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Abstract

We study first-order methods for constrained min-max optimization. Existing methods either requires
two gradient calls or two projections in each iteration, which may be costly in applications. In this paper,
we first show that the Optimistic Gradient (OG) method, a single-call single-projection algorithm, has O( 1√

T
)

convergence rate for inclusion problems with operators that satisfy the weak Minty variation inequality
(MVI). Our second result is the first single-call single-projection algorithm – the Accelerated Reflected Gra-
dient (ARG) method that achieves the optimal O( 1

T ) convergence rate for inclusion problems that satisfy
negative comonotonicity. Both the weak MVI and negative comonotonicity are well-studied assumptions
and capture a rich set of non-convex non-concave min-max optimization problems. Finally, we show that
the Reflected Gradient (RG) method, another single-call single-projection algorithm, has O( 1√

T
) last-iterate

convergence rate for constrained convex-concave min-max optimization, answering an open problem of
[Hsieh et al., 2019].

1 Introduction

Various Machine Learning applications, from the generative adversarial networks (GANs) (e.g., [Goodfel-
low et al., 2014, Arjovsky et al., 2017]), adversarial examples (e.g., [Madry et al., 2017]), robust optimization
(e.g., [Ben-Tal et al., 2009]), to reinforcement learning (e.g., [Du et al., 2017, Dai et al., 2018]), can be captured
by constrained min-max optimization. Unlike the well-behaved convex-concave setting, these modern ML
applications often require solving non-convex non-concave min-max optimization problems in high dimen-
sional spaces.

Unfortunately, the general non-convex non-concave setting is intractable even for computing a local
solution [Hirsch et al., 1989, Papadimitriou, 1994, Daskalakis et al., 2021]. Motivated by the intractability,
researchers turn their attention to non-convex non-concave settings with structure. Significant progress has
been made for several interesting structured non-convex non-concave settings, such as the ones that satisfy
the weak Minty variation inequality (MVI) (Definition 2) [Diakonikolas et al., 2021, Pethick et al., 2022] and
the ones that satisfy the more strict negatively comonotone condition (Definition 3) [Lee and Kim, 2021, Cai
et al., 2022a]. These algorithms are variations of the celebrated extragradient (EG) method [Korpelevich,
1976], an iterative first-order method. Similar to the extragradient method, these algorithms all require two
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oracle calls per iteration, which may be costly in practice. We investigate the following important question
in this paper:

Can we design efficient single-call first-order methods for

structured non-convex non-concave min-max optimization? (*)

We provide an affirmative answer to the question. We first show that a single-call method known as the
Optimistic Gradient (OG) method [Hsieh et al., 2019] is applicable to all non-convex non-concave settings
that satisfy the weak MVI. We then provide the Accelerated Reflected Gradient (ARG) method that achieves
the optimal convergence rate in all non-convex non-concave settings that satisfy the negatively comonotone
condition. Single-call methods have been studied in the convex-concave settings [Hsieh et al., 2019] but not
for the more general non-convex non-concave settings. See Table 1 for comparisons between our algorithms
and other algorithms from the literature.

Algorithm Single-Call? Constraints?
Non-Monotone

Comonotone weak MVI

Normal
EG+ [Diakonikolas et al., 2021] ✗ ✗ O( 1√

T
) O( 1√

T
)

CEG+ [Pethick et al., 2022] ✗ ✓ O( 1√
T
) O( 1√

T
)

OG[This paper] ✓ ✓ O( 1√
T
) O( 1√

T
)

Accelerated
FEG [Lee and Kim, 2021] ✗ ✗ O( 1

T )
AS [Cai et al., 2022a] ✗ ✓ O( 1

T )
ARG [This paper] ✓ ✓ O( 1

T )

Table 1: Existing results for min-max optimization problem in the nonconvex-nonconcave setting. A ✓ in
“Constraints?” means the algorithm works in the constrained setting. The convergence rate is in terms of
the operator norm (in the unconstrained setting) and the residual (in the constrained setting).

1.1 Our Contributions

Throughout the paper, we adopt the more general and abstract framework of inclusion problems, which
includes constrained min-max optimization as a special case. More specifically, we consider the following
problem.

Inclusion Problem. Given E = F + A where F : Rn → R

n is a single-valued (possibly non-monotone)
operator and A : Rn

⇒ R

n is a set-valued maximally monotone operator, the inclusion problem is defined
as follows

find z∗ ∈ Z such that 0 ∈ E(z∗) = F(z∗) + A(z∗). (IP)

As shown in the following example, we can interpret a min-max optimization problem as an inclusion
problem.

Example 1 (Min-Max Optimization). The following structured min-max optimization problem captures a wide
range of applications in machine learning such as GANs, adversarial examples, robust optimization, and reinforce-
ment learning:

min
x∈Rnx

max
y∈Rny

f (x, y) + g(x)− h(y), (1)
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where f (·, ·) is possibly non-convex in x and non-concave in y. Regularized and constrained min-max problems
are covered by appropriate choices of lower semi-continuous and convex functions g and h. Examples include the
ℓ1-norm, the ℓ2-norm, and the indicator function of a closed convex feasible set. Let z = (x, y), if we define
F(z) = (∂x f (x, y),−∂y f (x, y)) and A(z) = (∂g(x), ∂h(y)), where A is maximally monotone, then the first-order
optimality condition of (1) has the form of an inclusion problem.

