vk + O(1) ·
‖ηF(zk+1) + ηck+1‖2 for all k ≥ 1. From this property, we get O( 1

T ) last-iterate convergence rate in
terms of ‖F(zT) + cT‖ and thus the same convergence rate in rtan(zT) (Theorem 4).

Potential functions in a similar form as Vk have been used to analyse (MI) by Diakonikolas
[2020] for the Halpern iteration algorithm, and by Yoon and Ryu [2021] for (EAG) in the uncon-
strained setting (Z = R

n). We emphasize that we use a different potential function with different
analysis.

Diakonikolas [2020] studied the Halpern iteration with operator P := I − JF+∂IZ , which is 1
2 -

cocoercive but can not be computed efficiently in general. She showed that the follwoing potential
function is non-increasing.

Pk :=
k(k + 1)

2
· ‖P(zk)‖2 + k · 〈P(zk), zk − z0〉,

which leads to O( 1
T )-approximate solution to (MI) after T iterations. However, since P can not

be computed efficiently in general, the algorithm needs O(log( 1
ǫ )) oracle queries for an O(ǫ)-

approximate value of P in each iteration, thus total oracle complexity O( LD
ǫ · log( 1

ǫ )) for an ǫ-
approximate solution to (MI) . In contrast, we use operator F in the potential function Vk, and
we prove Vk is only ”approximately” non-increasing (see Theorem 1 and 3). Moreover, (EAG)
needs only 2 oracle query in each iteration and achieves optimal O( LD

ǫ ) oracle complexity for an
ǫ-approximate solution to (MI) (Theorem 4).

Yoon and Ryu [2021] studied convergence of (EAG) for (MI) in the unconstrained setting (Z =
R

n). The specific algorithm they analysed uses anchoring term 1
k+2(z0 − zk) while we use 1

k+1(z0 −
zk) (see Remark 1 for more discussion on the choice of the constant in the anchoring term). They
use the following potential function

Pk := Ak · ‖F(zk)‖2 + Bk · 〈F(zk), zk − z0〉,
where Bk = k + 1, and Ak = O(k2) is updated adaptively in a sophisticated way for each k. Their

potential function Pk is more complicated compared to Vk as we choose Bk = k and Ak = k(k+1)
2 .

For the analysis, their proof of the monotonicity of Pk is relatively involved. In contrast, we use
a simple proof to show that Vk is “approximately” non-increasing (Theorem 1) which suffices to
establish the O( 1

T ) convergence rate. Moreover, our analysis can be naturally extended to the
constrained setting where Z ⊆ R

n is an arbitrary closed convex set (Theorem 3).

3.1 Warm Up: Unconstrained Case

We begin with the unconstrained setting Z = R

n, which illustrate our main idea and proof tech-
niques. [Yoon and Ryu, 2021] also analyse the unconstrained setting but our proof is much sim-
pler.
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In the unconstrained setting, ck = 0 by definition. Thus

Vk =
k(k + 1)

2
‖ηF(zk)‖2 + k〈ηF(zk), zk − z0〉, ∀k ≥ 1.

It is not hard to see that V1 ≤ (η2L2 + 2ηL)‖z0 − z∗‖2: since the update rule for z 1
2

and z1 of

(EAG) coincides with the update rule of EG, by [Cai et al., 2022, Theorem 1], we have ‖ηF(z1)‖2 ≤
‖ηF(z0)‖2 ≤ η2L2‖z0 − z∗‖2 and and by [Korpelevich, 1976], [Facchinei and Pang, 2003, Lemma
12.1.10 ] ‖z1 − z∗‖ ≤ ‖z0 − z∗‖

V1 = ‖ηF(z1)‖2 + 〈ηF(z1), z1 − z0〉
≤ ‖ηF(z0)‖2 + ‖ηF(z1)‖(‖z1 − z∗‖+ ‖z0 − z∗‖)
≤ (η2L2 + 2ηL)‖z0 − z∗‖2.

Theorem 1. Suppose Assumption 1 holds with Z = R

n. Then for any k ≥ 1, (EAG) with any step size

η ∈ (0, 1
L ) satisfies Vk+1 ≤ Vk +

η2L2

1−η2L2‖ηF(zk+1)‖2
.

Proof. Since F is monotone and L-Lipschitz, we have the following inequalities

〈F(zk+1)− F(zk), zk − zk+1〉 ≤ 0

and
∥

∥

∥
F(zk+ 1

2
)− F(zk+1)

∥

∥

∥

2
− L2

∥

∥

∥
zk+ 1

2
− zk+1

∥

∥

∥

2
≤ 0.

We simplify them using the update rule of (EAG) .
In particular, we replace zk − zk+1 with ηF(zk+ 1

2
)− 1

k+1(z0 − zk) and zk+ 1
2
− zk+1 with ηF(zk+ 1

2
)−

ηF(zk).

〈

ηF(zk+1)− ηF(zk), ηF(zk+ 1
2
)− 1

k + 1
(z0 − zk)

〉

≤ 0, (2)

∥

∥

∥
ηF(zk+ 1

2
)− ηF(zk+1)

∥

∥

∥

2
− η2L2

∥

∥

∥
ηF(zk+ 1

2
)− ηF(zk)

∥

∥

∥

2
≤ 0. (3)

It is not hard to verify that the following identity holds.

Vk − Vk+1 + k(k + 1) · LHS of Inequality(2) +
k(k + 1)

2η2L2
· LHS of Inequality(3)

=
k + 1

2η2L2

∥

∥

∥

∥

∥

(η2L2 − 1)k + η2L2

√

(1 − η2L2)k
· ηF(zk+1) +

√

(1 − η2L2)k · ηF(zk+ 1
2
)

∥

∥

∥

∥

∥

2

− k + 1

2k
· η2L2

1 − η2L2
‖ηF(zk+1)‖2.

