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Abstract

We study revenue maximization in multi-item auctions, where bidders have subadditive valua-
tions over independent items [47]. Providing a simple mechanism that is approximately revenue-
optimal in this setting is a major open problem in mechanism design [20]. In this paper, we present
the first simple mechanism whose revenue is at least a constant fraction of the optimal revenue in
multi-item auctions with subadditive bidders.

Our mechanism is a simultaneous auction that incorporates either a personalized entry fee or
a personalized reserve price per item. We prove that for any simultaneous auction that satisfies c-
efficiency– a new property we propose, its revenue is at least an O(c)-approximation to the optimal
revenue. We further show that both the simultaneous first-price and the simultaneous all-pay auction

are 1
2 -efficient. Providing revenue guarantees for non-truthful simple mechanisms, e.g., simultane-

ous auctions, in multi-dimensional environments has been recognized by Roughgarden et al. [46]
as an important open question. Prior to our result, the only such revenue guarantees are due to
Daskalakis et al. [30] for bidders who have additive valuations over independent items. Our result
significantly extends the revenue guarantees of these non-truthful simple auctions to settings where
bidders have combinatorial valuations.
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1 Introduction

Revenue-maximization in auctions is a central problem in both Economics and Computer Science due
to its numerous applications in markets and online platforms. While Myerson’s seminal work shows
that a simple mechanism achieves the optimal revenue in single-item auctions [45], characterizing the
revenue-optimal mechanism in multi-item settings has been notoriously difficult both analytically and
algorithmically. Indeed, it has been shown that even finding (approximately) optimal multi-item mech-
anisms can require description complexity that is exponentially in the number of items, even for a single
buyer [31, 29, 38, 4]. Similarly, computing the revenue-optimal multi-item mechanism is known to be in-
tractable even for basic settings [13, 28, 26]. Furthermore, the revenue-optimal multi-item mechanisms
may exhibit several counter-intuitive properties that do not arise in single-item settings [7, 39, 38]. To
sum up, the optimal mechanism in multi-item settings is highly complex, difficult to characterize, and
intractable to find.

Motivated by the highly complex nature of the optimal mechanism in multi-item settings, a recent
line of work in algorithmic mechanism design [23, 24, 2, 37, 43, 16, 5, 49, 47, 15, 25, 20, 21, 33, 17, 30, 19]
investigate the inherent tradeoff between optimality and simplicity. In other words, can we use sim-

ple and practical mechanisms to approximate the optimal revenue in multi-item auctions? The line of
work mentioned above provide a positive answer in surprisingly general settings, under the standard
item-independence assumption. In a beautiful work, Dütting et al. [33] show that a simple mechanism,

known as sequential two-part tariff, can extract an Ω

(
1

loglogm

)
fraction of the revenue when bidders have

subadditive valuations, where m is the number of items in the auction. A valuation v : 2[m] →R≥0 is sub-
additive, if v(S ∪T )≤ v(S)+v(T ) for all sets of items S,T ⊆ [m]. Subadditivity captures the property that
the items are not complements to each other, i.e., the items are not more valuable together than they
are apart. This is a natural and important property in numerous economic environments. Hence, the
following has been recognized as a fundamental open question:

Can we design simple mechanisms to achieve an O(1)-approximation to the optimal revenue

when the bidders have subadditive valuations under the item-independence assumption?

(*)

Aside from question (*), other gaps remain in our understanding of the tradeoff between optimality
and simplicity. In particular, existing results almost exclusively focus on truthful auctions, while many of
the practical auctions are simple, but not truthful. For instance, the first-price auction is the most com-
mon type of mechanism in practice. In the display-ads market, arguably the most significant application
of auctions in modern commerce, first-price auctions are adopted by every major exchange to allocate
ad-displaying slots. Revenue guarantees for these simple non-truthful auctions have been scarce. Due to
the ubiquity of such auctions, providing revenue guarantees for non-truthful simple mechanisms, espe-
cially in multi-item environments, has been recognized by Roughgarden et al. [46] as an important open
question:

Can we provide revenue guarantees for simple but non-truthful mechanisms in multi-item auctions

that match the guarantees for simple and truthful mechanisms? (**)

Hartline et al. [40] show that the first-price auction with reserve price (or minimum bid) achieves ap-
proximately optimal revenue in the single-item setting. Prior to our work, the only revenue guarantee
for non-truthful auctions in multi-item settings is due to Daskalakis et al. [30]. They show that when the
bidders have additive valuations, simultaneous auctions with entry fees or reserved prices can extract a
constant fraction of the optimal revenue.
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We make significant progress in addressing both questions (*) and (**) in this paper. Our main result
shows that the simultaneous first-price auction (or the simultaneous all-pay auction) with appropriately
devised entry fees or reserve prices can achieve a constant fraction of the optimal revenue when bidders
have subadditive valuations.

1.1 Our Contributions

We focus on the revenue guarantees of simultaneous auctions in this paper. We assume there are n

bidders and m items. A simultaneous auction consists of m parallel single-item auctions
{
A j

}
j∈[m], one

for each item. We consider two variants of simultaneous auctions:

Simultaneous auctions with personalized entry fees: Each bidder i is asked to pay a fixed entry fee ENTi

up front. The mechanism then proceeds to run the simultaneous auction, that is, run m parallel
single-item auctions. Only the bidders who pay the entry fees can participate in these single-item
auctions. See Mechanism 1 for details.

Simultaneous auctions with personalized reserve prices: There is a reserve price ri j for each bidder i

and each item j . The mechanism runs the simultaneous auction. For each item j that bidder i

wins, they need to pay the higher between their payment decided by the single-item auction A j

and ri j . See Mechanism 2 for details.

We now state our main result.

Main Contribution: We identify a crucial property of simultaneous auctions A =
{
A j

}
j∈[m] that

we refer to as c-efficiency, where c is a positive real number (Definition 3.1). We show that, if the
bidders have subadditive valuations over independent items (Definition 2.1), for any c-efficient si-
multaneous auction A , there exists entry fees {ENTi }i∈[n] and reserve prices {ri j }i∈[n], j∈[m] such
that the better of (i) A with personalized entry fees {ENTi }i∈[n] and (ii) A with personalized re-
serve prices {ri j }i∈[n], j∈[m] is an O(c)-approximation to the optimal revenue (Theorem 3.1). Next,
we prove that both the simultaneous first-price auction and the simultaneous all-pay auction are
1
2 -efficient (Lemmas 3.2 and 3.3 ). Hence, by incorporating with entry fees or reserve prices, the
simultaneous first-price auction (or the simultaneous all-pay auction) is an O(1)-approximation
to the optimal revenue (Corollaries 3.4 and 3.5). See Table 1 for comparison with other simple
mechanisms.

A few remarks are in order. Firstly, our benchmark is the optimal revenue achievable by any Bayesian
Incentive Compatible mechanism (or equivalently achievable at any Bayes-Nash equilibrium of any
mechanism, truthful or not). This is the standard benchmark considered in the simple vs. optimal
literature and used in all previous results. Secondly, our result makes the standard item-independent
assumption that is used in essentially all previous work regarding the tradeoff between simplicity and
optimality in multi-item auctions for both truthful and non-truthful mechanisms [23, 24, 2, 37, 43, 16,
5, 49, 47, 15, 25, 20, 21, 33, 30, 19]. Without assuming item-independence, [38] and [8] suggest that no
mechanism with bounded menu complexity, a basic requirement for simple mechanisms, can offer any
finite approximation guarantees, even when selling only two or three correlated items to a single buyer. 1

Finally, our approach fails to extend to simultaneous second-price auctions. We present some formal
barriers in Example 1. See Section 3.2 for a more detailed discussion. It is an interesting open ques-
tion to understand whether some variant of the simultaneous second-price auction is approximately
revenue-optimal in our setting.

1Our mechanism becomes either selling the grand bundle or selling the items separately when there is a single buyer, and
hence has bounded menu complexity.
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Revenue guarantees for a non-truthful auction. We provide details on how we evaluate the revenue of
simultaneous auctions. For the simultaneous auction with personalized reserved prices, our result holds
even if the revenue is evaluated at the worst Bayes-Nash equilibrium. For the simultaneous auction with
personalized entry fees, the answer is more nuanced. We show that for any Bayes-Nash equilibrium
s of the original simultaneous auction, there exists a set of entry fees {ENTi }i∈[m] such that (a) the set
of Bayes-Nash equilibria remains unchanged in the new simultaneous auction with entry fees, and (b)
our result holds for the revenue generated at equilibrium s in the new simultaneous auction with entry
fees. Note that this is the same type of guarantee provided in [30] but for additive valuations. We believe
such a guarantee is desirable in practice. When the original simultaneous auction has a unique Bayes-
Nash equilibrium, our new mechanism inherits the uniqueness. When there are multiple equilibria, the
auctioneer can first deploy the original simultaneous auction and wait until the bidders have reached an
equilibrium s. The auctioneer can now incorporate the set of entry fees tailored for the equilibrium s. As
our result suggests, the new mechanism still admits s as a Bayes-Nash equilibrium and can now provide
strong revenue guarantees. It seems unreasonable for the bidders to abandon s and play a different
equilibrium in the new mechanism, while they choose to play according to s in the original one.

Our Techniques. Our result is based on a combination of the c-efficiency property for simultaneous
auctions and the duality framework developed in [15, 20]. Roughly speaking, a simultaneous auction is
c-efficient, if for any Bayes-Nash equilibrium s, any bidder i , and any subset of items S, bidder i ’s maxi-
mum attainable utility from items in S plus the revenue generated from items in S is at least c times i ’s
value for the bundle S. It is not hard to see that if a simultaneous auction is c-efficient, then its welfare is
at least c times the optimal welfare. What we show is that this desirable property is also useful in produc-
ing revenue guarantees. Furthermore, we provide a simple but crucial modification for the double-core
decomposition in the duality framework, which is a most critical and challenging step of the entire anal-
ysis. This modification allows us to extend the duality-based analysis to simultaneous auctions and will
likely find further applications. With these two innovations, we avoid the type-loss tradeoff analysis,
which is the major technical hurdle in [30], and provide a modular and arguably simpler analysis for the
significantly more general setting with subadditive bidders.

Table 1: A Summary of Approximation Results for Multi-Dimensional Revenue Maximization
S1A = Simultaneous First-Price Auction, S2A = Simultaneous-Second Price Auction, SAP = Simultaneous All-Pay Auction

Sequential Two-Part
Tariff Mechanism

S2A with
Entry Fees / Reserve Prices

S1A, SAP with
Entry Fees / Reserve Prices

Additive O(1)[25, 20] O(1) [49, 15, 30] O(1) for regular distributions[30]

XOS O(1)[20] ? O(1)(This paper)

Subadditive O(log log m)[33] ? O(1)(This paper)

Approximate revenue monotonicity. Building on our constant factor approximation, we establish ap-
proximate revenue monotonicity for subadditive bidders. This work generalizes the findings of Yao [50],
who demonstrate approximate revenue monotonicity for XOS bidders. The formal statement of the the-
orem and the accompanying proof can be found in Appendix F.

1.2 Additional Related Work

Simple vs. Optimal. As we mentioned earlier, the majority of results in the simple vs. optimal literature
focus on truthful mechanisms. Indeed, most of the designed mechanisms are dominant strategy incen-

tive compatible, providing very strong incentive guarantees for the bidders. However, to provide domi-
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nant strategy incentive compatibility, the mechanisms are sequential. As noted in [1], the multi-round
nature of these sequential mechanisms can present implementation difficulties that static mechanisms,
such as simultaneous auctions, avoid. Empirical evidence [3] also suggests that static mechanisms can
be conducted rapidly and asynchronously, thus offering several implementation benefits, which may
explain the prevalence of static mechanisms in the real world.

Algorithms for finding nearly revenue-optimal mechanisms. There is a line of work focusing on effi-
cient algorithms to find a (1−ε)-approximation of the optimal revenue in multi-item auctions [10, 2, 12,
11, 13, 14, 44, 18]. However, the computed mechanisms may not be simple, and might be too compli-
cated to implement in practice.

Welfare guarantees of simultaneous auctions. A fruitful line of work aim to approximate the welfare in
combinatorial auctions using simultaneous auctions. A non-exhaustive list includes [27, 6, 41, 34, 32, 42].
Feldman et al. [34] show that, when bidders have subadditive valuations, the Price of Anarchy is 2 for
the simultaneous first-price auction, and 4 for the simultaneous second-price auction under the no-
overbidding assumption. Recently, Correa and Cristi [42] show that the Price of Anarchy is 6+ ε for a
variant of the simultaneous all-pay auction. We provide constant factor approximation to the optimal
revenue using simultaneous auctions. Our analysis for the c-efficiency property is inspired by [34].

2 Preliminaries

In this paper, we focus on revenue maximization in simultaneous auctions with n bidders and m items.
We represent the set of all n bidders using [n] and the set of all m items with [m].

