Doubly Optimal No-Regret Learning in Monotone Games

Yang Cai
Weiqiang Zheng

Abstract

We consider online learning in multi-player smooth monotone games. Existing algorithms have limitations such as (1) being only applicable to strongly monotone games; (2) lacking the no-regret guarantee; (3) having only asymptotic or slow $O(\frac{1}{\sqrt{T}})$ last-iterate convergence rate to a Nash equilibrium. While the $O(\frac{1}{\sqrt{T}})$ rate is tight for a large class of algorithms including the well-studied extragradient algorithm and optimistic gradient algorithm, it is not optimal for all gradient-based algorithms. We propose the accelerated optimistic gradient (AOG) algorithm, the first doubly optimal no-regret learning algorithm for smooth monotone games. Namely, our algorithm achieves both (i) the optimal $O(\sqrt{T})$ regret in the adversarial setting under smooth and convex loss functions and (ii) the optimal $O(\frac{1}{T})$ last-iterate convergence rate to a Nash equilibrium in multi-player smooth monotone games. As a byproduct of the accelerated last-iterate convergence rate, we further show that each player suffers only an $O(\log T)$ individual worst-case dynamic regret, providing an exponential improvement over the previous state-of-the-art $O(\sqrt{T})$ bound.

1. Introduction

We consider multi-agent online learning in games (Cesa-Bianchi & Lugosi, 2006), where the agents engaged in repeated play of the same game. In this model, the game (i.e., the agents’ payoff functions) is unknown to the agents, and they must learn to play the game through repeated interaction with the other agents. We focus on a rich family of multi-player games – monotone games that has been the central object of a series of recent studies in online learning and optimization (Hsieh et al., 2019; Golowich et al., 2020a; Lin et al., 2020; Hsieh et al., 2021; Lin et al., 2022; Cai et al., 2022b). Monotone games, first introduced by Rosen (1965), encompass many commonly studied games as special cases such as two-player zero-sum games, convex-concave games, λ-cocoercive games (Lin et al., 2020), zero-sum polymatrix games (Bregman & Fokin, 1987; Daskalakis & Papadimitriou, 2009; Cai & Daskalakis, 2011; Cai et al., 2016), and zero-sum socially-concave games (Even-Dar et al., 2009). In this paper, we investigate the following fundamental question:

How fast can the players’ day-to-day behavior converge to a Nash equilibrium in monotone games if players act according to a no-regret learning algorithm? (*)

In this context, “day-to-day behavior” is used to describe the collective strategy adopted by the agents during each iteration of the repeated game. Our question lies at the heart of the area of learning in games, as illustrated in (Fudenberg et al., 1998; Sorin, 2002; Cesa-Bianchi & Lugosi, 2006). The aim here is to discern whether simple and intuitive learning rules or algorithms (also termed ‘dynamics’ in game theory literature) can lead to the convergence of a joint strategy towards an equilibrium when used by agents to adapt their strategies. The presence of such a learning algorithm offers a logical explanation for the emergence of equilibrium from repetitive interactions, which may not always exhibit complete rationality.

Regret is the central metric used in online learning to measure the performance of a learning algorithm. In the classical single-agent setting, online learning considers the following repeated interaction between a player and the environment: (i) at day t, the player chooses an action $x_t \in \Omega \subseteq \mathbb{R}^d$; (ii) the environment selects a loss function $f_t(\cdot)$, and the player receives the loss $f_t(x_t)$ along with some feedback (such as the loss function $f_t(\cdot)$, the gradient $\nabla f_t(x_t)$, or just the loss $f_t(x_t)$) and the process repeats. The regret is defined as the difference between the cumulative loss of the player $\sum_{t=1}^{T} f_t(x_t)$ and the cumulative loss of the best fixed action in hindsight $\min_{x \in \Omega} \sum_{t=1}^{T} f_t(x)$. A single-agent on-
line learning algorithm is considered no-regret if, even under an adversarially chosen sequence of loss functions, its regret at the end of round T is sub-linear in T.

Arguably, a most common scenario, where the above online learning model instantiates, is multi-agent online learning in games. Namely, every player makes an online decision on their action and receives a loss that is determined based on their own action, as well as the actions chosen by the others. Online learning in repeated games is closely related to various applications in machine learning. To illustrate, the process of training Generative Adversarial Networks (GANs) can be perceived as a zero-sum game played recurrently between two agents (Arjovsky et al., 2017). Recent breakthroughs in game-solving, such as AlphaZero (Silver et al., 2017), AI for Stratego (Perolat et al., 2022), leverage self-play, where two agents employ the same learning algorithm to continuously compete against each other, aiming to arrive at a Nash equilibrium.

Do these learning algorithms converge in the repeated game? A well-known result states that if each player uses a no-regret learning algorithm to adapt their action, the empirical frequency of their joint action converges to a coarse correlated equilibrium (CCE) (Cesa-Bianchi & Lugosi, 2006). However, this general convergence result has two caveats: (i) the guaranteed convergence is only the empirical frequency of the players’ actions rather than the actual, day-to-day play; and (ii) the CCE of CCE has limitations and may violate even the most basic rationalizability axioms (Viossat & Zaptechelnyuk, 2013). Driven by these dual shortcomings, a significant body of work, as evidenced by various studies (Zhou et al., 2017a;b; 2018; Daskalakis & Panageas, 2019; Mokhtari et al., 2020a; Hsieh et al., 2019; Lei et al., 2021; Golowich et al., 2020c;a; Lin et al., 2020; 2022; Cai et al., 2022b), aims to identify specific types of games as well as no-regret learning algorithms such that the convergence can be strengthened in two principal ways: (a) attaining convergence to the more compelling solution concept of Nash equilibrium, and (b) assuring convergence in the players’ day-to-day behaviors, rather than merely in their empirical frequency of actions. In other words, the goal is to pinpoint specific games and devise no-regret learning algorithms so that the players’ action profile converges to a Nash equilibrium in the last-iterate.

Monotone games emerge as the most general class of games where such strengthened convergence result is known. Unlike in the general convergence to CCE that holds for any no-regret learning algorithms, the last-iterate convergence to Nash equilibria is more subtle and demands a careful design of the learning algorithm. For example, as demonstrated by Mertikopoulos et al. (2018), the well-known family of no-regret learning algorithms – follow-the-regularized-leader fails to converge even in two-player zero-sum games (a special case of monotone games), as the action profile of the players may cycle in space perpetually. The key to correct such cycling behavior is to introduce optimism in the algorithm. Indeed, the optimistic gradient (OG) algorithm by Popov (1980), a optimistic variant of the gradient descent algorithm, has recently been shown to exhibit an $O\left(\frac{1}{T}\right)$ last-iterate convergence rate to a Nash equilibrium in monotone games (Golowich et al., 2020a; Cai et al., 2022b; Golowich et al., 2020b). As shown by Golowich et al. (2020a), this rate is tight for OG. However, it is not clear if $O\left(\frac{1}{\sqrt{T}}\right)$ is the optimal rate achievable by a no-regret algorithm.

1.1. Our Contributions

We consider multi-agent online learning in monotone games with gradient feedback. More concretely, each player i at day t not only observes their loss $\ell_i(x_i^t, x_{-i}^t)$ but also receives the gradient $\nabla x_i^t \ell_i(x_i^t, x_{-i}^t)$.

Main Contribution We answer question (*) by presenting a new single-agent online learning algorithm – the Accelerated Optimistic Gradient (AOG) that is doubly optimal (Theorem 5). More specifically,

Optimal regret: AOG achieves the optimal $O(\sqrt{T})$-regret in the adversarial environment;

Optimal last-iterate convergence rate: If all players use AOG to determine their actions in a monotone game, the action profile has the optimal $O\left(\frac{1}{T}\right)$ last-iterate convergence rate to a Nash equilibrium.

Note that $O\left(\frac{1}{T}\right)$ is the fastest rate possible for solving monotone games using any gradient-based methods (Ouyang & Xu, 2021; Yoon & Ryu, 2021). Since the players only receive gradient feedback in our setting, this lower bound also applies to our problem.

Step-size adaptation. We provide an implementation of AOG (Algorithm 1) that can automatically adapt to the environment and achieves a best-of-both-world guarantee. When deploy in an adversarial setting, Algorithm 1 obtains at most $O(\sqrt{T})$-regret; when deploy in a monotone game where other players also play according to Algorithm 1, the action profile converges to a Nash equilibrium at a $O\left(\frac{1}{T}\right)$ rate in the last-iterate. Importantly, the adaptation does not require any communication between the players and only

1For instance, a CCE may put positive weight only on strictly dominated actions.

2For the more general family of variationally stable games, only asymptotic convergence to Nash equilibria is known.