Note that k+1
2k ≤ 1 holds for all k ≥ 1. Thus, Vk+1 ≤ Vk +

η2L2

1−η2L2‖ηF(zk+1)‖2.
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Lemma 1. For all k ≥ 2,

(

k(k + 1)

4
− η2L2

1 − η2L2

)

‖ηF(zk)‖2 ≤ (1 + ηL)2‖z0 − z∗‖2 +
η2L2

1 − η2L2

k−1

∑
t=2

‖ηF(zt)‖2.

Moreover, when η ∈ (0, 1√
3L
), we have

k2

4
· ‖ηF(zk)‖2 ≤ (1 + ηL)2‖z0 − z∗‖2 +

η2L2

1 − η2L2

k−1

∑
t=2

‖ηF(zt)‖2.

Proof. Fix any k ≥ 2. By definition, we have

Vk =
k(k + 1)

2
‖ηF(zk)‖2 + k〈ηF(zk), zk − z0〉

≥ k(k + 1)

2
‖ηF(zk)‖2 + k〈ηF(zk), z∗ − z0〉 ( 〈F(zk), z∗ − zk〉 ≤ 0)

≥ k(k + 1)

2
‖ηF(zk)‖2 − k(k + 1)

4
‖ηF(zk)‖2 − k2

k(k + 1)
‖z0 − z∗‖2 ( 〈a, b〉 ≥ − c

4‖a‖2 − 1
c‖b‖2)

≥ k(k + 1)

4
‖ηF(zk)‖2 − ‖z0 − z∗‖2. ( k

k+1 ≤ 1)

Using Theorem 1, we have

Vk ≤ V1 +
η2L2

1 − η2L2

k

∑
t=2

‖ηF(zt)‖2.

Combining the two inequalities above and the fact that V1 ≤ (2ηL + η2L2)‖z0 − z∗‖2 yields the

first inequality in the statement. When ηL ∈ (0, 1√
3
), we have η2L2

1−η2L2 ≤ 1
2 ≤ k

4 for k ≥ 2. Hence the

second inequality in the statement holds.

Theorem 2. Suppose Assumption 1 holds with Z = R

n. Let z0 ∈ R

n be arbitrary starting point and
{zk, zk+ 1

2
}k≥0 be the iterates of (EAG) with any step size η ∈ (0, 1√

3L
). Denote D := ‖z0 − z∗‖. Then for

any T ≥ 1,

‖F(zT)‖2 ≤ 4(1 + ηL)2

η2L2(1 − 3η2L2)
· D2L2

T2
,

GAP
SVI
F,D (zT) ≤

2(1 + ηL)

ηL
√

1 − 3η2L2
· D2L

T
.

If we set η = 1
3L , then ‖F(zT)‖2 ≤ 96·D2L2

T2 .
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Proof. Note that the second inequality is implied by the first inequality since GAP
SVI
F,D (z) ≤ D ·

‖F(zT)‖ [Cai et al., 2022, Lemma 2]. Denote ak := ‖ηF(zk)
2‖

‖z0−z∗‖2 . It suffices to prove for all k ≥ 1,

ak ≤
4(1 + ηL)2

(1 − 3η2L2)k2
. (4)

Since the update rule for z 1
2

and z1 of (EAG) coincides with the update rule of EG, by [Cai et al.,

2022, Theorem 1], we have ‖ηF(z1)‖2 ≤ ‖ηF(z0)‖2 ≤ η2L2‖z0 − z∗‖2 and thus a1 ≤ η2L2 <
1
3 .

Thus Equation (4) holds for k = 1.
From Lemma 1, we know for k ≥ 2,

k2

4
· ak ≤ (1 + ηL)2 +

η2L2

1 − η2L2

k−1

∑
t=2

at.

Applying Proposition 4 with C1 = (1 + ηL)2 and p = η2L2 < 1
3 completes the proof.

3.2 Convergence of EAG with Arbitrary Convex Constraints

Proposition 1. V1 ≤ (1+ηL+η2L2)(2+2ηL+η2L2)
1−η2L2 ‖z0 − z∗‖2

.

Proof. We first upper bound ‖ηF(z1) + ηc1‖ and ‖z1 − z0‖ . Note that z 1
2
, z1 are updated exactly as

original EG. By definition, we have

‖ηF(z1) + ηc1‖ =
∥

∥

∥
ηF(z1) + z0 − ηF(z 1

2
)− z1

∥

∥

∥

≤
∥

∥

∥
ηF(z1)− ηF(z 1

2
)
∥

∥

∥
+ ‖z0 − z1‖

≤ ηL
∥

∥

∥
z1 − z 1

2

∥

∥

∥
+ ‖z0 − z1‖ (L-Lipschitzness of F)

≤ (1 + ηL)
∥

∥

∥
z1 − z 1

2

∥

∥

∥
+
∥

∥

∥
z 1

2
− z0

∥

∥

∥

≤ (1 + ηL + η2L2)
∥

∥

∥
z 1

2
− z0

∥

∥

∥

≤ 1 + ηL + η2L2

√

1 − η2L2
‖z0 − z∗‖,

where in the last inequality we use a well-known result regarding EG: ‖z 1
2
− z0‖2 ≤ ‖z0−z∗‖2−‖z1−z∗‖2

1−η2L2

[Facchinei and Pang, 2003, Lemma 12.1.10 ]. Note that in the above sequence of inequalities, we

also prove that ‖z1 − z0‖ ≤ 1+ηL√
1−η2L2

‖z0 − z∗‖.