Types and Valuation Functions. For each bidder i , its type ti = 〈ti j 〉
m
j=1 is a m-dimensional vector

where ti j is the private information of bidder i about item j . Each ti j is drawn independently from
the distribution Di j . The support of Di =×j Di j and Di j are represented by Ti and Ti j . When bidder
i has a type ti , their valuation for a set of items S is denoted as υi (ti ,S). We refer to vi (·, ·) as bidder i ’s
valuation function that takes both i ’s type and a set of items as input. We refer to vi (ti , ·) as a valuation
of bidder i , which only takes a set of items as input.

Throughout the paper, we assume that each bidder i ’s distribution of valuation satisfies Defini-
tion 2.1. This is colloquially referred to as bidder i ’s valuation is subadditive over independent items.
Definition 2.1 is proposed in [47] and has been adopted in essentially every work that studies revenue
guarantees for simple mechanisms with subadditive bidders [20, 9, 33].

Definition 2.1 (Subadditive over independent items [47]). A bidder i ’s distribution Vi of their valuation

υi (ti , ·) is subadditive over independent items if their type ti is drawn from a product distribution Di =

×j Di j and vi (·, ·) satisfies the following properties:

• υi (·, ·) has no externalities. For each type ti and any subset of items S ⊆ [m], υi (ti ,S) relies solely on

〈ti j 〉 j∈S
. More formally, for any ti , t ′

i
such that ti j = t ′

i j
for all j ∈ S, υi (ti ,S)= υi (t ′

i
,S).

• υi (·, ·) is monotone. For any type ti and U ⊆V ⊆ [m], υi (ti ,U ) ≤ υi (ti ,V ).

• υi (·, ·) is subadditive. For all ti and U ,V ⊆ [m], υi (ti ,U ∪V ) ≤ υi (ti ,U )+υi (ti ,V ).

Similar to previous work, we use Vi (ti j ) to denote υi (ti , { j }) since it only depends on ti j .

We provide an example in Appendix A to show how Definition 2.1 captures standard settings with
independent items as special cases.

An important property that we use in the analysis is the Lipschitzness of the valuation function.
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Definition 2.2. A valuation function v(·, ·) is ℓ-Lipschitz if for any type t , t ′ ∈ T , and set X ,Y ⊆ [m],

∣∣v(t , X )−v(t ′,Y )
∣∣≤ ℓ ·

(
|X∆Y |+

∣∣∣{ j ∈ X ∩Y : t j 6= t ′j }
∣∣∣
)

,

where X∆Y = (X \Y )∪ (Y \X ) is the symmetric difference between X and Y .

Combinatorial Auctions We consider combinatorial auctions with n bidders and m items. In a com-
binatorial auction, each bidder observes their type ti and chooses their action (e.g., a bid to submit)
according to their type. We allow the bidders to use mixed strategies, that is, bidder i ’s action bi is drawn
from a distribution si (ti ) that maps i ’s type ti to a distribution over possible actions. Given the action
profile b = (b1,b2, · · · ,bn), the (possibly random) outcome of a combinatorial auction consists of a feasi-
ble allocation X (b) = (X1(b), X2(b), · · · , Xn(b)) ∈

(
2[m]

)n
, where Xi (b) is set of items allocated to bidder i ,

and payments p(b) = (p1(b), p2(b), · · · , pn(b)) for the bidders. ui (ti ,b) = E [υi (ti , Xi (b))−pi (b)] denotes
the utility of bidder i in the combinatorial auction when their type is ti under the action profile b.

Simultaneous Auctions A simultaneous auction consists of m parallel single-item auctions
{
A j

}
j∈[m].

The action bi chosen by bidder i is an m-dimensional vector in which the j -th coordinate b
( j )
i

represents

the bid of bidder i for item j . Let b( j ) = (b
( j )
1 ,b

( j )
2 , · · · ,b

( j )
n ) represent the collection of bids for item j . Each

single-item auction A j runs independently to determine the allocation of item j and each bidder’s pay-

ment in A j according to b( j ). We use X
( j )
i

(b( j )) ⊆ { j } to denote the item that bidder i gets and p
( j )
i

(b( j ))

to denote bidder i ’s payment in the j -th auction. Notice that X
( j )
i

and p
( j )
i

might be random as the auc-
tion A j is allowed to be randomized. In a simultaneous auction, bidder i receives all items won in each

single-item auction A j , i.e., Xi (b) =
⋃

j∈[m] X
( j )
i

(b( j )), and their overall-payment pi (b) =
∑

j∈[m] p
( j )
i

(b( j ))
amounts to the sum of payments across the m concurrent single-item auctions. We also provide bidders
with an additional action, denoted ⊥, allowing them to abstain from bidding in a single-item auction.
Bidding ⊥ signifies that the bidder withdraws from competing for the item and incurs no payment for it.

In this paper, we study two simultaneous auctions – the simultaneous first-price auction (S1A) and
the simultaneous all-pay auction (SAP). Both auctions satisfy the highest bid wins property, which states
that, in each single-item auction, item j is allocated to the bidder who submits the highest bid for j . In a
S1A, only the winning bidder for each item pays their bid; in a SAP, all bidders pay their bids regardless
of the outcome.

We formally define the notion of Bayes-Nash equilibrium in Appendix A. Let s be a Bayes-Nash equi-
librium of auction A w.r.t. distribution D, the expected revenue at equilibrium s is defined as

Rev(s)
D

(A ) =
∑

i∈[n]
E

t∼D
b∼s(t)

[
pi (b)

]
.

If A is a simultaneous auction, we use Rev(s)
D

(A ,S) to denote the revenue of A collected from items
in S at equilibrium s:

Rev(s)
D (A ,S)=

∑

i∈[n]
j∈S

E
t∼D

b∼s(t )

[
p

( j )
i

(b)
]

Finally, we define OPT(D) as the optimal revenue achievable by any randomized and Bayesian incentive
compatible (BIC) mechanisms with respect to type distribution D and valuation functions {vi }i∈[n]. Due
to the revelation principle, we know that the highest revenue achievable by any auction at an Bayes-Nash
equilibrium is also OPT(D).
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3 Our Mechanisms and Main Theorem

3.1 Our Mechanisms

We first introduce the two variations of simultaneous auctions that are used in our main theorem.

Simultaneous Auctions with Entry Fees. Our version of simultaneous auctions with entry fees is nearly
identical to the one proposed by Daskalakis et al. [30]. For each bidder i , there is a personalized entry fee
ei ∈ R≥0, which does not depend on the bids submitted by the other bidders. Note that ei could depend
on other parameters of the problem, e.g., the type distribution D, the valuation functions {vi }i∈[n], and
the equilibrium s that we hope the bidders play. The entry fee is charged with probability 1−δ, and each
bidder can decide whether to pay the entry fee to participate in the auction.

Mechanism 1: Simultaneous auction A with personalized entry fee {ei }i∈[n]
(
A

(e)
EF

)

1 Input: A simultaneous auction A = (X , p) and {ei }i∈[n] ∈R
n
≥0;

2 Each bidder i submits a pair (zi ,bi ) where zi ∈ {0,1} indicates whether bidder i is willing to
accept an entry fee ei to enter the auction, and bi is a m-dimensional vector representing
bidder i ’s bid in A ;

3 Independently for each bidder i , the entry fee ENTi is set to ei with probability 1−δ and is set of
0 with probability δ;

4 Run auction A according to the bid profile b = (b1,b2, · · · ,bn);
5 Let S = {i : ENTi = 0 or zi = 1} be the set of bidders that enters the auction, (i.e., bidders who agree

to pay their entry fee);
6 Each bidder i ∈ S receives allocation Xi (b) and has payment pi (b). All other bidders receive

nothing and pay nothing.

The probability that we do not charge the entry fee δ should be thought of as a very small positive
constant. In our proof, we choose δ to be 0.01 and it suffices to guarantee Theorem 3.1.

Simultaneous Auction with Reserve Prices. The mechanism first determines reserve prices ri j for
each bidder i and item j using only information about the distribution of Vi (ti j ) (i.e., the distribution of
bidder i ’s value for winning only item j ). As in standard simultaneous auctions, each bidder i submits

an m-dimensional bid vector bi , where the j -th coordinate b
( j )
i

represents i ’s bid for item j .
Given the bid profile, the allocation is directly determined by the simultaneous auction A . If i wins

item j , i ’s payment for item j is the maximum of the reserve price ri j and i ’s payment for item j deter-
mined by A j . For the bidders who do not win item j , their payment for that item equals the payment
determined by A j . The total payment of any bidder is the sum of their payments for all items.

Mechanism 2: A with personalized reserve prices {ri j }i∈[n], j∈[m] (A (r )
RP )

1 Input: A simultaneous auction A = (X , p) and a collection of reserved prices {ri j }i∈[n], j∈[m];

2 Each bidder i submits their bid vector bi , a m-dimensional vector, where b
( j )
i

can be ⊥ for any j ;
3 Run auction A with bid profile b = (b1,b2, · · · ,bn);

4 Each bidder i receives allocation Xi (b) and pays
∑

j∈Xi (b) max
{

p
( j )
i

(
b( j )

)
,ri j

}
+

∑
ℓ∉Xi (b) p (ℓ)

i

(
b(ℓ)

)
;

3.2 Main Theorem

We introduce our main result in this section. We show that if a simultaneous auction A satisfies certain
desirable properties at a Bayes-Nash equilibrium s, then the same auction A that incorporates addi-
tional entry fees or reserved prices can generate a constant fraction of the optimal revenue OPT(D) when
bidders’ valuations are subadditive over independent items.
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We first formally define the desirable properties :

Definition 3.1 (c-efficiency). Let s be a Bayes-Nash equilibrium of simultaneous auction A w.r.t. type

distribution D and valuation functions {vi }i∈[n]. We define µ(s)
i

(ti ,S) to be the optimal utility of bidder i

when their type is ti , and they are only allowed to participate in the auctions for items in set S, while all

other bidders bid according to s−i . More specifically,

µ(s)
i

(ti ,S)= sup
qi∈(R≥0∪{⊥})m

E
t−i∼D−i

b−i∼s−i (t−i )

[
υi

(
ti , Xi

(
qi ,b−i

)
∩S

)
−

∑

j∈S

p
( j )
i

(
q

( j )
i

,b
( j )
−i

)]
.2

We say the tuple
(
A , s,D, {vi }i∈[n]

)
is c-efficient if the following conditions hold:

• The payment for any item is non-negative. When a bidder bids ⊥ on an item, they pay nothing on

this item regardless of the outcome.

• A satisfies the highest bid wins property, i.e., for each item j , the bidder who has the highest bid

wins item j .

• For any bidder i , any type ti , and any set of items S ⊆ [m],

µ(s)
i

(ti ,S)+Rev(s)
D (A ,S)≥ c ·υi (ti ,S).3

Before presenting our main theorem, we first discuss the definition of c-efficiency and how it relates
to several other important notions in mechanism design. In Definition 3.1, the first and second condi-
tions are easily satisfied by many simultaneous auctions, while the third condition is crucial and more
difficult to meet. Indeed, any tuple

(
A , s,D, {vi }i∈[n]

)
meeting the third condition implies that the equi-

librium s achieves at least c fraction of the optimal welfare. However, attaining a high welfare does not
directly imply the third condition. We show that for the simultaneous second-price auction, there exists
an instance

(
D, {υi }i∈[n]

)
with a no-overbidding equilibrium s such that the third condition is violated for

any c > 0, but high welfare is still achieved at this equilibrium in the simultaneous second-price auction.
See Example 1 for the complete construction.

The third condition echoes the (λ,µ) smoothness condition introduced by Syrgkanis et al. [48], albeit
with three significant distinctions. First, our condition is specifically designed for simultaneous auc-
tions and pertains to a particular Bayes-Nash equilibrium, in contrast to the (λ,µ)-smoothness which
is generally applicable to any mechanism. Second, our condition imposes a lower bound on the util-
ity of a single bidder, unlike the smoothness condition that considers the aggregate utility of all bidders.
Lastly, our condition mandates the inequality to hold for every bundle S, a requirement absent in smooth
mechanisms.

The third condition also notably aligns with the balanced prices framework [43, 35, 36, 33], despite
significant differences. Let U be a set of items. The balanced prices framework assigns a price pi to
each item i ∈U such that for any subset S ⊆U , the buyer’s utility from purchasing S (i.e., υ(S)−

∑
i∈S pi )

combined with the revenue from the remaining set (i.e.,
∑

i∈U\S pi ), approximates the total value of U .
In contrast, our condition mandates that for any subset S ⊆ U , the buyer’s utility, when bidding only
on items in S and acting in best response to other bidders’ equilibrium strategies, along with the rev-
enue from the same set S, must attain a constant fraction of the total value of U . Additionally, while

2When Xi (qi ,b−i ) is a randomized allocation, Xi (qi ,b−i )∩S should be interpreted as only assigning i the set of items in
W ∩S, where W is the random set of items that i wins in Xi (qi ,b−i ).