3These lower bounds apply to general first-order methods that produce their iterates in an arbitrary manner based on past gradient information.
uses the the player’s local information. We believe such guarantee is crucial as even in a game setting, other players may not follow the same algorithm and might act arbitrarily, in which case, our algorithm still provides a guarantee on the worst-case regret.

Dynamic regret. As an interesting byproduct of our last-iterate convergence rate, we further show that each player suffers only an $O(\log T)$ individual dynamic regret, when all players play according to Algorithm 1 (Theorem 3). The dynamic regret of an algorithm is defined as the difference between the algorithm’s cumulative loss and the cumulative loss of the best action every day. The dynamic regret is notoriously difficult to minimize, and it is well-known that for any function f with gradient operator V which is continuous in x, it holds

$$\|V(x) - V(x')\| \leq L \cdot \|x - x'\|, \forall x, x' \in \mathcal{X},$$

and monotone (Rosen, 1965):

$$(V(x) - V(x'), x - x') \geq 0, \forall x, x' \in \mathcal{X}.$$

It is not hard to see that for smooth monotone games, a Nash equilibrium always exists. If x_* is a Nash equilibrium, then a simple characterization of x_* is that, for any $x \in \mathcal{X}$, it holds that $\langle V(x_*), x_* - x \rangle \leq 0$.

Monotone games include many well-studied games, e.g., two-player zero-sum games, convex-concave games, λ-cococercive games (Lin et al., 2020), strongly monotone games (such as Kelly auctions), zero-sum polymatrix games (Bregman & Fokin, 1987; Daskalakis & Papadimitriou, 2009; Cai & Daskalakis, 2011; Cai et al., 2016), and zero-sum socially-concave games (Even-Dar et al., 2009).

Example 1 (Convex-Concave Min-Max Optimization). Given a function $f(x, y) : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ that is convex
in x and concave in y, find a saddle point z = (x, y) such that \(f(x, y) \leq f(x, y') \leq f(x', y), \forall x' \in X, y' \in Y \). It is not hard to see that the set of Nash equilibria of a two-player zero-sum game \(G = \{2, (X, Y), (f, -f)\} \) corresponds to the set of saddle points of \(f \). Thus convex-concave min-max optimization is a special case of monotone games.

For a monotone game \(G \) and an action profile \(x \), two standard measures of proximity to Nash equilibrium are the gap function and the total gap function.

Definition 1. Let \(G = ([N], (\mathcal{X}^i)_{i \in [N]}, (\ell^i)_{i \in [N]}) \) be a monotone game. The gap function for \(x \in X \) is \(\text{GAP}(x) = \max_{x' \in X} \langle V(x), x - x' \rangle \). The total gap function for \(x \in X \) is \(\text{TGAP}(x) = \sum_{i=1}^N (\ell^i(x) - \min_{x' \in X^i} \ell^i(x', x'^{-i})). \) Since \(\ell^i \) is convex in \(x^i \) for all \(i \in N \), we have \(\text{TGAP}(x) \leq \text{GAP}(x) \) for all \(x \in X \).

A stronger measure of proximity to Nash equilibrium is the tangent residual defined as \(r_{\text{tan}}(x) = \min_{e \in \partial X} \| V(x) + e \| \). The tangent residual is an upper bound for both the gap and the total gap.

Lemma 1 (Cai et al., 2022b). Let \(G = ([N], (\mathcal{X}^i)_{i \in [N]}, (\ell^i)_{i \in [N]}) \) be a monotone game where \(X = \prod_{i \in [N]} X^i \) is bounded by \(D \). For any \(x \in X \), we have \(\text{TGAP}(x) \leq \text{GAP}(x) \leq D \cdot r_{\text{tan}}(x) \).

2.2. Online Learning and Regret

A central theme of online learning is to design learning algorithms that minimize the regret. For each time \(t = 1, 2, \ldots, T \), suppose the environment generates convex loss function \(f_t : \Omega \to \mathbb{R} \) and the algorithm chooses action \(x_t \in \Omega \) where \(\Omega \subseteq \mathbb{R}^d \) is a compact convex set. The **external regret** is defined as the gap between the algorithm’s realized cumulative loss and the cumulative loss of the best fixed action in hindsight: \(\text{Reg}(T) := \sum_{t=1}^T f_t(x_t) - \min_{x \in \Omega} \sum_{t=1}^T f_t(x) \). By convexity of \(\ell_t \), we can bound the external regret by \(\text{Reg}(T) \leq \max_{x \in \Omega} \sum_{t=1}^T (\nabla f_t(x_t), x_t - x) \). We will simply call the external regret as regret and any algorithm achieving sublinear regret \(\text{Reg}(T) = o(T) \) as a no-regret algorithm.

A much stronger performance measure of an online algorithm is the (worst-case) **dynamic regret** (Zinkevich, 2003): \(\text{DynamicReg}(T) := \sum_{t=1}^T f_t(x_t) - \sum_{t=1}^T \min_{x \in \Omega} f_t(x) \), where the algorithm is competing with the best action in each round. It is not hard to see that in adversarial setting, DynamicReg\((T)\) must be linear in \(T \).

3. No-Regret Learning Algorithms and Games

In this section, we first review some background of gradient-based algorithms from both the online learning and optimization.

We start with **online gradient descent** (GD) (Zinkevich, 2003): the algorithm produces iterates \(x_t \in \Omega \) defined by \(x_{t+1} = \Pi_{\Omega} [x_t - \eta_t g_t] \) where we write \(g_t := \nabla f_t(x_t) \) as the gradient of the loss function \(f_t \). Online gradient descent is a no-regret algorithm in the adversarial setting. When employed by all players, however, it diverges in last-iterate even for simple two-player zero-sum games.

Optimism in Online Learning A modification of online gradient descent is the **Optimistic Gradient** (OG) (Popov, 1980; Rakhlin & Sridharan, 2013; Daskalakis et al., 2018): in each round \(t \), the algorithm chooses action \(x_{t+\frac{1}{2}} \), receives \(g_{t+\frac{1}{2}} := \nabla f_t(x_{t+\frac{1}{2}}) \), and updates iterates:

\[
\begin{align*}
 x_{t+\frac{1}{2}} &= \Pi_{\Omega} \left[x_t - \eta_t g_{t-\frac{1}{2}} \right], \\
 x_{t+1} &= \Pi_{\Omega} \left[x_t - \eta_t g_{t+\frac{1}{2}} \right].
\end{align*}
\]

Compared to online gradient descent, OG also achieves optimal regret in the single-agent adversarial setting. Moreover, OG converges in the last-iterate sense as optimism stabilizes the trajectory. When employed by all players in monotone games, their trajectory of play \(x_{t+\frac{1}{2}} \) converges to a Nash equilibrium with an \(\mathcal{O}\left(\frac{1}{\sqrt{T}}\right) \) last-iterate convergence rate (Cai et al., 2022b). Unfortunately, the \(\mathcal{O}\left(\frac{1}{\sqrt{T}}\right) \) rate is tight for OG and more generally all p-SCLI algorithms (Golowich et al., 2020a). New ideas are needed to further sharpen the convergence rate.

Acceleration in Optimization We are inspired by a technique from optimization for accelerating first-order methods known as the **Halpern iteration** (Halpern, 1967) or **Anchoring**. The technique is closely related to Nesterov’s accelerated method (Tran-Dinh, 2022) and has received extensive attention from the optimization community recently (Diakonikolas, 2020; Yoon & Ryu, 2021; Lee & Kim, 2021; Cai et al., 2022a). When the Halpern iteration is applied to the classical extragradient (EG) algorithm (Korpelevich, 1976), which belongs to the p-SCLI family and also has an \(\mathcal{O}\left(\frac{1}{\sqrt{T}}\right) \) last-iterate convergence rate (Cai et al., 2022b), the resulting extra anchored gradient (EAG) algorithm achieves an \(\mathcal{O}\left(\frac{1}{T^{\frac{3}{4}}}\right) \) last-iterate convergence rate (Yoon & Ryu, 2021; Cai et al., 2022a). Cai & Zheng (2023) obtain a single-call algorithm – **Accelerated Reflected Gradient (ARG)** that also achieves the same optimal last-iterate convergence rate. However, EAG is not suitable for multi-player games, as it could exhibit linear regret as we demonstrated in Appendix E. ARG requires evaluating the gradient at points outside of the feasible domain, thus it is also incompatible with multi-player games. Our analysis is based on a construction from (Golowich et al., 2020a), where they show that EG has linear regret in multi-player games.
3.1. Accelerated Optimistic Gradient

We propose the following algorithm — the accelerated optimistic gradient (AOG) algorithm. The central idea is to combine optimism with Halpern iteration: in round t, the algorithm chooses action $x_{t+\frac{1}{2}}$ and updates as follows.

$$x_{t+\frac{1}{2}} = \Pi_{\Omega} \left[x_t - \eta_t g_{t-\frac{1}{2}} + \frac{1}{t+1} (x_1 - x_t) \right],$$

$$x_{t+1} = \Pi_{\Omega} \left[x_t - \eta_t g_{t+\frac{1}{2}} + \frac{1}{t+1} (x_1 - x_t) \right].$$

(AOG)

Double Optimality. Our main result is that (AOG) is a doubly optimal online algorithm: with $\eta_t = \Theta(\frac{1}{\sqrt{T}})$, (AOG) achieves optimal $O(\sqrt{T})$ regret in adversarial setting (Theorem 1); when all players employ (AOG) with constant step size in a monotone game, their trajectory of play enjoys optimal $O\left(\frac{1}{\sqrt{T}}\right)$ last-iterate convergence rate (Theorem 2).