By definition of V1 and the above upper bound for ‖ηF(z1) + ηc1‖ and ‖z1 − z0‖, we have

V1 = ‖ηF(z1) + ηc1‖2 + 〈ηF(z1) + ηc1, z1 − z0〉
≤ ‖ηF(z1) + ηc1‖2 + ‖ηF(z1) + ηc1‖ · ‖z1 − z0‖

≤ (1 + ηL + η2L2)(2 + 2ηL + η2L2)

1 − η2L2
‖z0 − z∗‖2.
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Theorem 3. Suppose Assumption 1 holds. Let z0 ∈ Z be any starting point and {zk, zk+ 1
2
}k≥0 be the it-

erates of (EAG) with step size η ∈ (0, 1
L ). Then for any k ≥ 1, Vk+1 ≤ Vk +

η2L2

1−η2L2‖ηF(zk+1) + ηck+1‖2
,

where ck+1 =
zk−ηF(z

k+ 1
2
)+ 1

k+1 (z0−zk)−zk+1

η .

Proof. We first present several inequalities. From the monotonicity and L-Lipschitzness of F, we
have

(− k(k + 1)

2η2L2
) ·
(

η2L2 ·
∥

∥

∥
zk+ 1

2
− zk+1

∥

∥

∥

2
−
∥

∥

∥
ηF(zk+ 1

2
)− ηF(zk+1)

∥

∥

∥

2
)

≤ 0, (5)

(−k(k + 1)) · 〈ηF(zk+1)− ηF(zk), zk+1 − zk)〉 ≤ 0. (6)

Since zk+ 1
2
= ΠZ

[

zk − ηF(zk) +
1

k+1 (z0 − zk)
]

, we can infer that zk − ηF(zk) +
1

k+1(z0 − zk)−
zk+ 1

2
∈ NZ (zk+ 1

2
). Moreover, by definition of ck and ck+1, we know ck ∈ NZ (zk) and ck+1 ∈

NZ (zk+1). Therefore, we have

(−k(k + 1)) ·
〈

zk − ηF(zk)− zk+ 1
2
+

1

k + 1
(z0 − zk), zk+ 1

2
− zk+1

〉

≤ 0, (7)

(−k(k + 1)) · 〈ηck+1, zk+1 − zk〉 ≤ 0, (8)

(−k(k + 1)) ·
〈

ηck, zk − zk+ 1
2

〉

≤ 0. (9)

The following identity holds when we substitute ηck+1 on both sides using ηck+1 = zk − ηF(zk+ 1
2
)+

1
k+1(z0 − zk)− zk+1, which follows from the definition. The correctness of the identity follows from
Identity (28) in Proposition 3: we treat x0 as z0; xt as zk+ t−1

2
for t ∈ {1, 2, 3}; yt as ηF(zk+ t−1

2
) for

t ∈ {1, 2, 3}; u1 as ηck and u3 as ηck+1; p as η2L2 and q as k.

Vk − Vk+1 + LHS of Inequality (5) + LHS of Inequality (6) + LHS of Inequality (7)

+ LHS of Inequality (8) + LHS of Inequality (9)

=
k(k + 1)

2
·
∥

∥

∥

∥

zk+ 1
2
− zk + ηF(zk) + ηck +

1

k + 1
(zk − z0)

∥

∥

∥

∥

2

(10)

+
(1 − η2L2)k(k + 1)

2η2L2
·
∥

∥

∥
ηF(zk+ 1

2
)− ηF(zk+1)

∥

∥

∥

2
(11)

+ (k + 1) ·
〈

ηF(zk+ 1
2
)− ηF(zk+1), ηF(zk+1) + ηck+1

〉

. (12)
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Since ‖a‖2 + 〈a, b〉 = ‖a + b
2‖

2 − ‖b‖2

4 , we have

Expression(11) + Expression(12)

=

∥

∥

∥

∥

∥

√

(1 − η2L2)k(k + 1)

2η2L2
·
(

ηF(zk+ 1
2
)− ηF(zk+1)

)

+

√

η2L2(k + 1)

2(1 − η2L2)k
· (ηF(zk+1) + ηck+1)

∥

∥

∥

∥

∥

2

− k + 1

2k
· η2L2

1 − η2L2
‖ηF(zk+1) + ηck+1‖2.

Since k ≥ 1, we have k+1
2k ≤ 1. Hence, we have Vk+1 ≤ Vk +

η2L2

1−η2L2 ‖ηF(zk+1) + ηck+1‖2.

Remark 1. The proof of Theorem 3 naturally extends to the following algorithm and potential function:
Fix any z0 ∈ Z and η ∈ (0, 1

L ), δ ≥ 0. Update z 1
2
, z1, c1, V1 as (EAG) and for k ≥ 1:

zk+ 1
2
= ΠZ

[

zk − ηF(zk) +
1

k + δ + 1
(z0 − zk)

]

,

zk+1 = ΠZ
[

zk − ηF(zk+ 1
2
) +

1

k + δ + 1
(z0 − zk)

]

,

ck+1 =
zk − ηF(zk+ 1

2
) + 1

k+δ+1(z0 − zk)− zk+1

η
,

Vk+1 =
(k + δ + 1)(k + δ + 2)

2
‖ηF(zk+1) + ηck+1‖2 + (k + δ + 1) · 〈ηF(zk+1) + ηck+1, zk+1 − z0〉.

Since the identity in Proposition 3 holds for any q 6= 0, we only need to change every k to be k + δ in the
proof of Theorem 3. It is possible that a choice of δ > 0 leads to a better upper bound (better constant) than
δ = 0 which is chosen for (EAG) , but we do not optimize over δ here.

Lemma 2. For k ≥ 2,

(

k(k + 1)

4
− η2L2

1 − η2L2

)

· ‖ηF(zk) + ηck‖2 ≤ V1 + ‖z0 − z∗‖2 +
η2L2

1 − η2L2

k−1

∑
t=2

‖ηF(zt) + ηct‖2.