3Note that our definition is tailored for simultaneous auctions, as it is unclear how to define Rev(s)
D

(A ,S) for general auctions.
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the balanced prices framework is limited to posted-price mechanisms, our definition can accommodate
simultaneous auctions.

Hartline et al. [?] introduce the concepts of competitive efficiency and individual efficiency for the
single-dimensional setting. The third condition in Definition 3.1 can be viewed as a generalization of
these concepts in multi-dimensional settings. More specifically, in the single-item setting, for any mech-
anism that is (η,µ)-individual and competitive efficient, our third condition holds for any equilibrium s

with c = ηµ.
We now state our main theorem.

Theorem 3.1. Let A be a simultaneous auction, and s be a Bayes-Nash equilibrium of A w.r.t. type

distribution D =×i∈[n], j∈[m] Di j and valuation functions {vi }i∈[n]. If the distribution of bidder i ’s valu-

ation vi (ti , ·) is subadditive over independent items (i.e., satisfies Definition 2.1) and
(
A , s,D, {vi }i∈[n]

)
is

c-efficient, then there exists a set of personalized entry fees {ei }i∈[n] and a set of personalized reserve prices

{ri j }i∈[n], j∈[m] so that

OPT(D) ≤

(
21

c
·Rev(s)

D

(
A

(e)
EF

)
+

(
87+

51

c

)
·Rev(s ′)

D

(
A

(r )
RP

))
.

Here A
(e)

EF is auction A with personalized entry fee {ei }i∈[n]. Note that A
(e)

EF has the same set of Bayes-

Nash equilibria as A , so s is also a Bayes-Nash equilibrium of A
(e)

EF . A
(r )

RP is auction A with reverse price

{ri j }i∈[n], j∈[m], and s′ is an arbitrary Bayes-Nash equilibrium.

Remark 1. Note that the entry fees {ei }i∈[n] are selected based on s. As stated in Lemma 4.1, a strategy

profile s is a Bayes-Nash equilibrium in A
(e)

EF if and only if s is also a Bayes-Nash equilibrium in A . This

implies that the introduction of entry fees does not give rise to any new equilibria, and the same strat-

egy profile s continues to be an equilibrium. Therefore, it is reasonable to expect that the bidders to play

according to the same equilibrium s after introducing the entry fees.

See Section 4 for a detailed discussion about additional properties of equilibria in these two mech-
anisms. Next, we argue that all equilibria of S1A and SAP are 1

2 -efficient when bidders valuations are
subadditive.

Lemma 3.2. For any type distribution D, valuation functions {vi }i∈[n], and any Bayes-Nash equilibrium s

of S1A, as long as for any bidder i and any ti , vi (ti , ·) is a subadditive function over [m], (S1A, s,D, {vi }i∈[n])
is 1

2 -efficient.

Lemma 3.3. For any type distribution D, valuation functions {vi }i∈[n], and any Bayes-Nash equilibrium s

of SAP, as long as for any bidder i and any ti , vi (ti , ·) is a subadditive function over [m], (SAP, s,D, {vi }i∈[n])
is 1

2 -efficient.

Remark 2. Note that Lemma 3.2 and 3.3 do not require the bidders’ valuations to be subadditive over
independent items. We only use item-independence in the proof of Theorem 3.1.

The proofs of Lemma 3.2 and 3.3 are postponed to Appendix C. Combining Theorem 3.1 with Lemma 3.2
and Lemma 3.3, we show that S1A and SAP with personalized entry fees or reserved prices can extract a
constant fraction of the optimal revenue when the valuations are subadditive over independent items.

Corollary 3.4. For any type distribution D =×i∈[n], j∈[m] Di j and valuation functions {vi }i∈[n], such that

the distribution of bidder i ’s valuation vi (ti , ·) is subadditive over independent items (i.e., satisfies Defini-

tion 2.1), if s is a Bayes-Nash equilibrium of the simultaneous first-price auction (S1A), then there exists a

set of entry fees {ei }i∈[n] and a set of reserve prices {ri j }i∈[n], j∈[m] such that

OPT(D) ≤ 42 ·Rev(s)
D

(
S1A(e)

EF

)
+189 ·Rev(s ′)

D

(
S1A(r )

RP

)
,
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where s, a Bayes-Nash equilibrium of the original S1A, remains to be a Bayes-Nash equilibrium for the

S1A with personalized entry fees, and s′ is an arbitrary Bayes-Nash equilibrium of the S1A with reserve

prices.

Corollary 3.5. For any type D =×i∈[n], j∈[m] Di j and valuation functions {vi }i∈[n], such that the distribu-

tion of bidder i ’s valuation vi (ti , ·) is subadditive over independent items (i.e., satisfies Definition 2.1), if s

is a Bayes-Nash equilibrium of the simultaneous all-pay auction (SAP), then there exists a set of entry fees

{ei }i∈[n] and a set of reserve prices {ri j }i∈[n], j∈[m] such that

OPT(D) ≤ 42 ·Rev(s)
D

(
SAP(e)

EF

)
+189 ·Rev(s ′)

D

(
SAP(r )

RP

)
,

where s, a Bayes-Nash equilibrium of the original S1A, remains to be a Bayes-Nash equilibrium for the

S1A with personalized entry fees, and s′ is an arbitrary Bayes-Nash equilibrium of the S1A with reserve

prices.

4 Equilibria of Our Mechanisms

In this section, we discuss some properties of the equilibrium in our mechanisms. Note that a Bayes-
Nash equilibrium may not exist if the type spaces and action spaces are continuous. See Appendix B.2
for a more detailed discussion.

4.1 Mechanisms with Entry Fees

Notice that when the entry fee is charged deterministically, the bid vector bi has no impact on bidder
i ’s utility if they choose not to pay the entry fee. In this scenario, the bidder may report an arbitrary
bi , potentially introducing new equilibria. As we show in Lemma 4.1, charging the entry fees randomly
incentivizes each bidder to keep their bids even when they decide not to enter the auction. Daskalakis
et al. [30] provides an alternative mechanism with “ghost bidders”. Their mechanism deterministically
charges an entry fee and samples a bid from a "ghost bidder" in the execution of A whenever a real
bidder i declines to pay the entry fee. As discussed in their paper, this mechanism is credible as the
mechanism does not use any private randomness, but it may introduce new equilibria. We highlight that
if we replace the randomized entry fees with deterministic ones together with ghost bidders, all claims in
Theorem 3.1 hold, except that now we need to evaluate the revenue of A

(e)
EF at a “focal equilibrium” that

can be computed based on s.
Before examining the properties of A

(e)
EF , it is essential to discuss a subtle detail concerning the ac-

tions of bidders in A
(e)

EF . The actions available to bidder i in A
(e)

EF has an additional dimension zi ∈ {0,1},
that decides whether i is willing to pay the entry fee. At any equilibrium s, it is clear that bidder i will
choose to enter the auction if and only if E t−i∼D−i

b−i∼s−i (t−i )
[ui (ti , (bi ,b−i ))] exceeds ei . Therefore, zi depends

exclusively on bi at any equilibrium. This allows for a liberal use of notation, interpreting the strategies
of A

(e)
EF as a mapping from its type ti to an m-dimensional bid vector bi (rather than to (zi ,bi )).

Definition 4.1 (Strategy Profile of A
(e)

EF at Equilibrium s). Suppose s is a Bayes-Nash equilibrium in auc-

tion A
(e)

EF . For each bidder i , its strategy profile si is defined as a mapping from type ti to a distribution of

m-dimensional bid vectors. Let

ui (ti ,bi ) = E
t−i∼D−i

[
E

b−i∼s−i (t−i )
[ui (ti , (bi ,b−i ))]

]

be the utility function for bidder i in auction A when their type is ti and bids are bi . When bidder i

participates in A
(e)

EF with type ti , she first samples a bid vector bi ∼ si (ti ). Let zi = 1[ui (ti ,bi ) ≥ ei ] where

9



ei is the entry fee for bidder i , she then submits (zi ,bi ) as their action. It is clear that every equilibrium s of

A
(e)

EF could be expressed in this form.

The following lemma states that A
(e)

EF has exactly the same set of Bayes-Nash equilibria as A for all δ ∈

(0,1).

Lemma 4.1. For any δ ∈ (0,1), any set of entry fees {ei }i∈[n], any type distribution D, and valuation func-

tions {vi }i∈[n], a strategy profile s is a Bayes-Nash equilibrium in A if and only if it is also a Bayes-Nash

equilibrium in A
(e)

EF .

We now discuss the revenue obtained by our mechanism with entry fees. The revenue consists of
two parts: (i) the revenue derived from auction A , i.e., Rev(s)

D
(A ); (ii) the revenue obtained from the

entry fees. We hereby provide a formal definition for the revenue generated from entry fees as follows.

Definition 4.2 (Entry Fee Revenue).

EF-Rev(s)
D (A ) = sup

e∈Rn
≥0

∑

i∈[n]
ei · Pr

ti∼Di


 E

t−i∼D−i

b∼s(t )

[ui (ti ,b)] ≥ ei


.

It is important to note that the auction A
(e)

EF cannot fully obtain the revenue of auction A , i.e.,

Rev(s)
D

(A ), and the revenue derived from entry fees, i.e., EF-Rev(s)
D

(A ), at the same time. This is due to the
fact that that when entry fees are imposed, bidders may refuse to enter the auction, which could poten-
tially reduce the revenue generated by the auction A . Nevertheless, we could choose entry fees in a way
to either maximize the revenue collected from the entry fees, thereby obtaining EF-Rev(s)

D
(A ), or to set all

entry fees to 0 and attain Rev(s)
D

(A ). In other words, Rev(s)
D

(A (e)
EF ) is at least max

{
Rev(s)

D
(A ), (1−δ−ε)EF-Rev(s)

D
(A )

}

for any ε> 0.

Lemma 4.2. For any ε> 0, there exists a set of entry fees {ei }i∈[n] so that

Rev(s)
D

(
A

(e)
EF

)
≥ max

{
Rev(s)

D (A ), (1−δ−ε)EF-Rev(s)
D (A )

}
.

The proofs of Lemma 4.1 and Lemma 4.2 are postponed to Appendix D.1 and Appendix D.2, respec-
tively.

4.2 Mechanisms with Reserve Prices

The following lemma provides a revenue guarantee for A
(r )

RP . Importantly, this guarantee holds for any

Bayes-Nash equilibrium of A
(r )

RP .

Lemma 4.3. For any type distribution D and valuation functions {υi }i∈[n], if the simultaneous auction A

satisfies the first and second conditions of Definition 3.1, and
{

ri j

}
i∈[n], j∈[m] is a set of reserved prices that

meets the following two conditions for some absolute constant b ∈ (0,1):

(1)
∑

i∈[n] Pr[Vi (ti j ) ≥ ri j ] ≤ b, ∀ j ∈ [m];

(2)
∑

j∈[m] Pr[Vi (ti j ) ≥ ri j ] ≤ 1
2 , ∀i ∈ [n],

then for any Bayes-Nash equilibrium s of the simultaneous auction with reserved prices A
(r )

RP , the following

revenue guarantee holds:
2

1−b
·Rev(s)

D

(
A

(r )
RP

)
≥

∑

i , j

ri j ·Pr
[
Vi (ti j ) ≥ ri j

]
.

The proof of Lemma 4.3 is postponed to Appendix D.5.
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5 Proof of Theorem 3.1

In this section, we complete the proof of Theorem 3.1. We extend the previous techniques, i.e., the dual-
ity framework [15, 20], to simultaneous auctions by developing a new core-tail analysis. A crucial struc-
ture from the preceding approach hinged on the subadditivity and Lipschitzness of the bidders’ utility
functions. Fortunately, the structure of simultaneous auctions ensures that the maximum utility a bid-
der can derive from a set of items (by bidding on them) remains a subadditive function. However, the
Lipschitzness of the utility functions introduces additional subtlety. In simultaneous auctions, where
bidding strategies form a Bayes-Nash equilibrium, each bidder faces a distribution of prices, as opposed
to a set of static prices, as encountered in posted price mechanisms analyzed in previous work. This shift
introduces a new challenge in controlling the Lipschitz constant of the utility functions, which, in turn,
affects the concentration result.

We first introduce some notation. As in [20], we assume that the type distributions are discrete. See
their paper for a discussion on how to convert continuous distributions to discrete ones without much
revenue loss. We fix type distribution D in this section, and the probability mass functions of Di and Di j

are denoted as fi (·) and fi j (·), respectively. Furthermore, the support of Di and Di j are represented by
Ti and Ti j . Recall that we define Vi (ti j ) as υi (ti , { j }). We denote Fi j as the distribution of Vi (ti j ) and let
ϕ̃i j (x) be the Myerson’s ironed virtual value [45] of x with respect to distribution Fi j .

For any direct-revelation Bayesian Incentive Compatible mechanism M , the allocation rule of M is
represented by σ, wherein σi S(ti ) denotes the probability that bidder i is allocated set S with type ti .