[Daskalakis et al., 2021] shows that without any assumption on the operator E = F + A, the problem is
intractable.1 The most well understood setting is when E is monotone, i.e., 〈u − v, z − z′〉 ≥ 0 for all z, z′

and u ∈ E(z), v ∈ E(z′), which captures convex-concave min-max optimization. Motivated by non-convex
non-concave min-max optimization, we consider the two most widely studied families of non-monotone
operators: (i) negatively comonotone operators and (ii) operators satisfy the less restrictive weak MVI. See
Section 2 for more detailed discussion on their relationship. Here are the main contributions of this paper.

Contribution 1: We provide an extension of the Optimistic Gradient (OG) method for inclusion prob-
lems when the operator E = F + A satisfies the weak MVI. More specifically, we prove that OG has

a O( 1√
T
) convergence rate (Theorem 1) matching the state of the art algorithms [Diakonikolas et al.,

2021, Pethick et al., 2022]. Importantly, our algorithm only requires a single oracle call to F and a
single call to the resolvent of A.a

aWhen A is the subdifferential of the indicator function of a closed convex set, the resolvent operator is exactly the
Euclidean projection. Hence our algorithm performs a single projection in the constrained case.

Next, we provide an accelerated single-call method when the operator satisfies the stronger negatively
comonotone condition.

Contribution 2: We design an accelerated version of the Reflected Gradient (RG) [Chambolle and
Pock, 2011, Malitsky, 2015, Cui and Shanbhag, 2016, Hsieh et al., 2019] method that we call the

Accelerated Reflected Gradient (ARG) method, which has the optimal O( 1
T ) convergence rate for in-

clusion problems whose operators E = F + A are negatively comonotone (Theorem 2). Note that

O( 1
T ) is the optimal convergence rate for any first-order methods even for monotone inclusion prob-

lems [Diakonikolas, 2020, Yoon and Ryu, 2021]. Importantly, ARG only requires a single oracle call
to F and a single call to the resolvent of A.
Finally, we resolve an open question from [Hsieh et al., 2019].

Contribution 3: We show that the Reflected Gradient (RG) method has a last-iterate convergence

rate of O( 1√
T
) for constrained convex-concave min-max optimization (Theorem 3). Hsieh et al.

[2019] show that the RG algorithm asymptotically converges but fails to obtain a concrete rate. We
strengthen their result to obtain a tight finite convergence rate for RG.

1.2 Related Works

We provide a brief discussion of the most relevant and recent results on nonconvex-nonconcave min-max
optimization here and defer the discussion on related results in the convex-concave setting to Appendix A.
We also refer readers to [Facchinei and Pang, 2003, Bauschke and Combettes, 2011, Ryu and Yin, 2022]
and references therein for a comprehensive literature review on inclusion problems and related variational
inequality problems.

Structured Nonconvex-Nonconcave Min-Max Optimization. Since in general nonconvex-nonconcave
min-max optimization problems are intractable, recent works study problems under additional assump-
tions.

1Indeed, even if A is maximally monotone, [Daskalakis et al., 2021] implies that the problem is still intractable without further
assumptions on F.
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The Minty variational inequality (MVI) assumption (also called coherence or variationally stablility),
which covers all quasiconvex-concave and starconvex-concave problems, is well-studied in e.g., [Dang and
Lan, 2015, Zhou et al., 2017, Liu et al., 2019, Malitsky, 2020, Song et al., 2020, Liu et al., 2021]. Extragradient-

type algorithms has O( 1√
T
) convergence rate for problems that satisfies MVI [Dang and Lan, 2015].

Diakonikolas et al. [2021] proposes a weaker assumption called weak MVI, which includes both MVI or
negative comonotonicity [Bauschke et al., 2021] as special cases. Under the weak MVI, the EG+ [Diakoniko-

las et al., 2021] and OGDA+ [Böhm, 2022] algorithms have O( 1√
T
) convergence rate in the unconstrained

setting. Recently, Pethick et al. [2022] generalizes EG+ to CEG+ algorithm, achieving the same convergence
rate in the general (constrained) setting. To the best of our knowledge, the OG algorithm is the only single-

call single-resolvent algorithm with O( 1√
T
) convergence rate when we only assume weak MVI (Theorem 1).

The result for accelerated algorithms in the nonconvex-nonconcave setting is sparser. For negatively

comonotone operators, optimal O( 1
T ) convergence rate is achieved by variants of the EG algorithm in the

unconstrained setting [Lee and Kim, 2021] and in the constrained setting [Cai et al., 2022a] . To the best of
our knowledge, the ARG algorithm is the first efficient single-call single-resolvent method that achieves the

accelerated and optimal O( 1
T ) convergence rate in the constrained nonconvex-nonconcave setting (Theo-

rem 2). We summarize previous results and our results in Table 1.

2 Preliminaries

Basic Notations. Throughout the paper, we focus on the Euclidean spaceRn equipped with inner product
〈·, ·〉. We denote the standard ℓ2-norm by ‖ · ‖. For any closed and convex set Z ⊆ R

n, ΠZ[·] : Rn → Z
denotes the Euclidean projection onto set Z such that for any z ∈ R

n, ΠZ [z] = argminz′∈Z ‖z − z′‖. We
denote B(z, r) the ℓ2-ball centered at z with radius r.

Normal Cone. We denote NZ : Z → R

n to be the normal cone operator such that for z ∈ Z , NZ (z) = {a :
〈a, z′ − z〉 ≤ 0, ∀z′ ∈ Z}. Define the indicator function

IZ (z) =

{

0 if z ∈ Z ,

+∞ otherwise.

It is not hard to see that the subdifferential operator ∂IZ = NZ . A useful fact is that if z = ΠZ [z′], then
λ(z′ − z) ∈ NZ (z) for any λ ≥ 0.