Moreover, when η ∈ (0, 1√
3L
), then

k2

4
· ‖ηF(zk) + ηck‖2 ≤ V1 + ‖z0 − z∗‖2 +

η2L2

1 − η2L2

k−1

∑
t=2

‖ηF(zt) + ηct‖2.
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Proof. Fix any k ≥ 2. By definition, we have

Vk =
k(k + 1)

2
‖ηF(zk) + ηck‖2 + k〈ηF(zk) + ηck, zk − z0〉

≥ k(k + 1)

2
‖ηF(zk) + ηck‖2 + k〈ηF(zk) + ηck, z∗ − z0〉

(F + ∂IZ is monotone and 0 ∈ F(z∗) + ∂IZ (z∗))

≥ k(k + 1)

2
‖ηF(zk) + ηck‖2 − k(k + 1)

4
‖ηF(zk) + ηck‖2 − k

k + 1
‖z0 − z∗‖2

( 〈a, b〉 ≥ − c
4‖a‖2 − 1

c‖b‖2)

≥ k(k + 1)

4
‖ηF(zk) + ηck‖2 − ‖z0 − z∗‖2. (13)

According to Theorem 3, Vt+1 − Vt ≤ η2L2

1−η2L2 ‖ηF(zt+1) + ηct+1‖2 for all t ≥ 1. Through a

telescoping sum, we obtain the following inequality:

Vk ≤ V1 +
η2L2

1 − η2L2
·

k

∑
t=2

‖ηF(zt) + ηct‖2. (14)

The first inequality in the statement follows from the combination of Inequality (13) and (14).

The second inequality in the statement follows from the fact that η2L2

1−η2L2 ≤ 1
2 ≤ k

4 when η ∈
(0, 1√

3L
).

Theorem 4. Suppose Assumption 1 holds. Let z0 ∈ Z be any starting point and {zk, zk+ 1
2
}k≥0 be the

iterates of (EAG) with step size η ∈ (0, 1√
3L
). Denote D := ‖z0 − z∗‖2

. Then for any T ≥ 1,

rnat
F,∂IZ

(zT)
2 =

∥

∥

∥
zT − ΠZ

[

zT − F(zT)
]∥

∥

∥

2
≤ ‖F(zT) + cT‖2 ≤ 44

η2L2(1 − 3η2L2)
· D2L2

T2

GAP
SVI
F,D (zT) ≤

√
44

ηL
√

1 − 3η2L2
· D2L

T
.

Proof. Note that by non-expansiveness of ΠZ , we have

∥

∥

∥
zT − ΠZ

[

zT − F(zT)
]∥

∥

∥

2
=
∥

∥

∥
ΠZ [zT + cT]− ΠZ

[

zT − F(zT)
]∥

∥

∥

2
≤ ‖F(zT) + cT‖2.

The bound on GAP
SVI
F,D (zT) follows from the bound on rtan

F,A(zT) since GAP
SVI
F,D (zT) ≤ D · rtan

F,A(zT)
[Cai et al., 2022, Lemma 2].

Denote ak := ‖ηF(zk)+ηck‖2

‖z0−z∗‖2 . It suffices to prove that for all k ≥ 1,

ak ≤
44

(1 − 3η2L2)k2
. (15)
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Note that from the proof of Proposition 1, we have

‖ηF(z1) + ηc1‖2 ≤ (1 + ηL + η2L2)2

1 − η2L2
‖z0 − z∗‖2 ⇒ a1 ≤ (1 + ηL + η2L2)2

1 − η2L2
≤ 6.

Thus Equation (15) holds for k = 1.
From Proposition 1, we also have

V1 ≤
(1 + ηL + η2L2)(2 + 2ηL + η2L2)

1 − η2L2
‖z0 − z∗‖2 ≤ 10 · ‖z0 − z∗‖2.

Thus by Lemma 2, we have

k2

4
· ‖ηF(zk) + ηck‖2 ≤ 11 · ‖z0 − z∗‖2 +

η2L2

1 − η2L2

k−1

∑
t=2

‖ηF(zt) + ηct‖2

⇒ k2

4
· ak ≤ 11 +

η2L2

1 − η2L2

k−1

∑
t=2

at.

Applying Proposition 4 with C1 = 11 and p = η2L2 ∈ (0, 1
3) completes the proof.

4 Optimal Algorithms for General Inclusions with Negatively Comono-

tone Operators

Algorithm. The following (EAG+) is a generalization of (EAG) to the general inclusion problem
(GI) . Given any initial point z0 ∈ R

n and step size η > 0, (EAG+) updates {zk+ 1
2
, zk+1, ck+1}k≥0 as

follows:

z 1
2
= JηA

[

z0 − ηF(z0)
]

, z1 = JηA

[

z0 − ηF(z 1
2
)
]

, c1 =
z0 − ηF(z 1

2
)− z1

η
, (16)

and for k ≥ 1:

zk+ 1
2
= zk − ηF(zk) +

1

k + 2
(z0 − zk)− ηck

zk+1 = JηA

[

zk − ηF(zk+ 1
2
) +

1

k + 2
(z0 − zk)

]

ck+1 =
zk − ηF(zk+ 1

2
) + 1

k+2(z0 − zk)− zk+1

η

(EAG+)

Note that by definition we have ck ∈ A(zk) for all k ≥ 1.

Remark 2. In the special case where A = ∂IZ is the normal cone operator, JηA is the projection operator
ΠZ . In this case, (EAG+) is still different from (EAG) . The major difference is that in each iteration,
(EAG) performs two projections while (EAG+) only performs one projection. Consequently, the iterates
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{zk+ 1
2
, zk+1}k≥0 produced by (EAG) are all in the feasible set Z , while {zk+ 1

2
}k≥1 produced by (EAG+)

may not belong to Z . As a result, the convergence guarantee for (EAG+) requires that monotonicity and
Lipschitzness of F hold on Rn while the guarantee for (EAG) only requires those properties to hold on the
feasible set Z . Nevertheless, we believe in many natural settings, i.e., min-max optimization, the operator
F is indeed monotone in the entire Euclidean space.