Given a set of parameters β=
{
βi j

}
i∈[n], j∈[m] ∈R

nm
≥0 , we partition Ti into m +1 regions: (i) R

(βi )
0 contains

all types ti satisfying Vi (ti j ) < βi j for all j ∈ [m]. (ii) R
(βi )
j

contains all types ti such that Vi (ti j ) ≥ βi j and

j is the smallest index in argmaxk

{
Vi (ti k)−βi k

}
. Intuitively, R

(βi )
j

contains all types ti for which item j

becomes the preferred item of bidder i when the price for item j is βi j .
For each bidder i , define

ci = inf

{
x ≥ 0 :

∑

j

Pr
ti j

[
Vi

(
ti j

)
≥βi j +x

]
≤

1

2

}
.

For each ti ∈ Ti , let Ti (ti ) =
{

j : Vi (ti j ) ≥βi j +ci

}
be the set of items that is above the price and

Ci (ti ) = [m]\Ti (ti ) be its complement. Namely, if we set the reserve price (or posted price) of item j

for bidder i at βi j +ci , it is very likely that bidder i will buy at most one item. Thus, we could expect that
the contribution to revenue from Ti can be approximated by A when incorporating reserve prices. We
now formally define the three components used to upper bound the optimal revenue below.

Definition 5.1. For any feasible interim allocation rule σ and any β, denote

SINGLE
(
σ,β

)
=

∑

i

∑

ti∈Ti

fi (ti )
∑

j∈[m]
1

[
ti ∈ R

(βi )
j

]
·πi j (ti ) · ϕ̃i j (ti j ),

TAIL
(
β
)
=

∑

i

∑

j

∑

ti j :Vi (ti j )≥βi j+ci

fi j (ti j ) ·Vi (ti j )
∑

k 6= j

Pr
ti k

[
Vi (ti k)−βi k ≥Vi

(
ti j

)
−βi j

]
,

CORE
(
σ,β

)
=

∑

i

∑

ti∈Ti

fi (ti )
∑

S⊆[m]
σi S(ti ) ·υi (ti ,S ∩Ci (ti )),

where πi j (ti ) =
∑

S: j∈S σi S(ti ) is the probability that item j is alloctaed to bidder i with type ti .

Let RevD (M ) be the revenue of mechanism M while the bidders’ types are drawn from the distribu-
tion D. Cai and Zhao [20] show that the optimal revenue could be upper bounded by SINGLE, TAIL and
CORE.
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Lemma 5.1 ([20]). For any BIC mechanism M and given any set of parameters β= {βi j }i∈[n], j∈[m] ∈ R
nm
≥0 ,

there exists a feasible interim allocation σ(β) so that

RevD (M ) ≤ 2 ·SINGLE

(
σ(β),β

)
+4 ·TAIL

(
β
)
+4 ·CORE

(
σ(β),β

)
.

Additionally, for any constant b ∈ (0,1) and any mechanism M, there exists a set of parameters β such

that σ(β) satisfies the following two properties:

∑

i

Pr
ti j

[
Vi (ti j ) ≥βi j

]
≤ b, ∀ j ∈ [m] (1)

∑

ti∈Ti

fi (ti ) ·π
(β)
i j

(ti )≤ Pr
ti j

[
Vi (ti j ) ≥βi j

]
/b, ∀i ∈ [n], j ∈ [m], where π

(β)
i j

(ti ) =
∑

S: j∈S

σ
(β)
i S

(ti ). (2)

The first part of Lemma 5.1, namely the revenue guarantee, is derived by combining Theorem 2 and
Lemma 14 from [22] (the full version of [20]), and hence, the proof is omitted here. In the second part of
Lemma 5.1, we assert that parameters β can be chosen such that the corresponding interim allocation
σ(β) satisfies two useful properties. This lemma is nearly identical to Lemma 5 in [22], albeit with a minor
alteration. It can be readily verified that the proof for Lemma 5 suffices to demonstrate this variation.

Suppose the simultaneous auction A admits an equilibrium s under type distribution D and valua-
tion functions {υi }i∈[n] so that

(
A , s,D, {vi }i∈[n]

)
is c-efficient as defined in Definition 3.1.

We proceed to define the maximum revenue that can be achieved by simultaneous auction A with
reserve prices.

Definition 5.2. Define RPRev as the revenue obtainable by a simultaneous auction with optimal reserve

prices ri j ’s, such that the revenue at its worst equilibrium s is maximized:

RPRev := sup
r

inf
s is BNE

Rev(s)
D

(
A

(r )
RP

)

Given that RPRev is finite, the subsequent corollary directly follows.

Lemma 5.2. For any ε> 0, there exists a set of reserve prices {ri j }i∈[n], j∈[m] so that for any equilibrium s of

A
(r )

RP , its revenue at s achieves (1−ε)RPRev.

In the following proof, we respectively approximate SINGLE, TAIL and CORE. Figure 1 below offers a
comprehensive overview of how we organize our proof.

We first show that under parameters β and σ(β) that satisfy (1) and (2) of Lemma 5.1, SINGLE and
TAIL could be easily approximated by A

(r )
RP with appropriately selected reserve prices.

Lemma 5.3. For any σ and β that satisfy (1) and (2) as stipulated in Lemma 5.1, 4 SINGLE(σ,β) could be

upper bounded by the revenue of a simultaneous auction with personalized reserve prices (Mechanism 2).

That is to say,

SINGLE
(
σ,β

)
≤ 8 ·RPRev.

Lemma 5.4. For any β satisfying (1), there exists a simultaneous auction with personalized reserve prices

(Mechanism 2), whose revenue is at least 1−b
2 ·TAIL(β), i.e.,

TAIL
(
β
)
≤

2

1−b
·RPRev.

The proofs of Lemma 5.3 and Lemma 5.4 are postponed to Appendix E.1 and E.2.

4Here it means that σ satisfies (2) when σ(β) is replaced by σ.
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Optimal Revenue
Theorem 3.1

CORE

Lemma 5.5
SINGLE

Lemma 5.3
TAIL

Lemma 5.4

�CORE

Lemma 5.9
CORE −�CORE

Lemma 5.6

Lemma 5.7 Lemma 5.8 Lemma 5.10 Lemma 5.11 Lemma 5.13

Figure 1: Relationships among lemmas and their roles in establishing the main result

5.1 The Analysis of the CORE

We now proceed to show that CORE could also be approximated by simultaneous auctions with entry
fees or reserve prices.

Lemma 5.5. For anyσandβ that satisfy (1) and (2) as specified in Lemma 5.1, and tuple
(
A , s,D, {vi }i∈[n]

)
that

is c-efficient,

CORE(σ,β) ≤
4

c
·EF-Rev(s)

D (A )+
1

c
·Rev(s)

D (A )+

(
2b +2

b(1−b)
+

10

c(1−b)

)
·RPRev,

where EF-Rev(s)
D

(A ) is defined in Definition 4.2.

To prove Lemma 5.5, we first introduce the double-core decomposition �CORE.

Definition 5.3 (Double-core decomposition). Let

τi := inf

{
x ≥ 0 :

∑

j

Pr
ti j

[
Vi (ti j ) ≥max

{
βi j , x

}]
≤

1

2

}
.

and define Ai to be the set
{

j : βi j ≤ τi

}
. Define �CORE as

�CORE(σ,β) =
∑

i

∑

ti∈Ti

∑

S⊆[m]
fi (ti )σi S(ti )υi (ti ,S ∩Yi (ti ))

where Yi (ti ) = { j : Vi (ti j ) < τi }.
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Remark 3. We provide an alternative double-core decomposition compared to [20]. The main difference

between these two decompositions is that the τi defined in our paper is different and could potentially be

larger than theirs. As �CORE defined in [20] is designed for posted-price mechanisms, they assign a price Q j

for each item j and replace max
{
βi j , x

}
by max

{
βi j , x +Q j

}
in the definition of τi . We show that the use

of Q j is unnecessary. By Lemma 5.13,
∑

i τi in our paper can still be approximated by simple mechanisms.

This is crucial for our analysis, as our proof highly replies on the τi -Lipschitzness of µi , and it can fail to

be τi -Lipschitz if we use τi defined in [20].

It suffices to demonstrate that our simultaneous auctions with either entry fees or reserve prices
provide an upper bound for both the �CORE and the difference between CORE and �CORE, i.e., CORE −

�CORE. We first show that the gap between these two cores could be approximated by the revenue of
simultaneous auction with reserved prices.

Lemma 5.6. For any σ, β that satisfies (1) and (2) in Lemma 5.1,

CORE
(
σ,β

)
− �CORE

(
σ,β

)
≤

2(b +1)

b(1−b)
·RPRev.

To prove Lemma 5.6, we first introduce a technical lemma that will be used in our proof.

Lemma 5.7. For any β that satisfies (1) in Lemma 5.1,

∑

i , j

max
{
βi j ,τi

}
Pr
ti j

[
Vi (ti j )> max

{
βi j ,τi

}]
≤

2

1−b
·RPRev

Proof. According to the definition of τi , for every buyer i ,
∑

j Prti j

[
Vi (ti j ) > max

{
βi j ,τi

}]
≤

1
2 . For each

item j , since β satisfies (1), it holds that

∑

i

Pr
ti j

[
Vi (ti j )> max

{
βi j ,τi

}]
≤

∑

i

Pr
ti j

[
Vi (ti j ) >βi j

]
≤ b.

Applying lemma 4.3, we then complete our proof.

Before proving Lemma 5.6, we need one more lemma about
∑

i ci .

Lemma 5.8. For any β that satisfies (1) in Lemma 5.1,

∑

i

ci ≤
4

1−b
RPRev.

Proof. Recall that ci is defined as follows:

ci := inf

{
x ≥ 0 :

∑

j

Pr
ti j

[
Vi

(
ti j

)
≥βi j +x

]
≤

1

2

}
.

From the definition of ci , it directly follows that

∑

j

Pr
ti j

[
Vi

(
ti j

)
≥βi j +ci

]
≤

1

2

for all i ∈ [n]. Moreover, as the βi j ’s satisfy (1), the following is clearly true.

∑

i

Pr
ti j

[
Vi

(
ti j

)
≥βi j +ci

]
≤

∑

i

Pr
ti j

[
Vi

(
ti j

)
≥βi j

]
≤ b, ∀ j ∈ [m].
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Consequently, the set
{
βi j +ci

}
i∈[n], j∈[m] meets all conditions in Lemma 4.3. This leads to the impli-

cation that: ∑

i

∑

j

(
βi j +ci

)
·Pr

ti

[
Vi

(
ti j

)
≥βi j +ci

]
≤

2

1−b
·RPRev.

On the other hand,

∑

i

∑

j

(
βi j +ci

)
·Pr

ti

[
Vi

(
ti j

)
≥βi j +ci

]
≥

∑

i

∑

j

ci ·Pr
ti

[
Vi

(
ti j

)
≥βi j +ci

]
≥

1

2
·
∑

i

ci .

The last inequality arises since, when ci > 0,
∑

j Prti
[Vi (ti j ) ≥βi j +ci ] = 1

2 . Combining the two inequali-
ties above, we know that

∑
i ci /2 ≤ 2

1−b
·RPRev.

Now we are ready to prove Lemma 5.6.

Proof of Lemma 5.6. Recall that

CORE
(
σ,β

)
=

∑

i

∑

ti∈Ti

fi (ti )
∑

S⊆[m]
σi S(ti )υi (ti ,S ∩Ci (ti ))

�CORE(σ,β) =
∑

i

∑

ti∈Ti

fi (ti )
∑

S⊆[m]
σi S(ti )υi (ti ,S ∩Yi (ti ))

where Ci (ti ) = { j : Vi (ti j ) <βi j +ci },Yi (ti ) = { j : Vi (ti j ) < τi }.
Firstly, notice that

υi (ti ,S ∩Ci (ti ))−υi (ti ,S ∩Yi (ti )) ≤ υi (ti ,S ∩ (Ci (ti )\Yi (ti )))

≤
∑

j∈S∩(Ci (ti )\Yi (ti ))

Vi

(
ti j

)

≤
∑

j∈S

Vi (ti j ) ·1
[
τi ≤Vi (ti j ) ≤βi j +ci

]

≤
∑

j∈S

(
βi j ·1

[
Vi (ti j ) ≥ τi

]
+ci ·1

[
Vi (ti j ) ≥max

{
βi j ,τi

}])

(3)

The last inequality is because when τi ≤Vi (ti j )≤βi j +ci , Vi (ti j ) is upper bounded by βi j when Vi (ti j ) ≤
βi j and upper bounded by βi j +ci when Vi (ti j )≥βi j . Hence

CORE − �CORE

≤
∑

i

∑
ti

∑

S⊆[m]

∑

j∈S

fi (ti )σi S(ti ) ·
(
βi j ·1[Vi (ti j ) ≥ τi ]+ci ·1

[
Vi (ti j ) ≥max{βi j ,τi }

])

=
∑

i

∑

j

∑
ti

fi (ti ) ·πi j (ti ) ·
(
βi j ·1

[
Vi (ti j ) ≥ τi

]
+ci ·1

[
Vi (ti j ) ≥max

{
βi j ,τi

}])
.