Monotone Operator. We recall some standard definitions and results on monotone operators here and
refer the readers to [Bauschke and Combettes, 2011, Ryu and Boyd, 2016, Ryu and Yin, 2022] for more
detailed introduction. A set-valued operator A : Rn

⇒ R

n maps each point z ∈ R

n to a subset A(z) ⊆ R

n.
We denote the graph of A as Gra(A) := {(z, u) : u ∈ A(z)} and the zeros of A as Zer(A) = {z : 0 ∈ A(z)}.
The inverse operator of A is denoted as A−1 whose graph is Gra(A−1) = {(u, z) : (z, u) ∈ Gra(A)}. For
two operators A and B, we denote A + B to be the operator with graph Gra(A + B) = {(z, uA + uB) :
(z, uA) ∈ Gra(A), (z, uB) ∈ Gra(B)}. We denote the identity operator as I : Rn → R

n. We say operator A
is single valued if |A(z)| ≤ 1 for all z ∈ R

n. Single-valued operator A is L-Lipschitz if

∥

∥A(z)− A(z′)
∥

∥ ≤ L ·
∥

∥z − z′
∥

∥, ∀z, z′ ∈ R

n.

Moreover, we say A is non-expansive if it is 1-Lipschitz.
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Definition 1 ((Maximally) monotonicity). An operator A : Rn
⇒ R

n is monotone if

〈

u − u′, z − z′
〉

≥ 0, ∀(z, u), (z′, u′) ∈ Gra(A).

Moreover, A is maximally monotone if A is monotone and Gra(A) is not properly contained in the graph of any
other monotone operators.

When f : Rn → R

n is closed, convex, and proper, then its subdifferential operator ∂ f is maximally
monotone. As an example, the normal cone operator NZ = ∂IZ is maximally monotone.

We denote resolvent of A as JA = (I + A)−1. Some useful properties of the resolvent are summarized
in the following proposition.

Proposition 1. If A is maximally monotone, then JA satisfies the following.

1. The domain of JA is Rn. JA is non-expansive and single-valued on Rn.

2. If z = JA(z
′), then z′ − z ∈ A(z). If c ∈ A(z), then z = JA(z + c).

3. When A = NZ is the normal cone operator for some closed convex set Z , then JηA = ΠZ is the Euclidean
projection onto Z for all η > 0.

Non-Monotone Operator.

Definition 2 (Weak MVI [Diakonikolas et al., 2021, Pethick et al., 2022]). An operator A : Rn
⇒ R

n satisfies
weak MVI if for some z∗ ∈ Zer(A), there exists ρ ≤ 0

〈u, z − z∗〉 ≥ ρ‖u‖2, ∀(z, u) ∈ Gra(A).

Definition 3 (Comonotonicity [Bauschke et al., 2021]). An operator A : Rn
⇒ R

n is ρ-comonotone if

〈

u − u′, z − z′
〉

≥ ρ
∥

∥u − u′∥
∥

2
, ∀(z, u), (z′, u′) ∈ Gra(A).

When A is ρ-comonotone for ρ > 0, then A is also known as ρ-cocoercive, which is a stronger condition
than monotonicity. When A is ρ-comonotone for ρ < 0, then A is non-monotone. Weak MVI with ρ = 0
is also know as MVI, coherence, or variational stability. Note that the weak MVI is implied by negative
comonotonicity. We refer the readers to [Lee and Kim, 2021, Example 1], [Diakonikolas et al., 2021, Section
2.2] and [Pethick et al., 2022, Section 5] for examples of min-max optimization problems that satisfy the two
conditions.

2.1 Problem Formulation

Inclusion Problem. Given E = F + A where F : Rn → R

n is a single-valued (possibly non-monotone)
operator and A : Rn

⇒ R

n is a set-valued maximally monotone operator, the inclusion problem is defined
as follows

find z∗ ∈ Z such that 0 ∈ E(z∗) = F(z∗) + A(z∗). (IP)

We say z is an ǫ-approximate solution to an inclusion problem (IP) if

0 ∈ F(z) + A(z) + B(0, ǫ).

Throughout the paper, we study IP problems under the following assumption.
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Assumption 1. In the setup of IP,

1. there exists z∗ ∈ Zer(E), i.e., 0 ∈ F(z∗) + A(z∗).

2. F is L-Lipschitz.

3. A is maximally monotone.

When F is monotone, we refer to the corresponding IP problem as a monotone inclusion problem, which
covers convex-concave min-max optimization. In the more general non-monotone setting, we would study
problems that satisfy negative comonotonicity or weak MVI.

Assumption 2. In the setup of IP, E = F + A is ρ-comonotone, i.e.,

〈

u − u′, z − z′
〉

≥ ρ
∥

∥u − u′∥
∥

2
, ∀(z, u), (z′, u′) ∈ Gra(E).

Assumption 3. In the setup of IP, E = F + A satisfies weak MVI with ρ ≤ 0, i.e., there exists z∗ ∈ Zer(E),

〈u, z − z∗〉 ≥ ρ‖u‖2, ∀(z, u) ∈ Gra(E).

An important special case of inclusion problem is the variational inequality problem.

Variational Inequality. Let Z ⊆ R

n be a closed and convex set and F : Rn → R

n be a single-valued
operator. The variation inequality (VI) problem associated with Z and F is stated as

find z∗ ∈ Z such that 〈F(z∗), z∗ − z〉 ≤ 0, ∀z ∈ Z . (VI)

Note that VI is a special case of IP when A = NZ = ∂IZ is the normal cone operator:

0 ∈ F(z∗) + NZ (z
∗) ⇔ −F(z∗) ∈ NZ (z

∗) ⇔ 〈F(z∗), z∗ − z〉 ≤ 0, ∀z ∈ Z .