We use the following potential function:

Vk =
(k + 1)(k + 2)

2
· ‖ηF(zk) + ηck‖2 + (k + 1) · 〈ηF(zk) + ηck, zk − z0〉, k ≥ 1.

The following proposition provides a bound for V1.

Proposition 2. V1 ≤ η2(1 + ηL + η2L2)(5 + 5ηL + 3η2L2) · rtan(z0)2. If η ∈ (0, 1
2L ), then V1 ≤

15
4L2 · rtan

F,A(z0)2.

Proof. Let us bound ‖z 1
2
− z0‖ first. For any c ∈ A(z0), we have

∥

∥

∥
z 1

2
− z0

∥

∥

∥
=
∥

∥JηA(z0 − ηF(z0))− JηA(z0 + ηc)
∥

∥

≤ ‖ηF(z0) + ηc‖. (non-expansiveness of JηA)

Thus we have ‖z 1
2
− z0‖ ≤ η · minc∈A(z0) ‖F(z0) + c‖ = η · rtan

F,A(z0).

Now we bound ‖ηF(z1) + ηc1‖ and ‖z1 − z0‖ first. By definition of c1, we have

‖ηF(z1) + ηc1‖ =
∥

∥

∥
ηF(z1)− ηF(z 1

2
) + z0 − z1

∥

∥

∥

≤ (ηL) ·
∥

∥

∥
z1 − z 1

2

∥

∥

∥
+ ‖z0 − z1‖ (F is L-Lipschitz)

≤ (1 + ηL) ·
∥

∥

∥
z1 − z 1

2

∥

∥

∥
+
∥

∥

∥
z 1

2
− z0

∥

∥

∥

≤ (1 + ηL) ·
∥

∥

∥
ηF(z 1

2
)− ηF(z0)

∥

∥

∥
+
∥

∥

∥
z 1

2
− z0

∥

∥

∥
(JηA is non-expansive)

≤ (1 + ηL + η2L2) ·
∥

∥

∥
z 1

2
− z0

∥

∥

∥
. (F is L-Lipschitz)

≤ η(1 + ηL + η2L2) · rtan
F,A(z0).

In the above chain of inequalies, we also prove ‖z1 − z0‖ ≤ η(1 + ηL) · rtan(z0).
Finally, by definition of V1, we have

V1 = 3 · ‖ηF(z1) + ηc1‖2 + 2 · 〈ηF(z1) + ηc1, z1 − z0〉
≤ 3 · ‖ηF(z1) + ηc1‖2 + 2 · ‖ηF(z1) + ηc1‖ · ‖z1 − z0‖ (Cauchy-Schwarz inequality)

≤ η2(1 + ηL + η2L2)(5 + 5ηL + 3η2L2) · rtan
F,A(z0)

2.

If η ∈ (0, 1
2L ), then V1 ≤ 15η2 · rtan

F,A(z0)2 ≤ 15
4L2 · rtan(z0)2.
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4.1 Monotone Case

Theorem 5. Suppose Assumption 2 holds with ρ = 0. Let z0 ∈ R

n be any starting point and {zk+ 1
2
, zk+1}k≥0

be the iterates of (EAG+) with step size η ∈ (0, 1
L ). Then for any k ≥ 1, Vk+1 ≤ Vk +

η2L2

1−η2L2‖ηF(zk+1) + ηck+1‖2.

Proof. Fix any k ≥ 1. We first present several inequalities. Since F is L-Lipschitz, we have
(

− (k + 1)(k + 2)

2η2L2

)

·
(

η2L2 ·
∥

∥

∥
zk+ 1

2
− zk+1

∥

∥

∥

2
−
∥

∥

∥
ηF(zk+ 1

2
)− ηF(zk+1)

∥

∥

∥

2
)

≤ 0. (17)

Additionally, as F is monotone, A is maximally monotone,ck ∈ A(zk), and ck+1 ∈ A(zk+1), we
have

(−(k + 1)(k + 2)) · 〈ηF(zk+1) + ηck+1 − ηF(zk)− ηck, zk+1 − zk)〉 ≤ 0. (18)

The following identity holds due to Identity (29) in Proposition 3: we treat x0 as z0; xt as zk+ t−1
2

for t ∈ {1, 2, 3}; yt as ηF(zk+ t−1
2
) for t ∈ {1, 2, 3}; u1 as ηck, and u3 as ηck+1; p as η2L2, and q as

k + 1. Note that by the update rule of (EAG+) , we have ηck = zk − ηF(zk) +
1

k+2(z0 − zk)− zk+ 1
2
,

and by definition, we have ηck+1 = zk − ηF(zk+ 1
2
) + 1

k+2(z0 − zk)− zk+1.

Vk − Vk+1 + LHS of Inequality (17) + LHS of Inequality (18)

=
(1 − η2L2)(k + 1)(k + 2)

2η2L2
·
∥

∥

∥
ηF(zk+ 1

2
)− ηF(zk+1)

∥

∥

∥

2
(19)

+ (k + 2) ·
〈

ηF(zk+ 1
2
)− ηF(zk+1), ηF(zk+1) + ηck+1

〉

. (20)

Since ‖a‖2 + 〈a, b〉 = ‖a + b
2‖

2 − ‖b‖2

4 , we have

Expression(19) + Expression(20)

=

∥

∥

∥

∥

∥

√

(1 − η2L2)(k + 1)(k + 2)

2η2L2
·
(

ηF(zk+ 1
2
)− ηF(zk+1)

)

+

√

η2L2(k + 2)

2(1 − η2L2)(k + 1)
· (ηF(zk+1) + ηck+1)

∥

∥

∥

∥

∥

2

− k + 2

2(k + 1)
· η2L2

1 − η2L2
‖ηF(zk+1) + ηck+1‖2.