(4)

First we bound
∑

i

∑
j

∑
ti

fi (ti ) ·πi j (ti ) ·βi j ·1
[
Vi (ti j )≥ τi

]
.

∑

i

∑

j

∑
ti

fi (ti )πi j (ti ) ·βi j ·1
[
Vi (ti j )≥ τi

]

≤
∑

i

∑

j∈Ai

βi j ·
∑
ti

fi (ti ) ·1
[
Vi (ti j ) ≥ τi

]
+

∑

i

∑

j∉Ai

βi j ·
∑
ti

fi (ti )πi j (ti )

≤
∑

i

∑

j∈Ai

βi j ·Pr
ti j

[
Vi (ti j ) ≥ τi

]
+

∑

i

∑

j∉Ai

βi j ·Pr
ti j

[
Vi (ti j ) ≥βi j

]
/b

≤
1

b
·
∑

i , j

max
{
βi j ,τi

}
·Pr

ti j

[
Vi (ti j ) ≥ max

{
βi j ,τi

}]

≤
2

b(1−b)
·RPRev

(5)
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The set Ai is defined as { j : βi j ≤ τi } in Definition 5.3. The parameters βi j ’s satisfy Inequality (2), as
presented in the statement of the lemma, which substantiates the second inequality. The third inequality
is due to the definition of Ai and the last inequality follows from lemma 5.7.

Secondly, we bound
∑

i
∑

j
∑

ti
fi (ti )πi j (ti ) ·ci ·1

[
Vi (ti j ) ≥max

{
βi j ,τi

}]
.

∑

i

∑

j

∑
ti

fi (ti )πi j (ti ) ·ci ·1
[
Vi (ti j )≥ max

{
βi j ,τi

}]

≤
∑

i

ci

∑

j

∑
ti

fi (ti ) ·1
[
Vi (ti j ) ≥ max

{
βi j ,τi

}]

=
∑

i

ci

∑

j

Pr
[
Vi j (ti ) ≥ max

{
βi j ,τi

}]

≤
∑

i

ci /2

≤
2

1−b
·RPRev

(6)

where the second inequality is due to the definition of τi

(
Definition 5.3

)
and the last inequality is due to

Lemma 5.8. Combining (4), (5) and (6), we complete our proof.

Next, we argue that �CORE could be approximated by auction A with either entry fees or reserve
prices.

Lemma 5.9. For any σ and β that satisfy (1) and (2) in Lemma 5.1, and tuple
(
A , s,D, {vi }i∈[n]

)
that is

c-efficient,, it holds that

�CORE
(
σ,β

)
≤

1

c

(
4 ·EF-Rev(s)

D (A )+Rev(s)
D (A )+

10

1−b
·RPRev

)
,

where EF-Rev(s)
D (A ) denotes the revenue derived from entry fees, as defined in Definition 4.2.

Recall that in Definition 3.1, we define µ(s)
i

(ti ,S) as the optimal utility that bidder i can attain when

only the bundle S is available. We further define µ̂i (ti ,S) asµ(s)
i

(ti ,S ∩Yi (ti )) where Yi (ti ) =
{

j : Vi (ti j ) < τi

}
.

Lemma D.1 demonstrates that µ̂(ti , ·) satisfies monotonicity, subadditivity, no externalities and τi -Lipschitzness.
Our proof of Lemma 5.9 can be divided into the following three steps. The first step, summarized in
Lemma 5.10, argues that the “truncated” utility, represented as

∑
i Eti∼Di

[µ̂i (ti , [m])], together with the
revenue of the auction A serves as a c-approximation to �CORE by employing the third property in the
definition of c-efficiency. The second step, i.e., Lemma 5.11, shows how to extract revenue from the
“truncated” utility by setting a entry fee at the median of the utility function. We demonstrate that the
corresponding revenue is high enough using a concentration inequality for subadditive functions. The
last step, i.e., Lemma 5.13 shows that the difference between the revenue from the entry fees and the
truncated utilities can be approximated by the revenue from another simultaneous auction with reserved
prices.

Lemma 5.10. For any σ, β that satisfies (1) and (2) in Lemma 5.1,

∑

i

E
ti∼Di

[
µ̂i (ti , [m])

]
≥ c ·�CORE

(
σ,β

)
−Rev(s)

D (A ).

Proof. The third property of c-efficiency
(
Definition 3.1

)
states that for any S ⊆ [m],

µ(s)
i

(ti ,S ∩Yi (ti ))≥ c ·υi (ti ,S ∩Yi (ti ))−Rev(s)
D (A ,S ∩Yi (ti )).
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By the definition of µ̂i and the monotonicity of µ(s)
i

(ti , ·), it follows that

∑

i

E
ti∼Di

[
µ̂i (ti , [m])

]

≥
∑

i

E
ti∼Di

[
∑

S⊆[m]
σi S(ti )µ(s)

i
(ti ,S ∩Yi (ti ))

]

≥
∑

i

E
ti∼Di

[
∑

S⊆[m]
σi S(ti )

(
c ·υi (ti ,S ∩Yi (ti ))−Rev(s)

D (A ,S ∩Yi (ti ))
)]

= c ·
∑

i

∑

ti∈Ti

∑

S⊆[m]
fi (ti )σi S(ti )υi (ti ,S ∩Yi (ti ))−

∑

i

∑

ti∈Ti

∑

S⊆[m]
fi (ti )σi S(ti )Rev(s)

D (A ,S ∩Yi (ti ))

(7)

The first term here is exactly c · �CORE. Recall the definition of �CORE:

�CORE(σ,β) =
∑

i

∑

ti∈Ti

∑

S⊆[m]
fi (ti )σi S(ti )υi (ti ,S ∩Yi (ti )). (8)

We are only left to upper bound the second term. Recall that πi j (ti ) represents the probability that
item j is allocated to bidder i , meaning that

∑
i
∑

ti
fi (ti )πi j (ti ) ≤ 1 for all j ∈ [m]. Consequently,

∑

i

∑

ti∈Ti

∑

S⊆[m]
fi (ti )σi S(ti )Rev(s)

D (A ,S ∩Yi (ti )) ≤
∑

i

∑

ti∈Ti

∑

S⊆[m]
fi (ti )σi S(ti )Rev(s)

D (A ,S)

=
∑

j

Rev(s)
D

(
A ,

{
j
})∑

i

∑
ti

fi (ti )
∑

S: j∈S

σi S(S)

=
∑

j

Rev(s)
D

(
A ,

{
j
})∑

i

∑
ti

fi (ti )πi j (ti )

≤Rev(s)
D (A , [m]).

(9)

The first inequality employs the monotonicity of Rev(s)
D

, and the first equation is because that A is a
simultaneous auction, thereby making its revenue additive across items.

Putting (7),(8) and (9) together, we then finish our proof.

Finally, notice that µ̂i (·, ·) is a subadditive function that isτi -Lipschitz. To approximate
∑

i Eti∼Di
[µ̂i (ti , [m])],

the concentration inequality for subadditive functions tells us that we can extract the revenue from the
bidder’s utility by setting an entry fee at its median.

Lemma 5.11. There exists bidder-specific entry-fees {ei }i∈[n], such that

∑

i

E
ti∼Di

[
µ̂i (ti , [m])

]
≤ 4 ·EF-Rev(s)

D (A )+
5

2

∑

i

τi .

Proof. We first introduce a concentration inequality for subadditive function from Corollary 1 in [22].

Lemma 5.12 ([20]). Let g (t , ·) with t ∼ D =×j D j be a function drawn from a distribution that is subaddi-

tive over independent items of ground set I . Assume that the function g (·, ·) exhibits c-Lipschitzness. Let a

represent the median of the random variable g (t , I ), that is, a = inf
{

x ≥ 0 : Prt [g (t , I )≤ x] ≥ 1
2

}
.Therefore,

E
t
[g (t , I )]≤ 2a +

5c

2
.
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Notice that µ̂(ti , [m]) is a random variable in which the randomness comes from its random type ti .
Let ei be the median of µ̂i (ti , [m]). Since µ̂(·, ·) is subadditive over independent items and τi -Lipschitz by
Lemma D.1, Lemma 5.12 implies the following

E
ti∼Di

[
µ̂(ti , [m])

]
≤ 2ei +

5

2
τi . (10)

The monotonicity of µi implies that µi (ti , [m]) ≥ µ̂i (ti , [m]). Therefore, if we set the entry fee as ei ,
i.e., the median of µ̂i (ti , [m]), the probability that bidder i pays the entry fee is at least 1/2. Thus

EF-Rev(s)
D (A )≥

∑

i

ei Pr
ti∼Di

[
µi (ti , [m])≥ ei

]
≥

1

2

∑

i

ei . (11)

Combining (10) and (11),we then get

∑

i

E
ti∼Di

[
µ̂i (ti , [m])

]
≤ 2

∑

i

ei +
5

2

∑

i

τi

≤ 4 ·EF-Rev(s)
D (A )+

5

2

∑

i

τi .

As the last step, we show that the sum of the Lipschitz constant
∑

i τi can be approximated by RPRev.

Lemma 5.13. For any β that satisfies (1) in Lemma 5.1,

∑

i

τi ≤
4

1−b
·RPRev.

Proof. Notice that

∑

i , j

max
{
βi j ,τi

}
Pr
ti j

[
Vi (ti j ) > max

{
βi j ,τi

}]
≥

∑

i , j

τi Pr
ti j

[
Vi (ti j ) >max

{
βi j ,τi

}]
. (12)

According to the definition of τi , when τi > 0,

∑

j

Pr
ti j

[
Vi (ti j ) > max

{
βi j ,τi

}]
=

1

2
. (13)

Combining (12), (13) and Lemma 5.7, we then get
∑

i τi ≤
4

1−b ·RPRev.

It is evident that Lemma 5.9 is a direct consequence of the amalgamation of Lemma 5.10, Lemma 5.11,
and Lemma 5.13. Analogously, by combining Lemma 5.6 and Lemma 5.9, we subsequently obtain Lemma 5.5.

Finally, we are now ready to prove our main theorem, i.e., Theorem 3.1.

Proof of Theorem 3.1. From the statement of Lemma 5.3, Lemma 5.4 and Lemma 5.5, we get that

SINGLE

(
σ(β),β

)
≤ 8 ·RPRev

TAIL
(
β
)
≤

2

1−b
·RPRev

CORE(σ(β),β) ≤
4

c
·EF-Rev(s)

D (A )+
1

c
·Rev(s)

D (A )+

(
2b +2

b(1−b)
+

10

c(1−b)

)
·RPRev

(14)
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Lemma 5.1 demonstrates that

RevD (M ) ≤ 2 ·SINGLE

(
σ(β),β

)
+4 ·TAIL

(
β
)
+4 ·CORE

(
σ(β),β

)
. (15)

Combining (14) and (15), we then get

RevD (M ) ≤
16

c
·EF-Rev(s)

D (A )+
4

c
·Rev(s)

D (A )+

(
16b +8

b(1−b)
+

40

c(1−b)
+16

)
·RPRev.

By Lemma 5.2 and Lemma 4.2, we then know that there exists a set of entry fees {ei }i∈[n] and a set
of reserve prices {ri j }i∈[n], j∈[m] so that for any equilibrium s of auction A with reserve price r , i.e., A

(r )
RP ,

and any ε1,ε2,δ ∈ (0,1), it holds that

RevD (M )≤
20

c · (1−δ−ε1)
·Rev(s)

D

(
A

(e)
EF

)
+ (1−ε2)−1

(
16b +8

b(1−b)
+

40

c(1−b)
+16

)
·Rev(s ′)

D

(
A

(r )
RP

)
.

Taking δ= ε1 = ε2 = 0.01 and b =
1
5 , we get that

RevD (M ) ≤
21

c
·Rev(s)

D

(
A

(e)
EF

)
+

(
87+

51

c

)
·Rev(s ′)

D

(
A

(r )
RP

)
.

Since this inequality holds for any BIC mechanism M , we have proved our claim.
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A Additional Preliminaries

Bayes-Nash Equilibrium A strategy profile s = (s1, s2, · · · , sn) is a Bayes-Nash equilibrium (BNE) with
respect to type distribution D and valuation functions {vi }i∈[n] if and only if for any bidder i , any type ti ,

22



and any strategy s̃i : Ti →R
m
≥0, the following inequality holds

E
t−i ∼D−i

[
E

b∼(si (ti ),s−i (t−i ))
[ui (ti ,b)]

]
≥ E

t−i ∼D−i


 E

b̃i∼s̃i (ti )
b−i ∼s−i (t−i )

[
ui

(
ti ,

(
b̃i ,b−i

))]

.

Examples of Valuations Suppose t = 〈t j 〉 j∈[m] where t j is drawn independently from D j . We show how
subadditive functions over independent items capture various families of valuation functions.

• Additive: t j is the value of item j , and υ(t ,S)=
∑

j∈S t j .