Step-Size Adaptation. We also present an implementation of (AOG) in Algorithm 1 with a step-size adaptation procedure (Line 7-11). This procedure uses the player’s own second-order gradient variation $S_{t+1} = \sum_{s=2}^t \| g_{s+\frac{1}{2}} - g_{s-\frac{1}{2}} \|^2$ as a proxy for the environment and adapts the step-size accordingly. The high level idea is that if all players use Algorithm 1 in a smooth monotone game, then each player’s second-order gradient variation remains to be bounded by a constant that only depends on L and D (Theorem 4), so the algorithm will keep a constant learning rate and achieve an $O\left(\frac{1}{\sqrt{T}}\right)$ last-iterate convergence (Theorem 2); if the player’s second-order gradient variation exceeds a certain constant threshold, then Algorithm 1 decreases the learning rate according to the second-order gradient variation, and by the standard argument of “regret is bounded by stability”, we can essentially bound the player’s regret by the second-order gradient variation, which is at most $O(\sqrt{T})$ even in the adversarial setting (Theorem 1).

Remark. In the adversarial setting, L and D can be any positive real numbers. If all players use Algorithm 1, L should be an upper bound of the Lipschitz constant of the game, and D should be an upper bound of the diameter of $x - x'$ for $x, x' \in \mathcal{X}$. In other words, the players do not need to know exactly the environment that they are interacting with to carefully pick the learning rate. As long as they know an upper bound for the Lipschitz constant and the diameter of all games that they could potentially participate in, Algorithm 1 will successfully choose the appropriate learning rate for them.

4. Worst-Case Regret in the Adversarial Environment

In this section, we view Algorithm 1 as a single-agent online learning algorithm in the adversarial setting where the loss functions $\{f_t\}_{t \in T}$ are chosen by an adversary. We show in Theorem 1 that Algorithm 1 achieves min-max optimal $O(\sqrt{T})$ regret when the gradient feedback is bounded. It shows that AOG is an optimal no-regret algorithm in the adversarial setting. Our result can also be construed in the game setting. Importantly, this interpretation does not require any assumptions regarding how other players select their actions, nor does it require the game to be monotone or smooth.

Theorem 1 (Optimal Regret Bound). Consider online learning with action set Ω, convex loss functions $\{f_t : \Omega \to \mathbb{R}\}_{t \in T}$ and gradient feedback $\{g_{t+\frac{1}{2}} = \nabla f_t(x_{t+\frac{1}{2}})\}_{t \in T}$. Let $G = \max_t \| g_{t+\frac{1}{2}} \|^2$ and suppose the action set Ω is bounded by D. The regret of Algorithm 1 is bounded by $O(D^2G\sqrt{T} + G^2)$.

We first establish a single-step regret inequality in Lemma 2.

Lemma 2 (Single-Step Regret Inequality). Suppose the action set Ω is bounded by D. For all $t \geq 1$ and any $x' \in \mathcal{X}$, the iterates of AOG satisfies

$$\langle x_{t+\frac{1}{2}} - x', g_{t+\frac{1}{2}} \rangle \leq \frac{1}{2\eta_t} \left(\| x' - x_t \|^2 - \| x' - x_{t+1} \|^2 \right) + \eta_t \left(\| g_{t+\frac{1}{2}} - g_{t-\frac{1}{2}} \|^2 + \frac{D^2}{\eta_t(t+1)} \right).$$

The main idea behind Lemma 2 is to view the update rule of AOG as a standard update rule of OG with modified gradients $g_{t-\frac{1}{2}} = -\frac{1}{\eta_t(t+1)} (x_1 - x_t)$ and $g_{t+\frac{1}{2}} = -\frac{1}{\eta_t(t+1)} (x_1 - x_{t+1})$, which allows us to apply the classical analysis of OG (Rakhlin & Sridharan, 2013). Equipped with Lemma 2, we can bound the regret of Algorithm 1 even with adaptive size. We defer the proofs of Lemma 2 and Theorem 1 to Appendix A.
5. Last-Iterate Convergence Rate to a Nash Equilibrium in Monotone Games

In this section, we consider a multi-player learning setting where each player follows AOG with constant step size in smooth monotone games: each player i plays $x_{t+\frac{1}{2}}^i$, receives gradient $V^i(x_{t+\frac{1}{2}})$, and updates

$$x_{t+\frac{1}{2}}^i = \Pi_{X^i} \left[x_t^i - \eta V^i(x_{t-\frac{1}{2}}^i) + \frac{1}{t+1} (x_t^i - x_t^1) \right],$$

$$x_{t+1}^i = \Pi_{X^i} \left[x_t^i - \eta V^i(x_{t+\frac{1}{2}}^i) + \frac{1}{t+1} (x_t^i - x_t^1) \right].$$

We show in Theorem 2 that the trajectory of the action profile $(x_{t+\frac{1}{2}}^i)_{t\in[T]}$ converges to Nash equilibrium in last-iterate with an $O(\frac{1}{\sqrt{T}})$ rate. Our convergence rate result matches the $\Omega(\frac{1}{\sqrt{T}})$ lower bound by (Yoon & Ryu, 2021) and thus establishes that AOG is doubly optimal.

Theorem 2 (Optimal Last-Iterate Convergence Rate). Let $G = \{N, (X^i)_{i\in[N]}, (\ell^i)_{i\in[N]}\}$ be a L-smooth monotone game, where the diameter of $X = \prod_{i\in[N]} X^i$ is bounded by D. When all players employ AOG with a constant step size $\eta = \frac{1}{\sqrt{4L}}$ in G, then for any $T \geq 2$, we have

- $r^{\text{tan}}(x_{T+\frac{1}{2}}) \leq \frac{5L^2D}{2\eta}$;
- $\text{T GAP}(x_{T+\frac{1}{2}}) \leq \text{GAP}(x_{T+\frac{1}{2}}) \leq \frac{5L^2D^2}{2\eta^2}$.

Remark 2. In the same setup of Theorem 2, when the action set X is unbounded (e.g., $X = \mathbb{R}^n$), AOG still enjoys last-iterate convergence with respect to the tangent residual. Let x^* be any Nash equilibrium of the game. For any $T \geq 2$, we have $r^{\text{tan}}(x_{T+\frac{1}{2}}) \leq \frac{1000H}{\eta T}$, where $H = \max \{ \|x^* - x_i\|, r^{\text{tan}}(x_1) \}$ is a constant that only depends on the choice of the initial point x_1. We defer the proof to Appendix C.

A Sketch of the Proof. First, recall that the tangent residual provides upper bounds for both the gap function and the total gap function due to Lemma 1, so it suffices to prove a last-iterate convergence rate with respect to the tangent residual. For $x \in X$, its tangent residual is defined as $r^{\text{tan}}(x) = \min_{c \in N_X(x)} \| V(x) + c \|$. The definition itself contains an optimization problem, thus is not explicit and difficult to directly work with. We relax the tangent residual by choosing an explicit $c \in N_X(x)$ as follows: for each player $i \in [N]$ and iteration $t \geq 2$, we define

$$c_t^i = x_{t-\frac{1}{2}}^i - \eta V^i(x_{t-\frac{1}{2}}^i) + \frac{1}{t} (x_{t-\frac{1}{2}}^i - x_{t-1}^i) - x_t^i.$$

According to the update rule of AOG, $c_t^i \in N_X(x_t^i)$. Define $c_t = (c_1^1, c_2^2, \ldots, c_t^N)$ and we have $c_t \in N_X(x_t)$. Thus $r^{\text{tan}}(x_t) = \min_{c \in N_X(x_t)} \| V(x_t) + c \| \leq \| V(x_t) + c_t \|$. Using $\| V(x_t) + c_t \|$ as a proxy of the tangent residual $r^{\text{tan}}(x_t)$, we construct a potential function of P_t in the order of $\Theta(t^2 \cdot \| V(x_t) + c_t \|^2)$. Although the potential function might increase between consecutive iterates, we manage prove that in Lemma 3 that the increment is sufficiently small: $P_{t+1} \leq P_t + O(\| V(x_{t+1}) + c_{t+1} \|^2)$ for any $t \geq 2$. Using the approximate monotonicity of P_t, we derive the following inequality for the sequence $\{\| V(x_t) + c_t \|^2 \}_{t \geq 2}$

$$\Theta(t^2 \cdot \| V(x_t) + c_t \|^2) \leq O(1) + O(\sum_{s=2}^{t-1} \| V(x_s) + c_s \|^2).$$

Based on the above inequality, we show in Lemma 4 that $\| V(x_t) + c_t \|^2 \leq O(\frac{1}{t^2})$ for any $t \geq 2$, which implies $O(\frac{1}{t^2})$ last-iterate convergence rate for x_t. The final step is to relate the convergence on x_t to the convergence of the action profile $x_{t+\frac{1}{2}}$.