The general formulation of VI unifies many problems such as convex optimization, min-max optimization,
computing Nash equilibria in multi-player concave games, and is extensively-studied since 1960s [Facchinei
and Pang, 2003]. Definitions of the convergence measure for VI and the classical algorithms, EG and PEG,
are presented in Appendix B.

2.2 Convergence Measure

We focus on a strong convergence measure called the tangent residual, defined as

rtan
F,A(z) := min

c∈A(z)
‖F(z) + c‖

It is clear by definition that rtan
F,A(z) ≤ ǫ implies z is an ǫ-approximate solution to the inclusion (IP) problem,

and also an (ǫ · D) approximate strong solution to the corresponding variational inequality (VI) problem
when Z is bounded by D. Moreover, the tangent residual is an upper bound of other notion of residuals
in the literature such as the natural residual rnat

F,A [Diakonikolas, 2020] or the forward-backward residual

r
f b
F,A [Yoon and Ryu, 2022] as shown in Fact 1. We defer the proof to Appendix B.3. Note that in the

unconstrained setting where A = 0, these residuals are all equivalent to the operator norm ‖F(z)‖.

Fact 1. Let A be a maximally monotone operator and F be an single-valued operator. Then for any z ∈ R

n and α > 0,

rtan
F,A(z) ≥ rnat

F,A(z) := ‖z − JA(z − F(z))‖

rtan
F,A(z) ≥ r

f b
F,A,α(z) :=

1

α
‖z − JαA[z − αF(z)]‖

6



3 Optimistic Gradient Method for Weak MVI Problems

In this section, we consider an extension of the Optimistic Gradient (OG) algorithm [Daskalakis et al., 2017,
Mokhtari et al., 2020a,b, Hsieh et al., 2019, Peng et al., 2020] for inclusion problems: given arbitrary starting
point z− 1

2
= z0 ∈ R

n and step size η > 0, the update rule is

zt+ 1
2
= JηA

[

zt − ηF(zt− 1
2
)
]

zt+1 = zt+ 1
2
+ ηF(zt− 1

2
)− ηF(zt+ 1

2
)

(OG)

For t ≥ 1, the update rule can also be written as zt+ 3
2
= JηA[zt+ 1

2
− 2ηF(z

t+ 1
2
) + ηF(z

t− 1
2
)], which coincides

with the forward-reflected-backward algorithm [Malitsky and Tam, 2020]. We remark that the update rule
of OG is different from the Optimistic Gradient Descent/Ascent (OGDA) algorithm (also known as Past Extra
Gradient (PEG) algorithm) [Popov, 1980], which is single-call but requires two projections in each iteration.

Previous results for OG only hold in the convex-concave (monotone) setting. The main result in this

section is that OG has O( 1√
T
) convergence rate even for nonconvex-nonconcave min-max optimization

problems that satisfy weak MVI, matching the state of the art results achieved by two-call methods [Di-
akonikolas et al., 2021, Pethick et al., 2022]. Remarkably, OG only requires single call to F and single call to
the resolvent JηA in each iteration. The main result is shown in Theorem 1. The proof relies on a simple yet

important observation that
zt−zt+1

η ∈ F(zt+ 1
2
) + A(zt+ 1

2
).

Theorem 1. Assume Assumption 1 and 3 hold with ρ ∈ (− 1
12
√

3L
, 0]. Consider the iterates of (OG) with step size

η ∈ (0, 1
2L ) satisfying C = 1

2 + 2ρ
η − 2η2L2 > 0 (existence of such η is guaranteed by Fact 2). Then for any T ≥ 1,

min
t∈[T]

rtan
F,A(zt+ 1

2
)2 ≤ min

t∈[T]
‖zt+1 − zt‖2

η2
≤ H2

Cη2
· 1

T
,

where H2 = ‖z1 − z∗‖2 + 1
4‖z 1

2
− z0‖2.

Proof. From the update rule of (OG), we have the following identity (see also [Hsieh et al., 2019, Appendix
B]): for any p ∈ Z ,

‖zt+1 − p‖2 = ‖zt − p‖2 +
∥

∥

∥
zt+1 − zt+ 1

2

∥

∥

∥

2
−
∥

∥

∥
zt+ 1

2
− zt

∥

∥

∥

2

+ 2
〈

zt − ηF(zt− 1
2
)− zt+ 1

2
+ ηF(zt+ 1

2
), p − zt+ 1

2

〉

(2)

Since zt+ 1
2
= JηA[zt − ηF(zt− 1

2
)], we have

zt−ηF(z
t−1

2
)−z

t+ 1
2

η ∈ A(zt+ 1
2
) by Proposition 1. Then

zt − zt+1

η
=

zt − ηF(zt− 1
2
)− zt+ 1

2

η
+ F(z

t+ 1
2
) ∈ F(z

t+ 1
2
) + A(z

t+ 1
2
).