• Unit-demand: t j is the value of item j , and υ(t ,S)= max j∈S t j .

• Constrained Additive: t j is the value of item j , and suppose I is a family of feasible sets. υ(t ,S) =
maxY ⊆S,Y ∈I

∑
i∈Y ti .

• XOS/Fractionally Subadditive: let t j =

{
t (k)

j

}
k∈[K ]

be the collection of values of item j for each of

the K additive functions, and υ(t ,S)=maxk∈[K ]
∑

j∈S t (k)
j

.

B Tie-breaking and the Existence of Equilibrium

B.1 Tie-breaking

For distribution D with point masses, the following reduction will convert it to a continuous one. We will
overload the notation of D and think of it as a bivariate distribution with the first coordinate drawn from
the previous single-variate distribution D and the second tie-breaker coordinate drawn independently
and uniformly from [0,1]. And (X1, t1) > (X2, t2) if and only if either X1 > X2, or X1 = X2 and t1 > t2. Since
the tie-breaker coordinate is continuous, the probability of having (X1, t1) = (X2, t2) for any two values
during a run of any mechanism is zero.

Remind the second coordinate is only used to break ties, and it does not affect the calculation of
payment. Note that when we run a mechanism with entry fees {ei }, the second coordinate does not
affect whether bidder i chooses to pay the entry fee or not. It is only used to break ties in the execution
of A . This means that we can even remove the second coordinate when implementing the mechanism
with entry fees and still use the same ways to break ties as in A . Therefore, by adding the second tie-
breaker coordinate, we get a continuous distribution, and do not change the structure of equilibrium of
mechanisms with entry fees.

B.2 The Existence of Equilibrium

Our result applies to every equilibrium in simultaneous auctions that satisfies c-efficient. However, equi-
libria may not exist when the type spaces and and strategy spaces are both continuous. To fix this, we
can restrict the strategy spaces to be discrete and bounded, e.g., ε-grid in [0, H ], and assume the type
spaces to be finite. Consequently, this transforms the game into a finite one, and thus an equilibrium
must inherently exist.

We refer readers to [34] for a detailed discussion of existence of equilibrium in simultaneous auctions.
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C Proof of Lemma 3.2 and 3.3

The proof here is inspired by [34].
The first and second condition is obviously true for simultaneous first-price auctions and simulta-

neous all-pay auctions. Now we argue that the third condition with c =
1
2 is satisfied by simultaneous

first-price auctions and simultaneous all-pay auctions. Consider any bidder i with type ti and a set of
items S ⊆ [m].

We let P−i be the distribution of m-dimensional vector maxi 6=i bi ′ =

(
maxi ′ 6=i b

( j )
i ′

)
j∈[m]

where the ran-

domness is from both t−i and s−i (t−i ). Let qi be a random variable sampled from the distribution P−i .
Consider the random bid of bidder i , which is qi plus a small constant ε> 0 added to each component,
with the entire vector constrained to the set S. For ease of notation, we denote this vector by (qi +ε)|S ,

whose j -th coordinate is q
( j )
i

+ε when j ∈ S, and equals to 0 otherwise.

E
t−i∼D−i

qi∼P−i , b−i∼s−i (t−i )

[
υi

(
ti , Xi

(
(qi +ε)|S ,b−i (t−i )

)
∩S

)]

≥ E
t−i∼D−i

qi ∼P−i , b−i∼s−i (t−i )

[
υi

(
ti ,

{
j : q

( j )
i

+ε> max
i ′ 6=i

b
( j )
i ′

}
∩S

)]

= E
qi ∼P−i

ri ∼P−i

[
υi

(
ti ,

{
j : q

( j )
i

+ε> r
( j )
i

}
∩S

)]

=
1

2
· E

qi∼P−i

ri∼P−i

[
υi

(
ti ,

{
j : q

( j )
i

+ε> r
( j )
i

}
∩S

)
+υi

(
ti ,

{
j : r

( j )
i

+ε> q
( j )
i

}
∩S

)]

≥
1

2
υi (ti ,S).

(16)

The last inequality is because the union of
{

j : q
( j )
i

+ε> r
( j )
i

}
and

{
j : r

( j )
i

+ε> q
( j )
i

}
is [m], and vi (ti , ·)

is a subadditive function. Also notice that in simultaneous first-price or all-pay auctions, the payment
on a single item does not exceed the bid on the item, so the total payment of a bidder does not exceed
the sum of their bids.

µi (ti ,S)≥ E
t−i∼D−i

qi∼P−i , b−i∼s−i (t−i )

[
υi

(
ti , Xi

(
qi |S ,b−i

)
∩S

)
−

∑

j∈S

p
( j )
i

(
q

( j )
i

,b
( j )
−i

)]

≥
1

2
υi (ti ,S)−

∑

j∈S

E
qi∼P−i

[
q

( j )
i

]
−|S| ·ε

=
1

2
υi (ti ,S)−

∑

j∈S

E
t−i∼D−i

b−i∼s−i (t−i )

[
max
i ′ 6=i

b
( j )
i ′

]
−|S| ·ε.

(17)

At the end, since in first-price or all-pay auction the revenue from a item is at least the maximum of
bid on this item, so

Rev(b)(
A ,

{
j
})

≥ E
t∼D

b∼s(t )

[
max

i
b

( j )
i

]
.
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Therefore,

µi (ti ,S)≥
1

2
υi (ti ,S)−

∑

j∈S

E
t−i∼D−i

b−i∼s−i (t−i )

[
max
i ′ 6=i

b
( j )
i ′

]
−|S| ·ε

≥
1

2
υi (ti ,S)−

∑

j∈S

E
t∼D

b∼s(t )

[
max

i
b

( j )
i

]
−|S| ·ε

≥
1

2
υi (ti ,S)−Rev(b)

D (A ,S)−|S| ·ε.

Taking ε→ 0, by definition of µi (ti ,S), we know

µi (ti ,S)≥
1

2
υi (ti ,S)−Rev(b)

D (A ,S).

D Missing Proofs in Section 4

D.1 Proof of Lemma 4.1

For any strategy profile s with respect to a prior distribution of types D in auction A , we slightly abuse
notation and let u(s)

i
(ti ) be the interim utility of bidder i with type ti . Namely,

u(s)
i

(ti ) = E
t−i∼D−i

[
E

b∼s(ti ,t−i )
[ui (ti ,b)]

]
.

Then by definition a strategy profile s is a Bayes-Nash equilibrium in A iff for any bidder i , type ti

and a mixed strategy s′
i
, u(s)

i
(ti ) ≥u

(s ′
i
,s−i )

i
(ti ).

Given a strategy profile s in auction A
(e)

EF , for the bidder i with type ti , i receives δ times their interim

utility u(s)
i

(ti ) in auction A by reporting zi = 0 If i reports zi = 1, the interim utility is u(s)
i

(ti ) minus

(1−δ)ei . Hence, in auction A
(e)

EF the interim utility of bidder i with type ti is

ũ(s)
i

(ti ) := max
{
δ ·u(s)

i
(ti ),u(s)

i
(ti )− (1−δ)ei

}

Notice that max{δ ·x, x − (1−δ)ei } is a strictly increasing function with respect to x for δ ∈ (0,1),

which means that ũ(s)
i

(ti ) is a strictly increasing function with respect to u(s)
i

(ti ). Thus, ũ(s)
i

(ti ) ≥ ũ
(s ′i ,s−i )
i

(ti )

is equivalent to u(s)
i

(ti ) ≥ u
(s ′i ,s−i )
i

(ti ). As a result, we know that a strategy profile s is a equilibrium in A if

and only if it is a equilibrium in A
(e)

EF .

D.2 Proof of Lemma 4.2

We use the same notation u(s)
i

(ti ) to denote the interim utility of bidder i with type ti in auction A , when
all bidders bid according to strategy profile s.

Taking ei = 0 for all i ∈ [n], we know Rev(s)
D

(A (e)
EF ) =Rev(s)

D
(A ),

If EF-Rev(s)
D

(A )= 0, we have already finished the proof.

When EF-Rev(s)
D

(A ) > 0, we only need to prove for any ε> 0, there exists a set of entry fees {ei }i∈[n] so
that

Rev(s)
D

(
A

(e)
EF

)
≥ (1−δ−ε) EF-Rev(s)

D (A ).

Now consider any ε> 0, by definition of EF-Rev(s)
D (A ), there exists a set of ei such that

∑

i

ei · Pr
ti∼Di

[
u(s)

i
(ti )≥ ei

]
≥ (1−ε) EF-Rev(s)

D (A )
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Now simply consider the mechanism A with entry fee {ei }i∈[n], i.e., A
(e)

EF . It’s clear that bidder i will

pay entry fee iff u(s)
i

(ti ) ≥ ei . The revenue of A
(e)

EF is at least its revenue from entry fees, so

Rev(s)
D

(
A

(e)
EF

)
≥ (1−δ)

∑

i

ei · Pr
ti∼Di

[
u(s)

i
(ti ) ≥ ei

]

≥ (1−δ−ε)EF-Rev(s)
D

(A ).

By choosing the better entry fee between 0 and {ei }i∈[n], we conclude our proof.

D.3 A Hard Instance for the Simultaneous Second Price Auction

We first provide a counter-example to show that not every equilibrium of the simultaneous second price
auction satisfies the third condition in Definition 3.1.

Example 1. Consider the following deterministic instance. There are n unit-demand bidders and n items.

For each bidder i , their favourite item is the i -th item, and their value towards that item is 1. For any other

item, their value is ε, where ε is a constant strictly less than 1.

1

2

· · ·

n

Bidders

1

2

· · ·

n

Items
1

ε

ε

ε

1

ε

ε

ε

1

Figure 2: A Counter-Example for Simultaneous Second Price Auction

For this instance, suppose each bidder i bids 1 on their favorite item, i.e., item i , and bids 0 on any
item else. It is clear that this is a no over-bidding pure Nash equilibrium as everyone gets their favorite
item and pays nothing. Therefore, in this equilibrium s, Rev(s)

D
(A ) = 0. What’s more, it is easy to see that

this equilibrium is optimal in welfare.
Let Si = [n]\{i }. However, we can see that µ(s)

i
(ti ,Si ) = 0 as for every item j 6= i , the maximum bid at

equilibrium s is 1, and consequently, bidder i has no motivation to engage in competition for that item.
Also note that υi (ti ,Si )= ε. This implies that

µ(s)
i

(ti ,Si )+Rev(s)
D

(A ) = 0 < c ·υi (ti ,Si )

for any c > 0.

D.4 A More Detailed Discussion of c-efficient simultaneous auctions

We introduce a property of µ(s)(ti , ·) that is essential in approximating the optimal revenue.
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Lemma D.1. For any i and any constant li ≥ 0, let Li (ti ) be the set { j : Vi (ti j ) < li }, and define µ̂(s)
i

(ti ,S) =

µ(s)
i

(ti ,S ∩Li (ti )). Recall that µ(s)
i

(ti ,S ∩Li (ti )) is defined in Definition 3.1. If the first condition of Defini-

tion 3.1 is satisfied by
(
A , s,D, {vi }i∈[n]

)
, µ̂(s)

i
(·, ·) satisfies monotonicity, subadditivity, no externalities and

is li -Lipschitz.

Proof. We first prove µi satisfies monotonicity, subadditivity and no externalities.
For any types ti , t ′

i
, such that ti j = t ′

i j
for all j ∈ S,

µ(b)
i

(ti ,S)= sup
qi

E
t−i∼D−i

b−i∼s−i (t−i )

[
υi

(
ti , Xi

(
qi ,b−i

)
∩S

)
−

∑

j∈S

p
( j )
i

(
q

( j )
i

,b
( j )
−i

)]

= sup
qi

E
t−i∼D−i

b−i∼s−i (t−i )

[
υi

(
t ′i , Xi

(
qi ,b−i

)
∩S

)
−

∑

j∈S

p
( j )
i

(
q

( j )
i

,b
( j )
−i

)]

=µ(b)
i

(
t ′i ,S

)
.

where second equality is by no externalities of υi . Thus, µi has no externalities.
For any set U ⊆V ⊆ [m],

µ(b)
i

(ti ,U ) = sup
qi

E
t−i∼D−i

b−i∼s−i (t−i )

[
υi

(
ti , Xi

(
qi ,b−i

)
∩U

)
−

∑

j∈S

p
( j )
i

(
q

( j )
i

,b
( j )
−i

)]

≤ sup
qi

E
t−i∼D−i

b−i∼s−i (t−i )

[
υi

(
ti , Xi

(
qi ,b−i

)
∩V

)
−

∑

j∈S

p
( j )
i

(
q

( j )
i

,b
(j )
−i

)]

=µ(b)
i

(ti ,V ).

The inequality is because υi is monotone. So µi is monotone.

We use qi |S to denote the bid vector qi restricted to bundle S, which means that (qi |S) j equals q
j

i

when j ∈ S, and equals to the null action ⊥ otherwise. For all ti and U ,V ⊆ [m], let W = (U ∪V )\U . Then
U ∩W =;, U ∪W =U ∪V and W ⊆V . To prove subadditivity of µi , we first prove the following claims,
one equality and one inequality, which are true for any bid profile b−i .