5.1. Proof of Theorem 2

Some of the proofs are postponed to Appendix B. We also defer some auxiliary propositions to Appendix G.

Potential Function We first formally define our potential function P_t: for $t \geq 2$, let P_t be

$$t(t+1) \left(\| \eta V(x_t) + c_t \|^2 + \| \eta V(x_t) - \eta V(x_{t-\frac{1}{2}}) \|^2 \right) + t \langle \eta V(x_t) + \eta c_t, x_{t} - x_{t-\frac{1}{2}} \rangle.$$

We first provide an upper bound on P_2.

Proposition 1. In the same setup of Theorem 2, $P_2 \leq 9D^2$.

Now we present the main technical lemma of this section, where we show the potential function P_t is approximately non-increasing.

Lemma 3. In the same setup of Theorem 2, if we choose $\eta = \frac{\sqrt{2}}{L}$ for any $q \in (0, \frac{1}{4})$, then for all $t \geq 2$,

$$P_{t+1} \leq P_t + \frac{3q}{2(1 - 4q)} \| \eta V(x_{t+1}) + \eta c_{t+1} \|^2.$$

Proof. We show $P_t - P_{t+1}$ minus a few non-negative terms is at least $-\frac{3q}{2(1 - 4q)} \| \eta V(x_{t+1}) + \eta c_{t+1} \|^2$. Here we present the list of non-negative terms that we use in the proof.

Non-Negative Terms Since the game is monotone, we have

$$\langle \eta V(x_{t+1}) - \eta V(x_t), x_{t+1} - x_t \rangle \geq 0. \quad (1)$$

Using the L-Lipschitzness of V and the fact that $(\eta L)^2 \leq q$, we have

$$q \left\| x_{t+1} - x_{t+\frac{1}{2}} \right\|^2 - \left\| \eta V(x_{t+1}) - \eta V(x_{t+\frac{1}{2}}) \right\|^2 \geq 0. \quad (2)$$
Since c_t lies in the normal cone $N_X(x_t)$ and c_{t+1} lies in the normal cone $N_X(x_{t+1})$, by the definition of normal cone we have

\begin{align}
\langle \eta c_{t+1}, x_{t+1} - x_t \rangle & \geq 0 \quad (3) \\
\langle \eta c_t, x_t - x_{t+1/2} \rangle & \geq 0 \quad (4) \\
\langle \eta c_t, x_t - x_{t+1} \rangle & \geq 0 \quad (5)
\end{align}

As $x_t - \eta V(x_{t-\frac{1}{2}}) + \frac{1}{t+1}(x_1 - x_t) - x_{t+\frac{1}{2}}$ lies in the normal cone $N_X(x_{t+\frac{1}{2}})$, we also have

\begin{equation}
\left\langle x_t - \eta V(x_{t-\frac{1}{2}}) + \frac{x_1 - x_t}{t+1} - x_{t+\frac{1}{2}}, x_{t+\frac{1}{2}} - x_{t+1} \right\rangle \geq 0. \quad (6)
\end{equation}

Descent Identity For convenience, we denote LHSI as "left-hand side of inequality". We have the following identity by Proposition 3:

\[
P_t - P_{t+1} - t(t+1) \cdot \text{LHSI (1)} - \frac{t(t+1)}{4q} \cdot \text{LHSI (2)} - t(t+1) \cdot \text{LHSI (3)} - \frac{t(t+1)}{2} \cdot \left(\frac{\text{LHSI (4) + LHSI (5) + LHSI (6)}}{2} \right) \\
= \frac{t(t+1)}{2} \left\| x_{t+\frac{1}{2}} - x_{t+1} \right\|_2^2 + \eta V(x_t) - \eta V(x_{t+\frac{1}{2}}) \right\|^2 \\
+ \frac{t(t+1)}{2} \left\| x_{t+\frac{1}{2}} + x_{t+1} \right\|_2^2 - \eta V(x_t) + c_t - \frac{x_1 - x_t}{t+1} \\
+ \frac{1}{4q} \left\langle \eta V(x_{t+\frac{1}{2}}) - \eta V(x_{t+1}) \right\rangle \\
+ (t+1) \cdot \left\langle \eta V(x_{t+\frac{1}{2}}) - \eta V(x_{t+1}), \eta V(x_{t+1}) + \eta c_t \right\rangle.
\]

Further using identity $\|a\|^2 + (a, b) = \|a\|_2^2 + \frac{1}{2} \|b\|_2^2$, we can simplify the last two terms:

\begin{align}
\text{I + II} &= \left\| A(\eta V(x_{t+\frac{1}{2}}) - \eta V(x_{t+1})) + B(\eta V(x_{t+1}) + \eta c_t) \right\|^2 \\
&= \frac{q(t+1)}{(1-4q)t-4q} \left\| \eta V(x_{t+1}) + c_t + 1 \right\|^2 \\
&\geq -\frac{3q}{2(1-4q)} \left\| \eta V(x_{t+1}) + c_t + 1 \right\|^2,
\end{align}

where $A = \sqrt{\frac{(1-4q)t-4q}{4q}(t+1)}$, $B = \sqrt{\frac{q}{(1-4q)t-4q}(t+1)}$, and we use the fact that $\frac{t+1}{t} \leq \frac{3}{2}$ for $t \geq 2$ in the last inequality. Combining the above two inequalities and the fact that we only add non-positive terms to $P_t - P_{t+1}$, we conclude that $P_{t+1} \leq P_t + \frac{3q}{2(1-4q)} \left\| \eta V(x_{t+1}) + c_t + 1 \right\|^2$.

Using the fact that the potential function P_t is approximately non-increasing, we are able to use induction to show last-iterate convergence rate of the sequence $(x_t)_{t \geq 2}$.

Lemma 4. If X is bounded by D and $\eta \in (0, \frac{1}{\sqrt{8L}})$, then we have for all $T \geq 2$,

\[
\|V(x_T) + c_T\| \leq 13D \frac{t}{T} \quad \text{and} \quad \|V(x_T) - V(x_{T-\frac{1}{2}})\| \leq \frac{13D}{\eta T}.
\]

Proof. Let x_* be a Nash equilibrium of G. For any $t \geq 2$, we have

\[
P_t \leq \frac{t(t+1)}{2} \left(\|\eta V(x_t) + \eta c_t\|^2 + \|\eta V(x_t) - \eta V(x_{t-\frac{1}{2}})\|^2 \right) \\
+ \frac{t(t+1)}{4} \left(\|\eta V(x_t) + \eta c_t\|^2 + \|\eta V(x_t) - \eta V(x_{t-\frac{1}{2}})\|^2 \right) \\
\geq \frac{t(t+1)}{4} \left(\|\eta V(x_t) + \eta c_t\|^2 + \|\eta V(x_t) - \eta V(x_{t-\frac{1}{2}})\|^2 \right)
\]

\[
\leq \frac{t(t+1)}{4} \left(\|\eta V(x_t) + \eta c_t\|^2 + 2\|\eta V(x_t) - \eta V(x_{t-\frac{1}{2}})\|^2 \right)
\]

\[
- \frac{t(t+1)}{4} \|x_* - x_t\|^2.
\]

In the first inequality, we drop a positive term where $\langle \eta V(x_t), x_t - x_\ast \rangle \geq \langle \eta V(x_t), x_t - x_\ast \rangle \geq 0$ since x_\ast is Nash equilibrium, and $\langle c_t, x_t - x_\ast \rangle \geq 0$ as $c_t \in N_X(x_\ast)$. In the second inequality, we apply inequality $(a, b) \geq -\frac{9}{4} \|a\|^2 - \frac{9}{4} \|b\|^2$ with $a = \sqrt{7} \|\eta V(x_t) + c_t\|$, $b = \sqrt{7} \|x_* - x_t\|$, and $\alpha = t + 1$; we use $\frac{t+1}{t} \leq 1$ in the last inequality. Combining the above inequality with Lemma 3 and Proposition 1, we get for any $t \geq 2$,

\[
\frac{t(t+1)}{4} \left(\|\eta V(x_t) + \eta c_t\|^2 + 2\|\eta V(x_t) - \eta V(x_{t-\frac{1}{2}})\|^2 \right)
\]

\[
\leq \|x_* - x_t\|^2 + P_t
\]

\[
\leq \|x_* - x_t\|^2 + P_t + \frac{1}{3} \sum_{s=2}^{t-1} \|\eta V(x_s) + \eta c_s\|^2
\]

\[
\leq 10D^2 + \frac{1}{3} \sum_{s=2}^{t-1} \|\eta V(x_s) + \eta c_s\|^2.
\]