Since k ≥ 1, we have k+2
2(k+1)

≤ 1. Hence, Vk+1 ≤ Vk +
η2L2

1−η2L2 ‖ηF(zk+1) + ηck+1‖2.

4.2 Non-Monotone Case

Fact 2. For any ρ ≥ − 1
24L , there exists η ∈ (0, 1

2L ) such that

1 −
(

4 − 4ρ

η

)

η2L2 +
4ρ

η
≥ 0. (21)

Moreover, any η ∈ (0, 1
2L ) that satisfies Inequality (21) also satisfies

ρ
η ≥ − 1

4 .
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Proof. Rearranging Inequality (21), we get

ρ ≥ ηL(4η2L2 − 1)

4(1 + η2L2)
· 1

L

Denote x = ηL ∈ (0, 1
2) and consider function f (x) = x(4x2−1)

4(1+x2)
. Note that

min
x∈(0, 1

2 )
f (x) ≤ f (

1

3
) = − 1

24
.

Thus there exists η = 1
3L ∈ (0, 1

2L ) such that Inequality (21) holds.
Moreover, by rearranging Inequality (21), we get

ρ

η
≥ − 1 − 4η2L2

4(1 + η2L2)
≥ −1

4
.

Theorem 6. Suppose Assumption 2 holds with − 1
24L ≤ ρ ≤ 0. Fix p = 1

4 . Let z0 ∈ R

n be any starting

point and {zk+ 1
2
, zk+1}k≥0 be the iterates of (EAG+) with step size η ∈ (0, 1

2L ) that satisfies Inequality

(21). Then for any k ≥ 1, Vk+1 ≤ Vk +
p

1−p‖ηF(zk+1) + ηck+1‖2 = Vk +
1
3 · ‖ηF(zk+1) + ηck+1‖2.

Proof. Fix any k ≥ 1. We first present several inequalities. Since F is L-Lipschitz, we have

η2L2 ·
∥

∥

∥
zk+ 1

2
− zk+1

∥

∥

∥

2
−
∥

∥

∥
ηF(zk+ 1

2
)− ηF(zk+1)

∥

∥

∥

2
≥ 0.

Denote c = − 4pρ
η ≥ 0. Multiply both sides of the above inequality by (1 + c) and rearrange terms

we get

p ·
∥

∥

∥
zk+ 1

2
− zk+1

∥

∥

∥

2
−
∥

∥

∥
ηF(zk+ 1

2
)− ηF(zk+1)

∥

∥

∥

2

+ ((1 + c)η2L2 − p) ·
∥

∥

∥
zk+ 1

2
− zk+1

∥

∥

∥

2
− c ·

∥

∥

∥
ηF(zk+ 1

2
)− ηF(zk+1)

∥

∥

∥

2
≥ 0. (22)

By definition, we have ck ∈ A(zk) and ck+1 ∈ A(zk+1). Since E = F + A satisfies ρ-comonotonicity,
we have

〈ηF(zk+1) + ηck+1 − ηF(zk)− ηck, zk+1 − zk〉 −
ρ

η
‖ηF(zk+1) + ηck+1 − ηF(zk)− ηck‖2 ≥ 0. (23)

The following identity holds due to Identity (29) in Proposition 3: we treat x0 as z0; xt as zk+ t−1
2

for t ∈ {1, 2, 3}; yt as ηF(zk+ t−1
2
) for t ∈ {1, 2, 3}; u1 as ηck, and u3 as ηck+1; p as out choice of p

in the statement, and q as k + 1. Note that by update rule, we have ηck = zk − ηF(zk) +
1

k+2(z0 −
zk) − zk+ 1

2
, and by definition, we have ηck+1 = zk − ηF(zk+ 1

2
) + 1

k+2(z0 − zk) − zk+1. Note that
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Term (24) and Term (25) come from the identity in Proposition 3, Term (26) directly comes from
(22), and Term (27) directly comes from (23).

Vk − Vk+1 +

(

− (k + 1)(k + 2)

2p

)

· LHS of Inequality (22) + (−(k + 1)(k + 2)) · LHS of Inequality (23)

=
(1 − p)(k + 1)(k + 2)

2p
·
∥

∥

∥
ηF(zk+ 1

2
)− ηF(zk+1)

∥

∥

∥

2
(24)

+ (k + 2) ·
〈

ηF(zk+ 1
2
)− ηF(zk+1), ηF(zk+1) + ηck+1

〉

(25)

+
(k + 1)(k + 2)

2p
·
(

(p − (1 + c)η2L2) ·
∥

∥

∥
zk+ 1

2
− zk+1

∥

∥

∥

2
+ c ·

∥

∥

∥
ηF(zk+ 1

2
)− ηF(zk+1)

∥

∥

∥

2
)

(26)

+
(k + 1)(k + 2)ρ

η
‖ηF(zk+1) + ηck+1 − ηF(zk)− ηck‖2. (27)

Since ‖a‖2 + 〈a, b〉 = ‖a + b
2‖

2 − ‖b‖2

4 , we have

Expression(24) + Expression(25)

=

∥

∥

∥

∥

∥

√

(1 − p)(k + 1)(k + 2)

2p
·
(

ηF(zk+ 1
2
)− ηF(zk+1)

)

+

√

p(k + 2)

2(1 − p)(k + 1)
· (ηF(zk+1) + ηck+1)

∥

∥

∥

∥

∥

2

− k + 2

2(k + 1)
· p

1 − p
‖ηF(zk+1) + ηck+1‖2.