Xi

(
qi ,b−i

)
∩ (U ∪W ) =

⋃
j∈U∪W

X
( j )
i

(
q

j

i
,b

( j )
−i

)

=

(
⋃
j∈U

X
( j )
i

(
q

j

i
,b

( j )
−i

))⋃
(

⋃
j∈W

X
( j )
i

(
q

j

i
,b

( j )
−i

))

=
(
Xi

(
qi |U ,b−i

)
∩U

)
∪

(
Xi

(
qi |W ,b−i

)
∩W

)

(18)
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Therefore,

µi (ti ,U ∪V )=µi (ti ,U ∪W )

=sup
qi

E
t−i∼D−i

b−i∼s−i (t−i )

[
υi

(
ti , Xi

(
qi ,b−i

)
∩ (U ∪W )

)
−

∑

j∈U∪W

p
( j )
i

(
q

( j )
i

,b
( j )
−i

)]

≤sup
qi



 E

t−i∼D−i

b−i∼s−i (t−i )

[
υi

(
ti , Xi

(
qi |U ,b−i

)
∩U

)
−

∑

j∈U

p
( j )
i

(
q

( j )
i

,b
( j )
−i

)]

+ E
t−i∼D−i

b−i∼s−i (t−i )

[
υi

(
ti , Xi

(
qi |W ,b−i

)
∩W

)
−

∑

j∈W

p
( j )
i

(
q

( j )
i

,b
( j )
−i

)]




≤sup
qi

E
t−i∼D−i

b−i∼s−i (t−i )

[
υi

(
ti , Xi

(
qi ,b−i

)
∩U

)
−

∑

j∈U

p
( j )
i

(
q

( j )
i

,b
( j )
−i

)]

+sup
qi

E
t−i∼D−i

b−i∼s−i (t−i )

[
υi

(
ti , Xi

(
qi ,b−i

)
∩W

)
−

∑

j∈W

p
( j )
i

(
q

( j )
i

,b
( j )
−i

)]

=µi (ti ,U )+µi (ti ,W )

≤µi (ti ,U )+µi (ti ,V ).

The first inequality is by (18), the subadditivity of υi , and the fact that U ∩W =∅. The second inequality
is from the property of the sup operator, and the third inequality is because µi is monotone. Thus, µi is
subadditive.

Consider any constant li in the definition of µ̂i . By the monotonicity and subadditivity of µi , we can
directly conclude that µ̂i is also monotone and subadditive.

For any types ti , t ′
i
, such that ti j = t ′

i j
for all j ∈ S, we know S ∩Li (ti ) = S ∩Li (t ′

i
), since for any j ∈ S,

j ∈ Li (ti ) ⇔Vi (ti j ) < li ⇔Vi (t ′i j ) < li ⇔ j ∈ Li (t ′i )

Hence
µ̂i (ti ,S)=µi (ti ,S ∩Li (ti )) =µi (t ′i ,S ∩Li (t ′i )) = µ̂i (t ′i ,S).

Thus, µ̂i satisfies monotonicity, subadditivity and no externalities.
Finally, we prove µ̂i is li -Lipschitz.

For any ti , t ′
i
∈ Ti , and set X ,Y ⊆ [m], define set H =

{
j ∈ X ∩Y : ti j = t ′

i j

}
. Because of the no exter-

nalities property of µ̂i , we know µ̂i (ti , H )= µ̂i (t ′
i
, H ).

∣∣µ̂i (ti , X )− µ̂i

(
t ′i ,Y

)∣∣= max
{
µ̂i (ti , X )− µ̂i

(
t ′i ,Y

)
, µ̂i

(
t ′i ,Y

)
− µ̂i (ti , X )

}

≤ max
{
µ̂i (ti , X )− µ̂i

(
t ′i , H

)
, µ̂i

(
t ′i , X

)
− µ̂i (ti , H )

}

≤ max
{
µ̂i (ti , X \H ), µ̂i

(
t ′i ,Y \H

)}

= max
{
µi (ti , (X \H )∩Li (ti )),µi

(
t ′i , (Y \H )∩Li

(
t ′i

))}

≤ li ·max{|X \H |, |Y \H |}

≤ li · (|X∆Y |+ |X ∩Y |− |H |).
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In the following, we show that for any
(
A , s,D, {vi }i∈[n]

)
that satisfies the third condition, it also

achieves a high welfare at the equilibrium s. Let us define Wel(s)
D

(A ) as the social welfare of auction
A at s, and OPTi (t ) as the set of items allocated to bidder i in the allocation that maximizes social wel-
fare when the bidders’ types are t . We give a formal proof that the welfare at s is at least c fraction of the
optimal welfare:

Wel(s)
D

(A )=
∑

i∈[n]
E

t∼D
b∼s(t )

[ui (ti ,b)]+Rev(s)
D

(A )

= E
t∼D

[
∑

i∈[n]
µ(s)

i
(ti , [m])+Rev(s)

D (A , [m])

]

≥ E
t∼D

[
∑

i∈[n]

(
µ(s)

i
(ti ,OPTi (t ))+Rev(s)

D
(A ,OPTi (t )

)]

≥ c · E
t∼D

[
∑

i∈[n]
υi (ti ,OPTi (t ))

]

The second equation holds since s is a Bayes-Nash equilibrium. The first inequality comes from the
monotonicity of µ(s)

i
(ti , ·) which is proved in Lemma D.1 and the second inequality directly follows from

the third condition.

D.5 Proof of Lemma 4.3

Proof of Lemma 4.3: Notice that by the first condition and the union bound, for any item j , the prob-
ability that each bidder i ’s value on item j is smaller than their reserve price on item j , ri , j , is at least
1−

∑
i∈[n] Pr[Vi (ti j ) ≥ ri j ] ≥ 1−b. Similarly, by the second condition, we know that for any bidder i , the

probability that their value of any item j is below the reserve price ri j is at least 1
2 .

We first prove that for any equilibrium s of A
(r )

RP , any bidder i will always take the null action ⊥ when
their value on this item is smaller than the reserved price. Suppose there exists a bid equilibrium that
does not follow this. For any j ∈ [m] let I j = {i : Prti ,bi∼si (ti )[Vi (ti j )< ri j ∧b

j

i
6=⊥] > 0} be the set of bidders

that have a non-zero probability to compete for item j while their value is less than the reserve. Assume
that Ik is non-empty for some k . Consider the event that satisfies the following: (i) for any bidder i ∉ Ik ,
i ’s value on item k is strictly less than ri k ; (ii) for any bidder i ∈ Ik , Vi (ti k) < ri k and bk

i
6=⊥. It is not

hard to see that this event happens with non-zero probability. Conditioning on this event, the winner of
item k must be some bidder i∗ in Ik . We argue that i∗’s expected utility is strictly worse compared to the
scenario where their bids remain unchanged for other items, and bk

i∗
is replaced with ⊥. The reason is

that i∗ has a subadditive valuation, so i∗’s utility is strictly worse after acquiring item k at a price larger
than Vi∗(ti∗k ).

Now consider bidder i with type ti satisfying two conditions (i) Vi (ti j ) ≥ ri j , (ii) ∀k 6= j ,Vi (ti j ) < ri k .
Then , as we argued in the previous paragraph, i will take the null action ⊥ on items other than j . Now
since bidding ri j for item j will give i a non-negative utility, i will not bid ⊥ for item j . Further consider
(iii) ∀i ′ 6= i ,Vi ′(ti ′ j ) < ri ′ j which implies that any bidder other than i bill bid ⊥ for item j . Then if all of
(i), (ii), (iii) holds, bidder i will receive item j . The probability of (ii) and (iii) holds is greater than 1

2 and
1−b by the first paragraph. Because conditions (i), (ii) and (iii) are independent, bidder i wins item j

with probability at least 1−b
2 ·Pr[Vi (ti j ) ≥ ri j ]. Thus the expected revenue of the mechanism is at least

1−b
2 ·

∑
i , j ri j ·Pr[Vi (ti j ) ≥ ri j ].

■
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E Missing Proofs in Section 5

E.1 Proof of Lemma 5.3

Proof of Lemma 5.3: Our proof here is very similar to the proof of Lemma 13 in [20]. We introduce
the single-dimensional copies setting defined in [24]. In this setting, there are nm agents, in which each
agent (i , j ) has a value of Vi (ti j ) of being served with ti j sampled from Di j independently. The allocation
must be a matching, meaning that for each i ∈ [n], there is at most one k ∈ [m] so that (i ,k) is served, and
for each j ∈ [m], there is at most one k ∈ [n] so that (k , j ) is served. Fix the distribution D and valuation
function Vi (·), we denote the optimal BIC revenue in this setting as OPTCOPIES-UD. In [20], they prove that
for any σ,β, SINGLE(σ,β) ≤ OPTCOPIES-UD.

For every i ∈ [n], j ∈ [m], let qi j be the ex-ante probability that (i , j ) is served in the Myerson’s auction
for the above copies settings. By definition, we have

∑
j qi j ≤ 1,∀i ∈ [n] and

∑
i qi j ≤ 1,∀ j ∈ [m].

The ironed virtual welfare contributed from (i , j ) is at most R̃i j (qi j ), where R̃i j is the ironed revenue
curve of Ri j (q) = q · F−1

i j
(1− q), where Fi j is the CDF for the random variable Vi (ti j ), and F−1

i j
is the

corresponding quantile function. Thus, there exist two quantiles q ′
i j

and q ′′
i j

, and a pair of corresponding

convex representation coefficients xi j + yi j = 1, such that R̃i j (qi j ) = xi j ·Ri j (q ′
i j

)+ yi j ·Ri j (q ′′
i j

) and qi j =

xi j ·q ′
i j
+ yi j ·q ′′

i j
. Hence,

OPTCOPIES-UD
≤

∑

i , j

R̃i j (qi j )

=
∑

i , j

xi j ·Ri j (q ′
i j )+ yi j ·Ri j (q ′′

i j )

≤ 2 ·
∑

i , j

(
xi j ·

q ′
i j

2
·F−1

i j

(
1−q ′

i j /2
)
+ yi j ·

q ′′
i j

2
·F−1

i j

(
1−q ′′

i j /2
))

= 2 ·
∑

i , j

E
pi j

[
pi j ·Pr

[
Vi (ti j )≥ pi j

]]
.

(19)

pi j is a random price which equals to F−1
i j

(
1−q ′

i j
/2

)
with probability xi j and equals to F−1

i j

(
1−q ′′

i j
/2

)

with probability yi j . The second inequality here is because F−1(1−q)≤ F−1(1−q/2) for any CDF function
F . To upper bound

∑
i j Epi j

[pi j ·Pr [Vi (ti j ) ≥ pi j ]], we introduce an extension of lemma 4.3.

Lemma E.1. For a type distribution D, suppose simultaneous auction A satisfies the first and second con-

dition of Definition 3.1, and {ri j }i∈[n], j∈[m] is a set of independent random prices that satisfy the following

for some constant b ∈ (0,1),

(1)
∑

i∈[n] Prri j ,ti j
[Vi (ti j )≥ ri j ] ≤ b, ∀ j ∈ [m];

(2)
∑

j∈[m] Prri j ,ti j
[Vi (ti j ) ≥ ri j ] ≤ 1

2 , ∀i ∈ [n].

Then for any Bayes-Nash equilibrium strategy profile s of simultaneous auction A with independently

randomized reserve price ri j ,

∑

i , j

E
ri j

[
ri j ·Pr

[
Vi (ti j ) ≥ ri j

]]
≤

2

1−b
·Rev(s)

D

(
A

(r )
RP

)

To be more clear, the simultaneous mechanism with randomized reserve price, A
(r )

RP , is defined to
be the mechanism that first publicly independently draws ri j for each i ∈ [n] and j ∈ [m], and then im-
plements the simultaneous auction A with realized reserve prices ri j ’s. This is a distribution of simul-
taneous auctions with deterministic reserved prices, and thus its expected revenue is the expectation of
these deterministic reserve prices auctions and is not larger than RPRev.
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Proof. For the similar reason in Lemma 4.3, by the first condition, for any item j , the probability that
each bidder’s value on item j is smaller than their reserve price on item j , ri j , is at least 1−b. By the
second condition, we know that, for any bidder i , the probability of their value for every item j is below
the reserve price ri j is at least 1

2 . Moreover, using a similar argument as in Lemma 4.3, we can show that
at any equilibrium, any bidder whose value on an item is smaller than its reserve price will take the null
action ⊥ on that item.

Consider bidder i with type ti satisfying two conditions (i) Vi (ti j ) ≥ ri j , (ii) ∀k 6= j ,Vi (ti j ) < ri k . Then
i must bid ⊥ on items other than j . Thus bidding ri j on item j will lead to a non-negative utility Vi (ti j )−
ri j which is better than bidding ⊥ on item j .