By Proposition 4, we can conclude that for any $t \geq 2$,

\[
\|\eta V(x_t) + \eta c_t\|^2 + 2\|\eta V(x_t) - \eta V(x_{t-\frac{1}{2}})\|^2 \leq 160D^2 \frac{t}{t^2}.
\]

This completes the proof as $13^2 = 169 \geq 160$. \(\square\)

Using the last-iterate convergence rate on $(x_t)_{t \geq 2}$, we only need to bound the distance between x_t and $x_{t+\frac{1}{2}}$.\]
Lemma 5. In the same setup of Theorem 2, we have for any $t \geq 2$, $\|x_{t+\frac{1}{2}} - x_t\| \leq \frac{27L}{t}$.

Proof of Theorem 2: Given Lemma 4 that proves the last-iterate convergence rate on the sequence $(x_t)_{t \geq 2}$, and Lemma 5 that upper bounds the distance between x_t and $x_{t+\frac{1}{2}}$, we are now ready to prove the last-iterate convergence rate for $(x_t)_{t \geq 2}$.

Note that $x_t - \eta V(x_{t-\frac{1}{2}}) + x_{t+\frac{1}{2}} \in N_{x_t}(x_{t+\frac{1}{2}})$, thus we can upper bound the tangent residual at $x_{t+\frac{1}{2}}$ by

$$r_{\text{tan}}(x_{t+\frac{1}{2}}) = \frac{1}{\eta} \min_{c} \|\eta V(x_{t+\frac{1}{2}}) + c\|
\leq \frac{1}{\eta} \left\| V(x_t) - \eta V(x_{t-\frac{1}{2}}) + x_{t+\frac{1}{2}} - x_{t-\frac{1}{2}} \right\|
\leq \frac{1}{\eta} \left\| V(x_{t+\frac{1}{2}}) - V(x_{t-\frac{1}{2}}) \right\| + \frac{1 + \eta L}{\eta} \left\| x_{t+\frac{1}{2}} - x_t \right\|
\leq \frac{27D}{\eta t} + \frac{27D}{\eta t} + \frac{D}{\eta (t+1)}
\leq \frac{55D}{\eta t},$$

where we use the triangle inequality and the L-Lipschitzness of V in the second inequality. This completes the first part of Theorem 2. The second part of Theorem 2 follows directly from the first part of Theorem 2 and Lemma 1.

6. Dynamic Regret and Second-Order Gradient Variation

Recent works on no-regret learning in games have provided near-optimal bounds for players’ individual external or swap regret. In particular, Daskalakis et al. (2021); Anagnostides et al. (2022a,b) achieve logarithmic regret bounds for general-sum games, and the bound can be sharpened to $O(1)$ if the games are monotone (Hsieh et al., 2021). However, dynamic regret is a much stronger concept, which is impossible to achieve in the single-agent adversarial setting and tightly relates to the concept of last-iterate convergence in game settings. For example, the $O\left(\sqrt{T}\right)$ last-iterate convergence rate of OG implies a $O\left(\sqrt{T}\right)$ individual dynamic regret bound in monotone games. To the best of our knowledge, $O\left(\sqrt{T}\right)$ is the best bound for dynamic regret even in two-player zero-sum games.

We significantly improve the bound and show that the individual dynamic regret is at most $O\left(\log T\right)$ if each player employs AOG in monotone games. This is made possible by the fast $O\left(\frac{1}{T}\right)$ last-iterate convergence rate of AOG.

7. Illustrative Experiments

In this section, we numerically verify our theoretical results through Example 1. Let $A \in \mathbb{R}^{n \times n}$, $b, h \in \mathbb{R}^n$, and $\mathcal{X}, \mathcal{Y} \subseteq \mathbb{R}^n$, and $f : \mathcal{X} \times \mathcal{Y} \to R$ be of the form $f(x, y) = \frac{1}{2}x^T H x - h^T x - \langle Ax - b, y \rangle$ (Ouyang & Xu, 2021). We consider a convex-concave min-max optimization problem $\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} f(x, y)$, which is also a two-player zero-sum game with $f^1 = -f^2 = f$. Details of the choices of $H, A, b, h, \mathcal{X}, \mathcal{Y}$ and step size η are deferred to Appendix F. The numerical result is shown in Figure 1. We use z to denote (x, y). When players use AOG, the tangential residual of players’ action profile $r_{\text{tan}}(z_{t+\frac{1}{2}})$ decreases at a rate of $O\left(\frac{1}{T}\right)$, and corroborates our theoretical results (Theorem 2). Moreover, AOG significantly outperforms OG in terms of both the last-iterate convergence rate and the individual dynamic regret.

For two-player zero-sum games but under a stronger two-point feedback model. In their model, the algorithm is allowed to query the payoff vector/gradient at two different strategies in each iteration, while the regret is calculated with respect to only the first queried strategy.
8. Related Work

Last-Iterate Convergence of No-regret learning in Games There is a vast literature on no-regret learning in games. For strongly monotone games, linear last-iterate convergence rate is known (Tseng, 1995; Liang & Stokes, 2019; Mokhtari et al., 2020b; Zhou et al., 2020). Even under bandit feedback or noisy gradient feedback, optimal sub-linear last-iterate convergence rate is achieved by no-regret learning algorithms for strongly monotone games (Lin et al., 2022; Jordan et al., 2022).

Obtaining last-iterate convergence rate to Nash equilibria beyond strongly monotone games received extensive attention recently. Daskalakis & Panageas (2018) proved asymptotic convergence of the optimistic gradient (OG) algorithm in zero-sum games. Asymptotic convergence was also achieved in variationally stable games (Zhou et al., 2017; Mertikopoulos & Zhou, 2019; Hsieh et al., 2021) even with noisy feedback (Hsieh et al., 2022). Finite time $O(\frac{1}{\sqrt{T}})$ convergence was shown for unconstrained cocoercive games (Lin et al., 2020) and unconstrained monotone games (Golowich et al., 2020a). For bilinear games over polytopes, (Wei et al., 2021) show linear convergence rate of OG but this rate depends on a problem constant c which can be arbitrarily large. Recently, Cai et al. (2022b) proved a tight $O(\frac{1}{\sqrt{T}})$ last-iterate convergence rate of OG and the extragradient (EG) algorithm for constrained monotone games, matching the lower bound of p-SCIL algorithms by Golowich et al. (2020a). We remark that for general gradient-based algorithms, the lower bound is $\Omega(\frac{1}{\sqrt{T}})$ (Ouyang & Xu, 2021; Yoon & Ryu, 2021).

Regret Minimization in Games There is a large collection of works on minimizing individual regret in games, from early results in two-player zero-sum games (Daskalakis et al., 2011; Kangarshahi et al., 2018) to more recent works on general-sum games (Syrgkanis et al., 2015; Chen & Peng, 2020; Daskalakis et al., 2021; Anagnostides et al., 2022a;b). Among them, (Daskalakis et al., 2021; Anagnostides et al., 2022a;b) achieves $O(\log T)$ regret for general-sum games and (Hsieh et al., 2021) achieves $O(1)$ regret for variationally stable games. Little is known, however, for the stronger notion of dynamic regret except for $O(\sqrt{T})$ bound of OG in monotone games (Cai et al., 2022b).

Learning in Repeated Games and Evolutionary Game Theory Agents in our model could be interpreted as different populations rather than individuals, where the mixed strategy describes the prevalence of each of the pure strategies in the population. Under this interpretation, we no longer have the same players playing the same game every day. Instead, in each round of the repeated game, individuals from one population play the game with other individuals drawn randomly from other populations. Such interpretation has wide application in evolutionary game theory, where repeated games are used to model evolution (see the monograph of (Weibull, 1997) and the references therein for more details).

9. Conclusion and Discussion

In this paper, we propose the first doubly optimal online learning algorithm, the accelerated optimistic gradient (AOG) algorithm, which achieves optimal $O(\sqrt{T})$ regret bound in the adversarial setting and optimal $O(\frac{1}{T})$ last-iterate convergence rate in smooth monotone games. Extending our results in settings where players only receive noisy gradient or even bandit feedback is an interesting and challenging future direction. Finally, We significantly improve the state-of-the-art upper bound of the individual dynamic regret from $O(\sqrt{T})$ to $O(\log T)$. We believe that understanding the optimal individual dynamic regret is an interesting open question for learning in monotone games.