Set p = z∗. By the weak MVI assumption, we have

2
〈

zt − ηF(zt− 1
2
)− zt+ 1

2
+ ηF(zt+ 1

2
), z∗ − zt+ 1

2

〉

= 2η

〈

zt − zt+1

η
, z∗ − zt+ 1

2

〉

≤ −2ρ

η
‖zt − zt+1‖2 (3)

7



Define c = 1
2 − 2η2L2 > 0. We have identity

(1 − 2c)η2L2 = 4η4L4 =
1

2
− c − (1 + 2c)η2L2 (4)

Combining Equation (2) and (3) and using ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2, we have

‖zt+1 − z∗‖2

≤ ‖zt − z∗‖2 +
∥

∥

∥
zt+1 − zt+ 1

2

∥

∥

∥

2
−
∥

∥

∥
zt+ 1

2
− zt

∥

∥

∥

2
+ c‖zt − zt+1‖2 − (c +

2ρ

η
)‖zt − zt+1‖2

≤ ‖zt − z∗‖2 + (1 + 2c)
∥

∥

∥
zt+1 − zt+ 1

2

∥

∥

∥

2
− (1 − 2c)

∥

∥

∥
zt+ 1

2
− zt

∥

∥

∥

2
− (c +

2ρ

η
)‖zt − zt+1‖2 (5)

Using the update rule of OG and L-Lipschitzness of F, we have that for any t ≥ 0,

∥

∥

∥
zt+1 − zt+ 1

2

∥

∥

∥

2
=
∥

∥

∥
ηF(zt− 1

2
)− ηF(zt+ 1

2
)
∥

∥

∥

2
≤ η2L2

∥

∥

∥
zt+ 1

2
− zt− 1

2

∥

∥

∥

2
(6)

Moreover, using ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2 and Equation (6) , we have that for any t ≥ 1,

∥

∥

∥
zt+ 1

2
− zt− 1

2

∥

∥

∥

2
≤ 2

∥

∥

∥
zt+ 1

2
− zt

∥

∥

∥

2
+ 2
∥

∥

∥
zt − zt− 1

2

∥

∥

∥

2
≤ 2

∥

∥

∥
zt+ 1

2
− zt

∥

∥

∥

2
+ 2η2L2

∥

∥

∥
zt− 1

2
− zt− 3

2

∥

∥

∥

2

which imples

∥

∥

∥
zt+ 1

2
− zt

∥

∥

∥

2
≥ 1

2

∥

∥

∥
zt+ 1

2
− zt− 1

2

∥

∥

∥

2
− η2L2

∥

∥

∥
zt− 1

2
− zt− 3

2

∥

∥

∥

2
. (7)

Combining Equation (4), (5), (6), and (7), we have that for all t ≥ 1.

‖zt+1 − z∗‖2

≤ ‖zt − z∗‖2 + (1 + 2c)
∥

∥

∥
zt+1 − zt+ 1

2

∥

∥

∥

2
− (1 − 2c)

∥

∥

∥
zt+ 1

2
− zt

∥

∥

∥

2
− (c +

2ρ

η
)‖zt − zt+1‖2

≤ ‖zt − z∗‖2 + (1 − 2c)η2L2
∥

∥

∥
zt− 1

2
− zt− 3

2

∥

∥

∥

2
−
(

1

2
− c − (1 + 2c)η2L2

)

∥

∥

∥
zt+ 1

2
− zt− 1

2

∥

∥

∥

2

− (c +
2ρ

η
)‖zt − zt+1‖2

= ‖zt − z∗‖2 + 4η4L4

(

∥

∥

∥
zt− 1

2
− zt− 3

2

∥

∥

∥

2
−
∥

∥

∥
zt+ 1

2
− zt− 1

2

∥

∥

∥

2
)

− (c +
2ρ

η
)‖zt − zt+1‖2

Telescoping the above inequality and using c = 1
2 − 2η2L2 and ηL <

1
2 , we get

(
1

2
+

2ρ

β
− 2η2L2)

T

∑
t=1

‖zt − zt+1‖2 ≤ ‖z1 − z∗‖2 +
1

4

∥

∥

∥
z 1

2
− z− 1

2

∥

∥

∥

2
.

Note that z0 is the same as z− 1
2
. This completes the proof.

Fact 2. For any L > 0 and ρ > − 1
12
√

3L
. There exists η ∈ (0, 1

2L ) such that

1

2
+

2ρ

η
− 2η2L2

> 0 (8)
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Proof. Let η = 1
2
√

3L
, then Inequality (8) holds whenever

ρ >
ηL(1 − 4η2L2)

4
· 1

L
= − 1

12
√

3L
.

4 Accelerated Reflected Gradient For Negatively Comonotone Prob-

lems

In this section, we propose a new algorithm called the Accelerated Reflected Gradient (ARG) algorithm. We

prove that ARG enjoys accelerated O( 1
T ) convergence rate for inclusion problems with comonotone op-

erators (Theorem 2). Note that the lower bound Ω( 1
T ) holds even for the special case of convex-concave

min-max optimization [Diakonikolas, 2020, Yoon and Ryu, 2021].
Our algorithm is inspired by the Reflected Gradient (RG) algorithm [Chambolle and Pock, 2011, Malitsky,

2015, Cui and Shanbhag, 2016, Hsieh et al., 2019] for monotone variational inequalities. Starting at initial
points z−1 = z0 ∈ Z , the update rule of RG with step size η > 0 is as follows: for t = 0, 1, 2, · · ·

zt+ 1
2
= 2zt − zt−1

zt+1 = ΠZ
[

zt − ηF(zt+ 1
2
)
] (RG)

We propose the following Accelerated Reflected Gradient (ARG) algorithm, which is a single-call single-
resolvent first-order method. Given arbitrary initial points z0 = z 1

2
∈ R

n and step size η > 0, ARG sets

z1 = JηA[z0 − ηF(z0)] and updates for t = 1, 2, · · ·

zt+ 1
2
= 2zt − zt−1 +

1

t + 1
(z0 − zt)−

1

t
(z0 − zt−1)

zt+1 = JηA

[

zt − ηF(zt+ 1
2
) +

1

t + 1
(z0 − zt)

] (ARG)

We use the idea from Halpern iteration [Halpern, 1967] to design the accelerated algorithm (ARG). This
technique for deriving optimal first-order methods is also called Anchoring and receives intense attention
recently [Diakonikolas, 2020, Yoon and Ryu, 2021, Lee and Kim, 2021, Tran-Dinh and Luo, 2021, Tran-Dinh,
2022, Cai et al., 2022a]. We defer detailed discussion on these works to Appendix A. We remark that the
state of the art result from [Cai et al., 2022a] is a variant of the EG algorithm that makes two oracle calls per
iteration. Thus, to the best of our knowledge, ARG is the first single-call single-resolvent algorithm with
optimal convergence rate for general inclusion problems with comonotone operators.