We introduce the third condition (iii) ∀i ′ 6= i ,Vi ′(ti ′ j ) < ri ′ j . Given that both conditions (ii) and (iii)
are satisfied, as discussed in the preceding paragraph, bidder i will bid at least ri j on item j when-
ever their value of item j is not less than the reserve price ri j , and will subsequently secure item j .
Hence, the expected revenue from bidder i ’s payment on item j is at least Eri j

[
ri j ·Pr[Vi (ti j ) ≥ ri j ]

]
.

Since (ii) and (iii) are independent events, the joint probability of both conditions being satisfied is at
least 1−b

2 . Consequently, the expected revenue generated by the randomized mechanism A
(r )

RP is at least
1−b

2 ·
∑

i , j Eri j

[
ri j ·Pr[Vi (ti j ) ≥ ri j ]

]
.

Since for any j ∈ [m],
∑

i Pr[Vi (ti j ) ≥ pi j ] =
∑

i xi j · (q ′
i
/2)+ yi j · (q ′′

i
/2) =

∑
i qi j /2 ≤ 1/2 and for any

i ∈ [n],
∑

j Pr[Vi (ti j ) ≥ pi j ] =
∑

i xi j · (q ′
i
/2)+ yi j · (q ′′

i
/2) =

∑
j qi j /2 ≤ 1/2, we can apply lemma E.1 to

show
∑

i , j Epi j
[pi j ·Pr [Vi (ti j ) ≥ pi j ]] ≤ 4 ·Rev(A

(p)
RP ). Combining this with (19) and Rev(A

(p)
RP ) ≤ RPRev,

we have proved the statement of our lemma. ■

E.2 Proof of Lemma 5.4

Proof of Lemma 5.4: Let

Pi j ∈ argmaxx≥ci

(
x +βi j

)
·Pr

ti j

[
Vi

(
ti j

)
−βi j ≥ x

]
,

and define

ri j :=
(
Pi j +βi j

)
·Pr

ti

[
Vi

(
ti j

)
−βi j ≥ Pi j

]
= max

x≥ci

(
x +βi j

)
·Pr

ti

[
Vi

(
ti j

)
−βi j ≥ x

]
,

ri =
∑

j ri j , and r =
∑

i ri . We below show that TAIL(β) is upper bounded by r .

TAIL(β) ≤
∑

i

∑

j

∑

ti j :Vi (ti j )≥β+ci

fi (ti j ) ·
(
βi j +ci

)
·
∑

k 6= j

Pr
ti k

[
Vi (ti k )−βi k ≥Vi (ti j )−βi j

]

+
∑

i

∑

j

∑

ti j :Vi (ti j )≥β+ci

fi (ti j )
(
Vi (ti j )−βi j

)
·
∑

k 6= j

Pr
ti k

[
Vi (ti k)−βi k ≥Vi (ti j )−βi j

]

≤
1

2
·
∑

i

∑

j

∑

ti j :Vi (ti j )≥β+ci

fi (ti j ) ·
(
βi j +ci

)
+

∑

i

∑

j

∑

ti j :Vi (ti j )≥β+ci

fi (ti j ) ·
∑

k 6= j

ri k

≤
1

2

∑

i

∑

j

Pr
ti j

[
Vi (ti j ) ≥βi j +ci

]
·
(
βi j +ci

)
+

∑

i

ri ·
∑

j

Pr
ti j

[
Vi (ti j ) ≥βi j +ci

]

≤
1

2
·
∑

i

∑

j

ri j +
1

2
·
∑

i

ri

=r.

(20)
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In the second inequality, the first term is by Vi (ti j )−βi j ≥ ci , so

∑

k 6= j

Pr
ti k

[
Vi (ti k )−βi k ≥Vi (ti j )−βi j

]
≤

∑

k 6= j

Pr
ti k

[
Vi (ti k )−βi k ≥ ci

]
≤

1

2
.

The second term is because Vi (ti j )−βi j ≥ ci and definiton of ri k ,

(
Vi (ti j )−βi j

)
·
∑

k 6= j

Pr
ti k

[
Vi (ti k)−βi k ≥Vi (ti j )−βi j

]
≤

(
βi k +Vi (ti j )−βi j

)
·
∑

k 6= j

Pr
ti k

[
Vi (ti k)−βi k ≥Vi (ti j )−βi j

]
≤ ri k .

As Pi j ≥ ci and definition of ci ,
{
βi j +Pi j

}
i∈[n], j∈[m] satisfies the conditions in lemma 4.3. Thus,

r =
∑

i

∑

j

(
βi j +Pi j

)
·Pr

ti

[
Vi

(
ti j

)
≥βi j +Pi j

]
≤

2

1−b
·RPRev.

Then our statement follows from this inequality and (20). ■

F Approximate Revenue Monotonicity

Theorem F.1. Let {vi }i∈[n] be a set of valuation functions satisfying the properties of monotonicity, sub-

additivity, and no externalities. Consider two distributions, denoted by D =×i∈[n] Di =×i∈[n], j∈[m] Di j

and D ′ =×i∈[n] D ′
i
=×i∈[n], j∈[m] D ′

i j
, such that for each i , distribution D ′

i
stochastically dominates distri-

bution Di with respect to valuation function vi . Specifically, there exists a coupling (ti , t ′
i
) such that: (i)

vi (ti ,S) ≤ vi (t ′
i
,S) for all S ⊆ [m], and (ii) the marginal distributions over ti and t ′

i
correspond to Di and

D ′
i
, respectively. Then, the following inequality holds:

OPT(D ′) ≥
1

229
·OPT(D).

Proof. We define PRev as follows for distribution F =×i∈[n] Fi =×i∈[n], j∈[m] Fi j ,

PRev(F ) := max
b

max
r∈R(b)

1−b

2

∑

i , j

E
ri j

[
ri j · Pr

ti j∼Fi j

[
Vi (ti j ) ≥ ri j

]]
,

where r = {ri j }i∈[n], j∈[m] and we use R(b) to denote the set of reserve prices (possibly random) ri j ’s
that satisfies the two conditions in Lemma E.1, i.e., (1)

∑
i∈[n] Prri j ,ti j∼Fi j

[Vi (ti j ) ≥ ri j ] ≤ b, ∀ j ∈ [m]; (2)∑
j∈[m] Prri j ,ti j∼Fi j

[Vi (ti j ) ≥ ri j ] ≤ 1
2 , ∀i ∈ [n].

An easy fact is that PRev(D ′) ≥PRev(D), because for any i ∈ [n], j ∈ [m] and ri j ≥ 0, there exists r ′
i j
≥ 0

such that Prti j∼D ′
i j

[Vi (ti j ) ≥ r ′
i j

] = Prti j∼Di j
[Vi (ti j ) ≥ ri j ], and r ′

i j
is greater than ri j as Di j is stochastically

dominated by D ′
i j

.
By Lemma 5.1, and the proof of Lemma 5.3, Lemma 5.4 and Lemma 5.6, we know for any b,

OPT(D) ≤ 4 · �CORE +

(
16b +8

b(1−b)
+16

)
·PRev(D), (21)

where
�CORE =

∑

i

∑

ti∈Ti

∑

S⊆[m]
fi (ti )σi S(ti )υi (ti ,S ∩Yi (ti )).

Here fi is the density function of Di , and Yi (ti ) = { j : Vi (ti j ) < τi }, where {τi }i∈[n] satisfies that
∑

i τi ≤
4

1−b
·PRev(D).
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Let s′ be a Bayes-Nash equilibrium of simultaneous first price auction S1A w.r.t. type distribution D ′

and valuation functions {vi }i∈[n]. Following Definition 3.1, we define µ(s ′)
i

(ti ,S) to be the optimal interim
utility of bidder i with type ti , when (a) all other bidders with type distributions D ′

−i
bid according to s′

−i

and (b) they can only participate in the competition for items in S. Formally,

µ(s ′)
i

(ti ,S)= sup
qi

E
t ′
−i
∼D ′

−i

b−i∼s ′
−i

(t ′
−i

)

[
υi

(
ti , Xi

(
qi ,b−i

)
∩S

)
−

∑

j∈S

p
( j )
i

(
q

( j )
i

,b
( j )
−i

)]
.

Now, by Lemma 3.2, (S1A, s′,D, {vi }i∈[n]) is 1
2 -efficient, which means

µ(s ′)
i

(ti ,S)+Rev(s ′)
D ′ (S1A,S)≥

1

2
·vi (ti ,S).

By Lemma D.1, we know that µ̂(s ′)
i

(ti ,S) = µ(s ′)
i

(ti ,S ∩Yi (ti )) satisfies monotonicity, subadditivity, and no

externalities. Similar to the proof of Lemma 5.10, we can lower bound
∑

i Eti∼Di
[µ̂(s ′)

i
(ti , [m])],

∑

i

E
ti∼Di

[
µ̂(s ′)

i
(ti , [m])

]
≥

∑

i

E
ti∼Di

[
∑

S⊆[m]
σi S(ti )µ(s ′)

i
(ti ,S ∩Yi (ti ))

]

≥
∑

i

E
ti∼Di

(
∑

S⊆[m]
σi S(ti )

(
1

2
·υi (ti ,S ∩Yi (ti ))−Rev(s ′)

D ′ (S1A,S ∩Yi (ti ))

))

≥
1

2
·
∑

i

∑

ti∈Ti

∑

S⊆[m]
fi (ti )σi S(ti )υi (ti ,S ∩Yi (ti ))−

∑

i

∑

ti∈Ti

∑

S⊆[m]
fi (ti )σi S(ti )Rev(s ′)

D ′ (S1A,S)

=
1

2
· �CORE −

∑

j

Rev(s ′)
D ′

(
S1A,

{
j
})∑

i

∑
ti

fi (ti )
∑

S: j∈S

σi S(S)

=
1

2
· �CORE −

∑

j

Rev(s ′)
D ′

(
S1A,

{
j
})∑

i

∑
ti

fi (ti )πi j (ti )

≥
1

2
· �CORE −Rev(s ′)

D ′ (S1A,[m]).

And similar to the proof of Lemma 5.11, let ei be the median of µ̂(s ′)
i

(ti , [m]) when ti is sampled from
Di . Since µ̂i (·, ·) is subadditive over independent items and τi -Lipschitz, we could apply Lemma 5.12 to
get

E
ti∼Di

[
µ̂(s ′)

i
(ti , [m])

]
≤ 2ei +

5

2
·τi .

Now consider drawing a sample (ti , t ′
i
) from the joint distribution as described in the statement.

Since υi (t ′
i
,S)≥ υi (ti ,S) for all S ⊆ [m], the interim utility of bidder i with type t ′

i
is greater thanµ(s ′)

i
(ti , [m]).

And monotonicity of µ(s ′)
i

implies that µ(s ′)
i

(ti , [m]) ≥ µ̂(s ′)
i

(ti , [m]). Therefore, the interim utility of bidder

i with type t ′
i

where t ′
i

is sampled from D ′
i

stochastically dominates the µ̂(s ′)
i

(ti , [m]) where ti is from

Di . Thus, if we set the entry fee as ei , i.e., the median of µ̂(s ′)
i

(ti , [m]), the probability that bidder i from
distribution D ′

i
pays the entry fee is at least 1/2. Thus

EF-Rev(s ′)
D ′ (S1A) ≥

∑

i

ei Pr
t ′

i
∼D ′

i

[
µ(s ′)

i

(
t ′i , [m]

)
≥ ei

]
≥

1

2
·
∑

i

ei .
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Combining the two inequalities above, we know

∑

i

E
ti∼Di

[
µ̂(s ′)

i
(ti , [m])

]
≤ 2

∑

i

ei +
5

2

∑

i

τi

≤ 4 ·EF-Rev(s ′)
D ′ (S1A)+

5

2

∑

i

τi .

By the obtained lower and upper bound of
∑

i Eti∼Di
[µ̂(s ′)

i
(ti , [m])], we have

�CORE ≤ 8 ·EF-Rev(s ′)
D ′ (S1A)+2 ·Rev(s ′)

D ′ (S1A)+5 ·
∑

i

τi

≤ 8 ·EF-Rev(s ′)
D ′ (S1A)+2 ·Rev(s ′)

D ′ (S1A)+
20

1−b
·PRev(D).

Plugging this into (21), and taking b =
1
5 ,

OPT(D) ≤ 32 ·EF-Rev(s ′)
D ′ (S1A)+8 ·Rev(s ′)

D ′ (S1A)+186 ·PRev(D)

≤ 32 ·EF-Rev(s ′)
D ′ (S1A)+8 ·Rev(s ′)

D ′ (S1A)+186 ·RPRev(D ′)

≤ 42 ·Rev(s ′)
D ′

(
S1A(e)

EF

)
+187 ·OPT(D ′)

≤ 229 ·OPT(D ′).

The second inequality is due to PRev(D) ≤ PRev(D ′) and PRev(D ′) ≤ RPRev(D ′) by Lemma E.1. The third
inequality is by lemma 4.2.
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