Since k ≥ 1, we have k+2
2(k+1) ≤ 1.

Now it remains to prove Expression (26) + Expression (27) is non-negative. Recall that c =

− 4pρ
η .

2

(k + 1)(k + 2)
· (Expression(26) + Expression(27))

=

(

1 −
(

1

p
− 4ρ

η

)

η2L2

)

·
∥

∥

∥
zk+ 1

2
− zk+1

∥

∥

∥

2
− 4ρ

η
·
∥

∥

∥
ηF(zk+ 1

2
)− ηF(zk+1)

∥

∥

∥

2

+
2ρ

η
· ‖ηF(zk+1) + ηck+1 − ηF(zk)− ηck‖2

≥
(

1 −
(

1

p
− 4ρ

η

)

η2L2

)

·
∥

∥

∥
zk+ 1

2
− zk+1

∥

∥

∥

2
+

4ρ

η

∥

∥

∥
ηF(zk+ 1

2
) + ηck+1 − ηF(zk)− ηck

∥

∥

∥

2

(‖A‖2 − 1
2‖B‖2 ≥ −‖A + B‖2)

=

(

1 −
(

1

p
− 4ρ

η

)

η2L2 +
4ρ

η

)

·
∥

∥

∥
zk+ 1

2
− zk+1

∥

∥

∥

2

≥ 0. (Fact 2: Inequality (21) and p = 1/4)
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The last equality holds because, by the update rule of (EAG+)

zk+ 1
2
− zk+1 =

(

zk − ηF(zk) +
1

k + 2
(z0 − zk)− ηck

)

−
(

zk − ηF(zk+ 1
2
) +

1

k + 2
(z0 − zk)− ηck+1

)

= ηF(zk+ 1
2
) + ηck+1 − ηF(zk)− ηck.

Hence, Vk+1 ≤ Vk +
p

1−p‖ηF(zk+1) + ηck+1‖2 = Vk +
1
3‖ηF(zk+1) + ηck+1‖2.

Lemma 3. Suppose Assumption 2 holds with ρ ∈ [0,− 1
24L ]. Let z0 ∈ R

n be any starting point and

{zk+ 1
2
, zk+1}k≥0 be the iterates of (EAG+) with step size η ∈ (0, 1

2L ) that satisfies Inequality (21). Then

for any k ≥ 2,

(k + 1)2

4
· ‖ηF(zk) + ηck‖2 ≤ V1 + ‖z0 − z∗‖2 +

1

3
·

k−1

∑
t=2

‖ηF(zt) + ηct‖2.

Proof. Fix any k ≥ 2. By definition, we have

Vk =
(k + 1)(k + 2)

2
‖ηF(zk) + ηck‖2 + (k + 1)〈ηF(zk) + ηck, zk − z0〉

=
(k + 1)(k + 2)

2
‖ηF(zk) + ηck‖2 + (k + 1)〈ηF(zk) + ηck, z∗ − z0〉+ (k + 1)〈ηF(zk) + ηck, zk − z∗〉

≥ (k + 1)(k + 2)

2
‖ηF(zk) + ηck‖2 + (k + 1)〈ηF(zk) + ηck, z∗ − z0〉+

(k + 1)ρ

η
‖ηF(zk) + ηck‖2

(0 ∈ F(z∗) + A(z∗) and F + A is ρ-comonotone)

≥ (k + 1)(k + 3
2)

2
‖ηF(zk) + ηck‖2 + (k + 1)〈ηF(zk) + ηck, z∗ − z0〉

(
ρ
η ≥ − 1

4 according to Fact 2)

≥ (k + 1)(k + 3
2)

2
‖ηF(zk)− ηck‖2 − (k + 1)(k + 3

2)

4
‖ηF(zk)− ηck‖2 − k + 1

k + 3
2

‖z0 − z∗‖2

( 〈a, b〉 ≥ − c
4‖a‖2 − 1

c‖b‖2)

≥ (k + 1)(k + 3
2)

4
‖ηF(zk) + ηck‖2 − ‖z0 − z∗‖2. (k ≥ 2)

According to Theorem 6, we know that

Vk ≤ V1 +
1

3
·

k

∑
t=2

‖ηF(zt) + ηct‖2.

Combing the above two inequalities and rearranging terms, we obtain the following inequality
for any k ≥ 2:

(

(k + 1)(k + 3
2)

4
− 1

3

)

‖ηF(zk) + ηck‖2 ≤ V1 + ‖z0 − z∗‖2 +
1

3
·

k−1

∑
t=2

‖ηF(zt) + ηct‖2.
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Since 1
3 ≤ (k+1)

8 for all k ≥ 2, we can further simplify the inequality for any k ≥ 2:

(k + 1)2

4
· ‖ηF(zk) + ηck‖2 ≤ V1 + ‖z0 − z∗‖2 +

1

3
·

k−1

∑
t=2

‖ηF(zt) + ηct‖2.

Theorem 7. Suppose Assumption 2 holds with ρ ∈ [0,− 1
24L ]. Let z0 ∈ R

n be any starting point and

{zk+ 1
2
, zk+1}k≥0 be the iterates of (EAG+) with step size η ∈ (0, 1

2L ) that satisfies Inequality (21). Then

for any T ≥ 1,

rnat
F,A(zT)

2 =
∥

∥

∥
zT − JA

[

zT − F(zT)
]∥

∥

∥

2
≤ min

c∈A(zT)
‖F(zT) + c‖2 = rtan

F,A(zT)
2 ≤ 16

η2L2
· H2

0 L2

T2
,

where H2
0 = ‖z0 − z∗‖2 + 15

4L2 · rtan
F,A(z0)2.

Proof. The first inequality follows from Fact 1. To prove the second inequality, we denote ak :=
‖ηF(zk)+ηck‖2

H2
0

for k ≥ 1. It suffices to prove for all k ≥ 1,

ak ≤
16

k2
.