Theorem 2. Assume Assumption 1 and 2 hold for ρ ∈ [− 1
60L , 0], then the accelerated reflected gradient (ARG)

algorithm with constant step size η > 0 satisfying Inequality (11) has the following convergence rate: for any T ≥ 1,

rtan
F,A(zT) ≤

√
6H

η
· 1

T

where H2 = ‖z0 − z∗‖2 + 4‖z1 − z0‖2 ≤ ‖z0 − z∗‖2 + 4rtan
F,A(z0)

2.

Remark 1. Note that if Assumption 2 is satisfied with respect to some ρ > 0, it also satisfies Assumption 2 with
ρ = 0, so Theorem 2 applies.

We provide a proof sketch for Theorem 2 here and the full proof in Appendix C.
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Proof Sketch. We apply a potential function argument. We first show the potential function is approxi-
mately non-increasing and then prove that it is upper bounded by a term independent of T. As the potential

function at step t is also at least Ω(t2) · rtan(zt)2, we conclude that ARG has an O( 1
T ) convergence rate.

5 Last-Iterate Convergence Rate of Reflected Gradient

In this section, we show that the Reflected Gradient (RG) algorithm [Chambolle and Pock, 2011, Malitsky,

2015, Cui and Shanbhag, 2016, Hsieh et al., 2019] has a last-iterate convergence rate of O( 1√
T
) with respect

to tangent residual and gap function (see Definition 4) for solving monotone variational inequalities (The-
orem 3).

Theorem 3. For a variational inequality problem (VI) associated with a closed convex set Z and a monotone and

L-Lipschitz operator F with a solution z∗, the (RG) algorithm with constant step size η ∈ (0, 1
(1+

√
2)L

) has the

following last-iterate convergence rate: for any T ≥ 1,

rtan
F,Z(zT) ≤

λHL√
T

, GAPZ ,F,D(zT) ≤
λDHL√

T

where H2 = 4‖z0 − z∗‖2 + 13
L2 ‖F(z0)‖2 and λ =

√

6(1+3η2L2)

η2L2(1−(1+
√

2)ηL)
.

We remark that the convergence rate of RG is slower than ARG and other optimal first-order algorithms
even in the monotone setting. Nevertheless, understanding its last-iterate convergence rate is still inter-
esting: (1) RG is simple and largely used in practice; (2) Last-iterate convergence rates of simple classic
algorithms such as EG and RG are mentioned as open problems in [Hsieh et al., 2019]. The question is
recently resolved for EG [Gorbunov et al., 2022a, Cai et al., 2022b] but remains open for RG; (3) Compared
to EG, RG requires only a single call to F and a single projection in each iteration.

We provide a proof sketch for Theorem 3 here and the full proof in Appendix D.

Proof Sketch. Our analysis is based on a potential function argument and can be summarized in the
following three steps. (1) We construct a potential function and show that it is non-increasing between two
consecutive iterates; (2) We prove that the (RG) algorithm has a best-iterate convergence rate, i.e., for any
T ≥ 1, there exists one iterate t∗ ∈ [T] such that our potential function at iterate t∗ is small; (3) We combine
the above steps to show that the the last iterate has the same convergence guarantee as the best iterate and

derive the O( 1√
T
) last-iterate convergence rate.

6 Conclusion

This paper introduces single-call single-resolvent algorithms for non-monotone inclusion problems. We

prove that OG has O( 1√
T
) convergence rate for problems satisfying weak MVI and design a new algorithm

– ARG that has the optimal O( 1
T ) convergence rate for problems satisfying negative comonotonicity. Finally,

we resolve the problem of last-iterate convergence rate of RG.
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A Additional Related Works

A.1 Convex-Concave and Monotone Setting

In the convex-concave setting, a weak convergence measure is the gap function (Definition 4). It is well-

known that classic extragradient-type methods such as EG and PEG have O( 1
T ) average-iterate conver-

gence rate in terms of gap function [Nemirovski, 2004, Nesterov, 2007, Mokhtari et al., 2020b, Hsieh et al.,
2019] and the rate is optimal [Ouyang and Xu, 2021]. But the gap function or average-iterate convergence
is not meaningful in the nonconvex-nonconcave setting. For convergence in terms of the residual in the

constrained setting, EG and PEG has a slower rate of O( 1√
T
) for best-iterate convergence [Korpelevich,

1976, Popov, 1980, Facchinei and Pang, 2003, Hsieh et al., 2019] and the more desirable last-iterate conver-
gence [Cai et al., 2022b, Gorbunov et al., 2022b]. We remark that the last-iterate convergence rate of the

reflected gradient (RG) algorithm was unknown. The O( 1√
T
) rate is tight for p-SCIL algorithms [Golowich

et al., 2020], a subclass of first-order methods that includes EG, PEG, and many of its variations, but faster
rate is possible for other first-order methods.