Open Question: What is the optimal individual dynamic regret achievable in smooth monotone games using no-regret learning algorithms?

Acknowledgements

Yang Cai is supported by a Sloan Foundation Research Fellowship and the NSF Award CCF-1942583 (CAREER). We thank the anonymous reviewers for their constructive comments.
References

Doubly Optimal No-Regret Learning in Monotone Games

A. Missing proofs in Section 3

Proof of Lemma 2: Let us view the update rule of AOG as standard update rule of OG with modified gradients $g_{t-\frac{1}{2}} - \frac{1}{\eta t(t+1)}(x_1 - x_t)$ and $g_{t+\frac{1}{2}} - \frac{1}{\eta t(t+1)}(x_1 - x_t)$. Thus by the standard analysis of OG (see (Rakhlin & Sridharan, 2013)[Lemma 1]), we have for any $t \geq 1$ and any $x' \in \mathcal{X}$,

$$
\left\langle g_{t+\frac{1}{2}} - \frac{1}{\eta t(t+1)}(x_1 - x_t), x_{t+\frac{1}{2}} - x' \right\rangle \leq \frac{1}{2\eta t} \left(\|x_t - x'|^2 - \|x_{t+1} - x'\|^2 \right) + \|g_{t+\frac{1}{2}} - g_t - \frac{1}{\eta t} \cdot \|x_{t+\frac{1}{2}} - x_{t+1}\|
$$

$$
\leq \frac{1}{2\eta t} \left(\|x_t - x'|^2 - \|x_{t+1} - x'\|^2 \right) + \frac{\eta}{2} \left\| g_{t+\frac{1}{2}} - g_t - \frac{1}{\eta t} \right\| ^2 ,
$$

where in the second inequality we use the following inequality:

$$
\|x_{t+\frac{1}{2}} - x_{t+1}\| \leq \left\| \Pi_X \left[x_t - \eta_t g_{t-\frac{1}{2}} - \frac{1}{t+1}(x_1 - x_t) \right] \right\| - \left\| \Pi_X \left[x_t - \eta_t g_{t+\frac{1}{2}} - \frac{1}{t+1}(x_1 - x_t) \right] \right\| \leq \eta \left\| g_{t+\frac{1}{2}} - g_t - \frac{1}{\eta t} \right\|.
$$

(Pi_X is non-expansive)

Therefore, we can bound the single-step regret by

$$
\left\langle g_{t+\frac{1}{2}}, x_{t+\frac{1}{2}} - x' \right\rangle \leq \frac{1}{2\eta t} \left(\|x_t - x'|^2 - \|x_{t+1} - x'\|^2 \right) + \eta \left\| g_{t+\frac{1}{2}} - g_t - \frac{1}{\eta t} \right\| ^2 + \left\langle \frac{1}{\eta t(t+1)}(x_1 - x_t), x_{t+\frac{1}{2}} - x' \right\rangle
$$

$$
\leq \frac{1}{2\eta t} \left(\|x_t - x'|^2 - \|x_{t+1} - x'\|^2 \right) + \eta \left\| g_{t+\frac{1}{2}} - g_t - \frac{1}{\eta t} \right\| ^2 + \frac{D^2}{\eta t(t+1)},
$$

where in the last inequality we use Cauchy-Schwarz inequality and the fact that \mathcal{X} is bounded by D. This completes the proof.

Proof of Theorem 1: Let $T_1 \geq 2$ be the last time the player uses constant step size η. By line 7 of Algorithm 1, we know the the second-order gradient variation $S_{T_1+1} \leq S_{T_1} + 2G^2$ is upper bounded by a constant. By telescoping the inequality from Lemma 2, we know that the player’s regret up to time T_1 is at most

$$
\sum_{t=1}^{T_1} \left\langle g_{t+\frac{1}{2}}, x_{t+\frac{1}{2}} - x' \right\rangle
\leq \frac{\|x_1 - x'\|^2}{2\eta} + \eta S_{T_1+1} + G^2 + \sum_{t=1}^{T_1} \frac{D^2}{\eta(t+1)}
\leq O(G^2 + \log T_1).
$$

Now we consider $t \geq T_1 + 1$ when the player switches to an adaptive step size. Using Lemma 2, for any $T \geq T_1 + 1$, we have

$$
\sum_{t=T_1+1}^{T} \left\langle g_{t+\frac{1}{2}}, x_{t+\frac{1}{2}} - x' \right\rangle
\leq \sum_{t=T_1+1}^{T} \frac{1}{\eta t} \left(\|x_t - x^*\|^2 - \|x_{t+1} - x^*\|^2 \right)
$$

$$
+ \sum_{t=T_1+1}^{T} \eta \left\| g_{t+\frac{1}{2}} - g_t - \frac{1}{\eta t} \right\| ^2 + \sum_{t=T_1+1}^{T} \frac{D^2}{\eta t(t+1)} .
$$

Since for any $t \geq 1$, $\|g_{t+\frac{1}{2}} - g_t - \frac{1}{\eta t}\|^2 \leq 2\|g_{t+\frac{1}{2}}\|^2 + 2\|g_t - \frac{1}{\eta t}\|^2 \leq 4G^2$. We have $S_t \leq 4G^2 t$ and $\eta_t = \frac{1}{\sqrt{t+1}S_t} \geq \frac{1}{2G\sqrt{t}}$ for any $t \geq T_1 + 1$. We now proceed to bound each terms as follows.

$$
I \leq \frac{D^2}{\eta T_1 + 1} + \sum_{t=T_1+2}^{T} D^2 \left(\frac{1}{\eta t} - \frac{1}{\eta t-1} \right) \leq \frac{D^2}{\eta T_1} \leq O(D^2G\sqrt{T}).
$$
\[II = \sum_{t=T_1+1}^{T} (\eta_{t+1} + \eta_t - \eta_{t+1}) \left\| g_{t+\frac{1}{2}} - g_{t-\frac{1}{2}} \right\|^2 \]
\[\leq \sum_{t=T_1+1}^{T} \left(\frac{\left\| g_{t+\frac{1}{2}} - g_{t-\frac{1}{2}} \right\|^2}{\sqrt{1 + S_{t+1}}} + 4G^2 (\eta_t - \eta_{t+1}) \right) \]
\[\leq \sum_{t=T_1+1}^{T} \frac{\sqrt{1 + S_{t+1}} - \sqrt{1 + S_t}(\sqrt{1 + S_{t+1}} + \sqrt{1 + S_t})}{\sqrt{1 + S_{t+1}}} + 4G^2 \]
\[\leq \sum_{t=T_1+1}^{T} 2(\sqrt{1 + S_{t+1}} - \sqrt{1 + S_t}) + 4G^2 \]
\[\leq 2 \sqrt{1 + \sum_{t=1}^{T} \left\| g_{t+\frac{1}{2}} - g_{t-\frac{1}{2}} \right\|^2} + 4G^2 = O(G\sqrt{T} + G^2). \]

\[III \leq D^2 \sum_{i=1}^{T} \frac{\sqrt{1 + S_i}}{t+1} \leq D^2 \sum_{t=1}^{T} O\left(\frac{G}{\sqrt{t}} \right) = O(D^2 G\sqrt{T}). \]

Combing the above inequalities, we get the regret between \(T_1 \) and \(T \) is at most \(O(D^2 G\sqrt{T} + G^2) \).

\[\text{□} \]

B. Missing proofs in Section 5

Proof of Proposition 1: Note that \(x_{3/2} = x_1 \) and \(\eta c_2 = x_1 - \eta V(x_1) - x_2 \). Thus

\[\left\| \eta V(x_2) + \eta c_2 \right\| = \left\| \eta V(x_2) + x_1 - \eta V(x_1) - x_2 \right\| \]
\[\leq \eta \left\| V(x_2) - V(x_1) \right\| + \left\| x_1 - x_2 \right\| \]
\[\leq (1 + \eta L) \left\| x_1 - x_2 \right\| \quad \text{(\(V \) is \(L \)-Lipschitz)} \]
\[\leq \frac{3D}{2}. \quad \text{\((\eta L \leq \frac{1}{2}) \)} \]

Using the above inequality, we can bound \(P_2 \) as follows:

\[P_2 = 3 \left(\left\| \eta V(x_2) + \eta c_2 \right\|^2 + \left\| \eta V(x_2) - \eta V(x_1) \right\|^2 \right) + 2(\eta V(x_2) + \eta c_2, x_2 - x_1) \]
\[\leq 3 \left(\left\| \eta V(x_2) + \eta c_2 \right\|^2 + \eta L \left\| x_2 - x_1 \right\|^2 \right) + 2\eta V(x_2) + \eta c_2 \left\| x_2 - x_1 \right\| \]
\[\leq 3 \left(\frac{9D^2}{4} + \frac{D^2}{4} \right) + 3D^2 \quad \text{\((\eta L \leq \frac{1}{2}) \)} \]
\[= 33\frac{D^2}{4} \leq 9D^2. \]