From the proof of Proposition 2, we have

‖ηF(z1) + ηc1‖2 ≤ η2(1 + ηL + η2L2)2 · rtan
F,A(z0)

2 ⇒ a1 ≤ 1.

From Proposition 2, we have V1 ≤ 15
4L2 · rtan

F,A(z0)2 and thus V1 + ‖z0 − z∗‖2 ≤ H2
0 . Then from

Lemma 3, we have

k2

4
· ak ≤ 1 +

1

3
·

t−1

∑
t=2

at.

Note that 1
3 =

1
4

1− 1
4

. Applying Proposition 4 with C1 = 1 and p = 1
4 , we get for all k ≥ 2,

ak ≤
4C1

(1 − 3p)k2
=

16

k2
.

This completes the proof.
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5 Auxiliary Propositions

Proposition 3. Let x0, x1, x2, x3, y1, y2, y3, u1, u3 be arbitrary vectors in Rn and p, q 6= 0 be real numbers.
When u3 = x1 − y2 +

1
q+1(x0 − x1)− x3, the following identity holds:

q(q + 1)

2
· ‖y1 + u1‖2 + q · 〈y1 + u1, x1 − x0〉

−
(

(q + 1)(q + 2)

2
· ‖y3 + u3‖2 + (q + 1) · 〈y3 + u3, x3 − x0〉

)

− q(q + 1)

2p
·
(

p · ‖x2 − x3‖2 − ‖y2 − y3‖2
)

− q(q + 1) · 〈y3 − y1, x3 − x1〉

− q(q + 1) ·
〈

x1 − y1 − x2 +
1

q + 1
(x0 − x1), x2 − x3

〉

− q(q + 1) · 〈u3, x3 − x1〉
− q(q + 1) · 〈u1, x1 − x2〉

=
q(q + 1)

2
·
∥

∥

∥

∥

x2 − x1 + y1 + u1 +
1

q + 1
(x1 − x0)

∥

∥

∥

∥

2

+
(1 − p)q(q + 1)

2p
· ‖y2 − y3‖2

+ (q + 1) · 〈y2 − y3, y3 + u3〉

(28)

Moreover, if u1 = x1 − y1 +
1

q+1(x0 − x1)− x2, then the following identity holds:

q(q + 1)

2
· ‖y1 + u1‖2 + q · 〈y1 + u1, x1 − x0〉

−
(

(q + 1)(q + 2)

2
· ‖y3 + u3‖2 + (q + 1) · 〈y3 + u3, x3 − x0〉

)

− q(q + 1)

2p
·
(

p · ‖x2 − x3‖2 − ‖y2 − y3‖2
)

− q(q + 1) · 〈y3 + u3 − y1 − u1, x3 − x1〉

=
(1 − p)q(q + 1)

2p
· ‖y2 − y3‖2

+ (q + 1) · 〈y2 − y3, y3 + u3〉

(29)

Proof. We verify the first identity using MATLAB. Here is the verification MATLAB code 4. The
second identity follows easily from the first identity. Notice that when u1 = x1 − y1 +

1
q+1(x0 −

x1)− x2, the first term on the RHS of Identity (28) is 0. Moreover, as we demonstrate below, the

4https://github.com/weiqiangzheng1999/Accelerated-Non-Monotone-Inclusion/blob/main/Identity_verification.m
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sum of the fourth term to the seventh term on the LHS of Identity (28) is exactly identical to the
fourth term on the LHS of Identity (29).

〈y3 − y1, x3 − x1〉

+

〈

x1 − y1 − x2 +
1

q + 1
(x0 − x1), x2 − x3

〉

+ 〈u3, x3 − x1〉
+ 〈u1, x1 − x2〉

=〈y3 − y1, x3 − x1〉+ 〈u1, x2 − x3〉+ 〈u3, x3 − x1〉+ 〈u1, x1 − x2〉
=〈y3 + u3 − y1 − u1, x3 − x1〉

Therefore, Identity (29) follows from Identity (28).

Proposition 4. Let {ak ∈ R

+}k≥2 be a sequence of real numbers. Let C1 ≥ 0 and p ∈ (0, 1
3) be two real

numbers. If the following condition holds for every k ≥ 2,

k2

4
· ak ≤ C1 +

p

1 − p
·

k−1

∑
t=2

at, (30)

then for each k ≥ 2 we have

ak ≤
4 · C1

1 − 3p
· 1

k2
. (31)

Proof. We prove the statement by induction.
Base Case: k = 2. From Inequality (30), we have

22

4
· a2 ≤ C1 ⇒ a2 ≤ C1 ≤

4 · C1

1 − 3p
· 1

22
.

Thus, Inequality (31) holds for k = 2.
Inductive Step: for any k ≥ 3. Fix some k ≥ 3 and assume that Inequality (31) holds for all
2 ≤ t ≤ k − 1. We slightly abuse notation and treat the summation in the form ∑

2
t=3 as 0. By

Inequality (30), we have

k2

4
· ak ≤ C1 +

p

1 − p
·

k−1

∑
t=2

at

≤ C1

1 − p
+

p

1 − p
·

k−1

∑
t=3

at (a2 ≤ C1)

≤ C1

1 − p
+

4p · C1

(1 − p)(1 − 3p)
·

k−1

∑
t=3

1

t2
(Induction assumption on Inequality (31))

≤ C1

1 − p
+

2p · C1

(1 − p)(1 − 3p)
(∑∞

t=3
1
t2 = π2

6 − 5
4 ≤ 1

2 )

=
C1

1 − 3p
.
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This complete the inductive step. Therefore, for all k ≥ 2, we have ak ≤ 4·C1
1−3p · 1

k2 .
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