Accelerated Convergence Rate in Residual. Recent results with accelerated convergence rates in terms of
the residual are based on Halpern iteration [Halpern, 1967] (also called Anchoring). The vanilla Halpern iter-

ation has O( 1
T ) convergence rate for cocoercive operators (stronger than monotonicity) [Diakonikolas, 2020,

Kim, 2021]. Recently, a line of works contributed to provide O( 1
T ) convergence rate for monotone operators

in the constrained setting. Diakonikolas [2020], Yoon and Ryu [2022] provide double-loop algorithms with

O(
log T

T ) convergence rate for monotone operators in the constrained setting. In the unconstrained setting
(A = 0), Yoon and Ryu [2021] propose the Extra Anchored Gradient (EAG) algorithm, the first efficient

algorithm with O( 1
T ) convergence rate for monotone operators. They also establish matching lower bound

for first-order methods. Lee and Kim [2021] generalize EAG to Fast Extragradient (FEG), which works even
for negatively comonotone operators but still in the unconstrained setting. Analysis for variants of EAG
and FEG in the unconstrained setting is provided in [Tran-Dinh and Luo, 2021, Tran-Dinh, 2022]. Recently,

Cai et al. [2022a] close the open problem by proving the projected version of EAG has O( 1
T ) convergence

rate. They also propose the accelerated forward-backward splitting (AS) algorithm, a generalization of

FEG, which has O( 1
T ) convergence rate for negatively comonotone operators in the constrained setting.

A.2 Nonconvex-Nonconcave Setting

This paper study structured nonconvex-nonconcave optimization problems from the general perspective of
operator theory and focus on global convergence under weak MVI and negative comonotonicity. There is a
line of works focusing on local convergence, e.g., [Heusel et al., 2017, Mazumdar et al., 2019, Jin et al., 2020,
Fiez and Ratliff, 2021]. Another line of works focus on problems satisfying different structural assumptions,
such as the Polyak Łojasiewicz condition [Nouiehed et al., 2019, Yang et al., 2020].

B Additional Preliminary

B.1 Gap Function

A standard suboptimality measure for the variationaly inequalitt (VI) problem is the gap function defined as
GAPZ ,F(z) := maxz′∈Z 〈F(z), z − z′〉. Note that when the feasible set Z is unbounded, approximating the
gap function is impossible: consider the simple unconstrained saddle point problem minx∈Rmaxy∈R xy,
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which has a unique saddle point (0, 0) but any other point has an infinitely large gap. A refined notion is
the following restricted gap function [Nesterov, 2007], which is meaningful for unbounded Z .

Definition 4 (Restricted Gap Function). Given a closed convex set Z , a single-valued operator F, and a radius D,
the restricted gap function at point z ∈ Z is

GAPZ ,F,D := max
z′∈Z∩B(z,D)

〈

F(z), z − z′
〉

where B(z, D) is a Euclidean ball centered at z with radius D.

In the rest of the paper, we call GAPZ ,F,D the gap function (or gap) for convenience. The following
Lemma relates ‖F(z) + c‖ where c ∈ NZ (z), and the gap function.

Lemma 1. Let Z be a closed convex set Z and F be a monotone and L-Lipschitz operator. For any z ∈ Z and
c ∈ NZ (z), we have

GAPZ ,F,D(z) := max
z′∈Z∩B(z,D)

〈

F(z), z − z′
〉

≤ D · ‖F(z) + c‖

Proof. The proof is straightforward. Since c ∈ NZ (z), we have 〈c, z − z′〉 ≥ 0 for any z′ ∈ Z . Therefor,

max
z′∈Z∩B(z,D)

〈

F(z), z − z′
〉

≤ max
z′∈Z∩B(z,D)

〈

F(z) + c, z − z′
〉

≤ max
z′∈Z∩B(z,D)

∥

∥z − z′
∥

∥ · ‖F(z) + c‖ (Cauchy-Schwarz inequality)

≤ D · ‖F(z) + c‖.

B.2 Classical Algorithms for Variationaly Inequalities

The Extragradient Algorithm [Korpelevich, 1976]. Starting at initial point z0 ∈ Z , the update rule of EG
is: for t = 0, 1, 2, · · ·

zt+ 1
2
= ΠZ [zt − ηF(zt)]

zt+1 = ΠZ
[

zt − ηF(zt+ 1
2
)
] (EG)

At each step t ≥ 0, the EG algorithm makes an oracle call of F(zt) to produce an intermediate point zt+ 1
2

(a

gradient descent step if F = ∂ f is the gradient of some function f ), then the algorithm makes another oracle
call F(zt+ 1

2
) and updates zt to zt+1. In each step, EG needs two oracle calls to F and two projections ΠZ .

The Past Extragradient Algorithm [Popov, 1980] Starting at initial point z0 = z− 1
2
∈ Z , the update rule

of PEG with step size η > 0 is: for t = 0, 1, 2, · · ·

zt+ 1
2
= ΠZ

[

zt − ηF(zt− 1
2
)
]

zt+1 = ΠZ
[

zt − ηF(zt+ 1
2
)
] (PEG)

Note that PEG is also known as the Optimistic Gradient Descent/Ascent (OGDA) algorithm in the literature.
The update rule of PEG is similar to (EG) but only requires a single call to F in each iteration. Both of EG
and PEG perform two projections in every iteration.
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B.3 Proof of Fact 1

Proof. For any c ∈ A(z), we have

rnat
F,A(z) = ‖z − JA(z − F(z))‖

= ‖JA(z + c)− JA(z − F(z))‖
≤ ‖F(z) + c‖ (JA is non-expansive)

and

r
f b
F,A,α(z) =

1

α
‖z − JαA(z − αF(z))‖

=
1

α
‖JαA(z + αc)− JαA(z − αF(z))‖

≤ ‖F(z) + c‖ (JA is non-expansive)

Thus both rtan
F,A(z) and r

f b
F,A,α(z) are smaller than rtan

F,A(z) = min
c∈A(z)

‖F(z) + c‖.