This completes the proof of Proposition 1. \[\text{□} \]

Proof of Lemma 5: Fix any \(t \geq 2 \). Using triangle inequality, we have

\[\left\| x_{t+\frac{1}{2}} - x_t \right\| \leq \left\| x_{t+\frac{1}{2}} - \Pi_X [x_t - \eta V(x_t)] \right\| + \left\| \Pi_X [x_t - \eta V(x_t)] - x_t \right\|. \]
We can bound the first term as follows:
\[
\|x_{t+\frac{1}{2}} - \Pi_X[x_t - \eta V(x_t)]\| = \|\Pi_X\left[x_t - \eta V(x_{t-\frac{1}{2}}) + \frac{1}{t+1}(x_1 - x_t)\right] - \Pi_X[x_t - \eta V(x_t)]\|
\leq \left\|\eta V(x_t) - \eta V(x_{t-\frac{1}{2}}) + \frac{1}{t+1}(x_1 - x_t)\right\| \quad (\Pi_X \text{ is non-expansive})
\leq \left\|\eta V(x_t) - \eta V(x_{t-\frac{1}{2}})\right\| + \frac{\|x_1 - x_t\|}{t+1}
\leq \frac{14D}{t}. \quad \text{(Lemma 4)}
\]

Since \(c_t \in N_X(x_t)\), we have \(x_t = \Pi_X[x_t + \eta c_t]\). Using this fact we can bound the second term:
\[
\|\Pi_X[x_t - \eta V(x_t)] - x_t\| = \|\Pi_X[x_t - \eta V(x_t)] - \Pi_X[x_t + \eta c_t]\|
\leq \|\eta V(x_t) + \eta c_t\| \quad (\Pi_X \text{ is non-expansive})
\leq \frac{13D}{t}. \quad \text{(Lemma 4)}
\]

Combing the above inequalities, we have \(\|x_{t+\frac{1}{2}} - x_t\| \leq \frac{27D}{t}\). This completes the proof of Lemma 5.

\[\square\]

C. Last-Iterate Convergence Rate without the Boundedness Assumption

Recall that we prove \(r^{\text{tan}}(x_{T+\frac{1}{2}}) \leq \frac{53D}{nT}\) for all \(T \geq 2\) in Theorem 2 with the assumption that the action set \(X\) is bounded by \(D > 0\). In this section, we prove last-iterate convergence rate of AOG, which is similar to Theorem 2 but without the boundedness assumption on \(X\).

\textbf{Theorem 6.} Let \(G = \{N, (X^i)_{i \in [N]}, (\ell^i)_{i \in [N]}\}\) be a \(L\)-smooth monotone game, where each player \(i\)'s action set \(X^i \subseteq \mathbb{R}^{n_i}\) is convex and closed, but not necessarily compact. When all players employ AOG with a constant step size \(\eta \leq \frac{1}{\sqrt{6L}}\) in \(G\), then for any \(T \geq 2\), we have
\[
r^{\text{tan}}(x_{T+\frac{1}{2}}) \leq \frac{1430H}{\eta T},
\]
where \(H = \max\{\eta \cdot r^{\text{tan}}(x_1), \|x_1 - x_*\|\}\) with \(x_*\) being an Nash equilibrium of \(G\).

\textit{Proof.} We will go through the proof of the first part of Theorem 2 (including Proposition 1, Lemma 4, and Lemma 5), check every application of the boundedness assumption, and give upper bound on these terms using \(H\).

In the proof of Proposition 1, the boundedness assumption is used to bound \(\|x_1 - x_2\|\). Here we show that it is upper bounded by \(H\). Let \(c \in N_X(x_1)\) be any vector in the normal cone \(N_X(x)\). Then we have
\[
\|x_1 - x_2\| \leq \|\Pi_X[x_1 - \eta c]\| - \Pi_X[x_1 - \eta V(x_1)] \leq \eta \|V(x_1) + c\|.
\]
Thus \(\|x_1 - x_2\| \leq \eta \cdot r^{\text{tan}}(x_1) \leq H\).

In the proof of Lemma 4, the boundedness assumption is applied to bound \(\|x_1 - x_*\|\), which is clearly upper bounded by \(H\). Combing the above two observations, we get a modified version of Lemma 4 (replacing \(D\) with \(H\)): for all \(t \geq 2\),
\[
\|V(x_t) + c_t\| \leq \frac{13H}{\eta t}, \quad \|V(x_t) - V(x_{t-\frac{1}{2}})\| \leq \frac{13H}{\eta t}.
\]

Using triangle inequality, this further implies that for all \(t \geq 1\),
\[
\|V(x_{t+\frac{1}{2}}) + c_{t+1}\| \leq \|V(x_{t+1}) + c_{t+1}\| + \|V(x_{t+1}) - V(x_{t+\frac{1}{2}})\| \leq \frac{26H}{\eta(t+1)}.
\]

In the proof of Lemma 5 and the remaining proof of Theorem 2, the boundedness assumption is applied to \(\{\|x_{t+1}\|\}_{t \in [T]}\). We show how to bound \(\|x_1 - x_t\|\) for \(t \geq 3\) as follows.
Bounding $\|x_t - x_i\|$ Using the update rule and the definition of c_{t+1}, we have the following identity:

$$
\|x_{t+1} - x_i\|^2 = \left\| \frac{t}{t+1}(x_t - x_i) - \eta(V(x_{t+1/2}) + c_{t+1}) \right\|^2, \quad \forall t \geq 2.
$$

Thus $\|x_{t+1} - x_i\|^2$ is upper bounded by

$$
\frac{t}{t+1} \|x_t - x_i\|^2 + (1 + t)\|\eta(V(x_{t+1/2}) + c_{t+1})\|^2
$$

using Young’s inequality. Recall that we just get $\|V(x_{t+1/2}) + c_{t+1}\| \leq \frac{26H}{t(t+1)}$ using the modified Lemma 4. Combing the above inequalities gives $\|x_{t+1} - x_i\|^2 \leq \frac{1}{t+1}\|x_t - x_i\|^2 + \frac{26^2H^2}{t(t+1)}$, which is equivalent to $(t + 1)\|x_{t+1} - x_i\|^2 \leq t\|x_t - x_i\|^2 + 26^2H^2$. Telescoping the above inequality gives $\|x_t - x_i\|^2 \leq \frac{2\|x_2 - x_i\|^2 + 26^2H^2(t-2)}{t}$ for all $t \geq 3$. Thus $\|x_t - x_i\| \leq 26H$ for all $t \geq 3$.

Now we have bounded every terms where the boundedness assumption is applied in the proof of the first part of Theorem 2 by $26H$. Replacing D with $26H$ in the first part of Theorem 2 completes the proof.

D. Proof of Theorem 4

Proof of Theorem 4: In the game setting, player i’s second-order gradient variation is $S^i_T = \sum_{t=2}^T \|V^i(x_{t+\frac{1}{2}}) - V^i(x_{t-\frac{1}{2}})\|^2$. Using Lemma 4 and Lemma 5, we have

$$
\left\| V^i(x_{t+\frac{1}{2}}) - V^i(x_{t-\frac{1}{2}}) \right\|^2 \leq \left\| V(x_{t+\frac{1}{2}}) - V(x_{t-\frac{1}{2}}) \right\|^2
\leq 2L^2 \left\| x_{t+\frac{1}{2}} - x_t \right\|^2 + 2 \left\| V(x_t) - V(x_{t-\frac{1}{2}}) \right\|^2
\leq \frac{2L^2 \cdot 27D^2}{t^2} + \frac{2 \cdot 13^2D^2}{\eta^2t^2}
= \frac{(1458L^2 + \frac{338}{\eta^2})D^2}{t^2}.
$$

For a choice of $\eta = \frac{1}{1458}$, we have

$$
\left\| V^i(x_{t+\frac{1}{2}}) - V^i(x_{t-\frac{1}{2}}) \right\|^2 \leq \frac{4500D^2L^2}{t^2}
$$

and $S^i_T \leq 4500\pi D^2L^2$.

E. Linear Regret of EAG

In this section, we review the definition of the Extra Anchored Gradient (EAG) algorithm and show that it is not a no-regret algorithm when implemented it in the online learning setting. The proof is similar to the linear regret proof of EG (Golowich et al., 2020a) and we include it for completeness. Given a game G with gradient operator V, initial point $x_1 \in X$, the Extra Anchored Gradient algorithm updates as follows:

$$
x_{t+\frac{1}{2}} = \Pi_X \left[x_t - \eta V(x_t) + \frac{1}{t+1} (x_t - x_i) \right],
$$

$$
x_{t+1} = \Pi_X \left[x_t - \eta V(x_{t+\frac{1}{2}}) + \frac{1}{t+1} (x_t - x_i) \right].
$$

(EAG)

The key difference of EAG compared to AOG is that in one iteration, the update of EAG requires two gradients $V(x_t)$ and $V(x_{t+\frac{1}{2}})$. Since in online learning setting, players only see the gradients corresponding to the action they play, players must play both x_t and $x_{t+\frac{1}{2}}$ using EAG. Thus to implement EAG in standard online learning setting, we need two iterations for each iteration of EAG. Specifically, each player i plays y^i_t for $t \geq 1$, while $y^i_{2t-1} = x_t^i$ and $y^i_{2t} = x_{t+\frac{1}{2}}^i$. The corresponding update is for $t \geq 1$,

$$
y^i_t = \Pi_X \left[y^i_{2t-1} - \eta V^i(y_{2t-1}) + \frac{1}{t+1} (y^i_t - y^i_{2t-1}) \right],
$$

$$
y^i_{2t+1} = \Pi_X \left[y^i_{2t-1} - \eta V^i(y_{2t}) + \frac{1}{t+1} (y^i_t - y^i_{2t-1}) \right].
$$

(7)
We will show when the other players’ action y^i_t is adversarial, EAG has linear regret and is not no-regret.

Proposition 2. There exits a two-player zero-sum 1-smooth game $G = ([2], \{X_1, X_2\}, \{f, \bar{f}\}),$ such that for an adversarial choice of $(y^i_t)_{t \in [T]}$, the EAG updates (7) and (8) for the first player has $\Omega(T)$ regret for any $T \geq 1$.

Proof. We use exactly the same construction as (Golowich et al., 2020)[Proposition 10]. We take $X^1 = X^2 = [-1, 1]$ and $f : X \to \mathbb{R}$ to be $f(y^1, y^2) = y^1 \cdot y^2$. Player 2 play the following sequence of actions:

$$y^2_t = \begin{cases} 1 & t \text{ is odd} \\ 0 & t \text{ is even} \end{cases}$$

Then for any $t \geq 1$, we have

$$V^1(y^2_{t-1}) = y^2_{2t-1} = 1,$$

$$V^1(y^2_t) = y^2_{2t} = 0.$$

Suppose $y^1_1 = 0$. Then we have $y^2_{2t-1} = 0$ and $y^2_{2t} = \max\{-\eta, -1\}$ for any $t \geq 1$. Thus the accumulative loss for player 1 until $T \geq 1$ round is $\sum_{t=1}^{T} f(y^1_t, y^2_t) = 0$. However, the accumulative loss of action $y^1_t = -1$ is only $\sum_{t=1}^{T} f(-1, y^2_t) \leq -\frac{T}{2}$. Thus the regret is at least $\frac{T}{2} = \Omega(T)$. \square

F. Details on Numerical Experiments

We choose

$$A = \frac{1}{4} \begin{bmatrix} 1 \cdots & -1 \\ \vdots & \ddots & \ddots \\ -1 & \cdots & 1 \end{bmatrix} \in \mathbb{R}^{n \times n}, \quad b = \frac{1}{4} \begin{bmatrix} 1 \\ \vdots \\ 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} \in \mathbb{R}^{n}, \quad h = \frac{1}{4} \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} \in \mathbb{R}^{n},$$

and $H = 2A^T A$. As shown in (Ouyang & Xu, 2021), $\|A\| \leq \frac{1}{3}$ and $\|H\| \leq \frac{1}{3}$ which implies $f = \frac{1}{2} x^T H x - h^T x - \langle Ax - b, y \rangle$ is 1-smooth. We choose $n = 100$, $X = \mathcal{Y} = [-200, 200]^n$. We run both AOG and OG with step size $\eta = 0.3$ and initial points $x_1 = y_1 = \frac{1}{n} 1$ for 10^5 iterations. The code can be found at https://github.com/weiqiangzheng1999/Doubly-Optimal-No-Regret-Learning.

G. Auxiliary Results

Proposition 3. In the setup of Lemma 3, the following identity holds.

$$P_t - P_{t+1} - t(t+1) \cdot \text{LHSI (1)} - \frac{t(t+1)}{4q} \cdot \text{LHSI (2)}$$

$$- t(t+1) \cdot \text{LHSI (3)} - \frac{t(t+1)}{2} \cdot (\text{LHSI (4)} + \text{LHSI (5)} + \text{LHSI (6)})$$

$$= \frac{t(t+1)}{2} \left\| x_{t+\frac{1}{2}} - x_t \right\|^2 + \eta V(x_t) - \eta V(x_{t+\frac{1}{2}}) \right\|^2$$

$$+ \frac{(1-4q)t-4q}{4q} (t+1) \left\| \eta V(x_{t+\frac{1}{2}}) - \eta V(x_{t+1}) \right\|^2$$

$$+ (t+1) \left\langle \eta V(x_{t+\frac{1}{2}}) - \eta V(x_{t+1}), \eta V(x_{t+1}) + \eta c_{t+1} \right\rangle.$$

Proof. We use MATLAB to verify the following inequality, which implies the claim by suitable change of variables. For any vectors $a_0, a_1, a_2, a_3, a_4, b_1, b_2, b_3, b_4, u_2, u_4 \in \mathbb{R}^n$, any real numbers $t \geq 1$ and $q > 0$, if

$$a_4 = a_2 - b_3 + \frac{1}{t+1} (a_0 - a_2) - u_4,$$
then the following identity holds
\[
\begin{align*}
\frac{t(t+1)}{2} & \left(\|a_2 + u_2\|^2 + \|b_2 - b_1\|^2 \right) + t(b_2 + u_2, a_2 - a_0) \\
- \frac{(t+1)(t+2)}{2} & \left(\|a_4 + u_4\|^2 + \|b_4 - b_3\|^2 \right) + t(b_4 + u_4, a_4 - a_0) \\
- t(t+1) & \langle b_4 - b_2, a_4 - a_2 \rangle - \frac{t(t+1)}{4q} \left(q\|a_4 - a_3\|^2 - \|b_4 - b_3\|^2 \right) \\
- t(t+1) & \langle u_4, a_4 - a_2 \rangle - \frac{t(t+1)}{2} \langle u_2, a_2 - a_3 \rangle - \frac{t(t+1)}{2} \langle u_2, a_2 - a_4 \rangle \\
- \frac{t(t+1)}{2} & \left(a_2 - b_1 + \frac{1}{t+1} \langle a_0 - a_2, a_3 - a_4 \rangle \right) \\
= & \frac{t(t+1)}{2} \left(\frac{a_3 - a_4}{2} + b_1 - b_2 \right)^2 \\
+ & \frac{t(t+1)}{2} \left(\frac{a_3 + a_4}{2} - a_2 + b_2 + u_2 - \frac{a_0 - a_2}{t+1} \right)^2 \\
+ & \frac{(1-4q)t-4q}{4q} (t+1) \|b_3 - b_4\|^2 \\
+ & (t+1) \langle b_3 - b_4, b_4 + u_4 \rangle.
\end{align*}
\]

The MATLAB code for verification of the above identity is available at https://github.com/weiqiangzheng1999/Doubly-Optimal-No-Regret-Learning. To see how the above identity implies the claimed identity, we replace \(a_0\) with \(x_1\); replace \(a_k\) with \(x_{t-1+\frac{k}{2}}\) for \(k \in [4]\); replace \(b_k\) with \(\eta V(x_{t-1+\frac{k}{2}})\) for \(k \in [4]\); replace \(u_2\) with \(\eta c_t\); replace \(u_4\) with \(\eta c_{t+1}\); and note that by the definition of \(c_{t+1}\), we have
\[
x_{t+1} = x_t - \eta V(x_{t+\frac{1}{2}}) + \frac{1}{t+1} (x_1 - x_t) - \eta c_{t+1}.
\]
This completes the proof.

Proposition 4 ([Cai et al., 2022a]). Let \(\{a_k \in \mathbb{R}^+ \}_{k \geq 2}\) be a sequence of real numbers. Let \(C_1 \geq 0\) and \(p \in (0, \frac{1}{3})\) be two real numbers. If for every \(k \geq 2\), \(\frac{k^2}{4} \cdot a_k \leq C_1 + \frac{p}{1-p} \cdot \sum_{t=2}^{k-1} a_t\), then for each \(k \geq 2\) we have
\[
a_k \leq \frac{4 \cdot C_1}{1-3p} \cdot \frac{1}{k^2}.
\]