C Missing Proofs in Section 4

To prove Theorem 2, we apply a potential function argument. We first show the potential function is
approximately non-increasing and then prove that it is upper bounded by a term independent of T. As the

potential function at step t is also at least Ω(t2) · rtan(zt)2, we conclude that ARG has an O( 1
T ) convergence

rate .

C.1 Potential Function

Recall the update rule of ARG: z0 = z 1
2
∈ R

n are initial points and z1 = JηA[z0 − ηF(z0)]; for t ≥ 1,

zt+ 1
2
= 2zt − zt−1 +

1

t + 1
(z0 − zt)−

1

t
(z0 − zt−1)

zt+1 = JηA

[

zt − ηF(zt+ 1
2
) +

1

t + 1
(z0 − zt)

] (ARG)

Recall that when A is the normal cone of a closed convex set Z , the resolvent JA is equivalent to Euclidean
projection to set Z . Hence, if we apply the ARG algorithm to solve monotone VI problems, the algorithm
uses a single call to operator F and a single projection to Z per iteration. Here we allow A to be an arbitrary
maximally monotone operator, and the ARG algorithm becomes a single-call single-resolvent algorithm in
this more general setting.

Next, we specify the potential function. Define

ct+1 :=
zt − ηF(zt+ 1

2
) + 1

t+1 (z0 − zt)− zt+1

η
, ∀t ≥ 0. (9)

By update rule we have ct ∈ A(zt) for all t ≥ 1. The potential function at iterate t ≥ 1 is defined as

Vt :=
t(t + 1)

2
‖ηF(zt) + ηct‖2 +

t(t + 1)

2

∥

∥

∥
ηF(zt)− ηF(zt− 1

2
)
∥

∥

∥

2
+ t〈ηF(zt) + ηct, zt − z0〉 (10)
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C.2 Approximately Non-Increasing Potential

Fact 3. For any L > 0 and ρ ≥ − 1
60L . There exists η > 0 such that

1

2
− (12 − 4ρ

η
)η2L2 +

2ρ

η
≥ 0 (11)

Moreover, every η > 0 satisfies (11) also satisfies
ρ
η ≥ − 1

4 .

Proof. Rewriting (11), we get

ρ >
ηL(24η2L2 − 1)

4 + 8η2L2
· 1

L

Let x = ηL and f (x) = x(24x2−1)
4+8x2 . Since f ( 1

12 ) = − 5
292 < − 1

60 . We know η = 1
12L satisfies (11).

Moreover, rewritng (11) and using ηL > 0, we get

ρ

η
≥ −1 − 72η2L2

4 + 8η2L2
≥ −1

4
.

We show in the following lemma that Vt is approximately non-increasing.

Lemma 2. In the same setup as Theorem 2, for any t ≥ 1, we have

Vt+1 ≤ Vt +
1

8
· ‖ηF(zt+1) + ηct+1‖2

Proof. The plan is to show that Vt − Vt+1 plus a few non-positive terms is still ≥ − 1
8 · ‖ηF(zt+1) + ηct+1‖2,

which certifies the claim.

Two Positive Terms. Since F + A is ρ-comonotone, we have

〈ηF(zt+1) + ηct+1 − ηF(zt)− ηct, zt+1 − zt〉 −
ρ

η
‖ηF(zt+1) + ηct+1 − ηF(zt)− ηct‖2 ≥ 0. (12)

Since F is L-Lipschitz, we have

η2L2 ·
∥

∥

∥
zt+1 − zt+ 1

2

∥

∥

∥

2
−
∥

∥

∥
ηF(zt+1)− ηF(zt+ 1

2
)
∥

∥

∥

2
≥ 0.

Denote p = 1
24 . Multiplying the above inequality with 1 − ρ

3η > 0 and rearranging terms, we get

p ·
∥

∥

∥
zt+1 − zt+ 1

2

∥

∥

∥

2
−
∥

∥

∥
ηF(zt+1)− ηF(zt+ 1

2
)
∥

∥

∥

2

+

(

(1 − ρ

3η
)η2L2 − p

)

·
∥

∥

∥
zt+1 − zt+ 1

2

∥

∥

∥

2
+

ρ

3η

∥

∥

∥
ηF(zt+1)− ηF(zt+ 1

2
)
∥

∥

∥

2
≥ 0 (13)
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Sum-of-Squares Identity. We show an equivalent formulation zt+ 1
2

and zt+1 using definitions of ηct =

zt−1 − zt − ηF(zt− 1
2
) + 1

t (z0 − zt−1) and ηct+1 = zt − ηF(zt+ 1
2
) + 1

t+1 (z0 − zt)− zt+1:

zt+ 1
2
= 2zt − zt−1 +

1

t + 1
(z0 − zt)−

1

t
(z0 − zt−1)

= zt + (zt − zt−1) +
1

t + 1
(z0 − zt)−

1

t
(z0 − zt−1)

= zt − ηF(zt− 1
2
)− ηct +

1

t + 1
(z0 − zt)

zt+1 = zt − ηF(zt+ 1
2
)− ηct+1 +

1

t + 1
(z0 − zt)

We also have

zt+1 − zt+ 1
2
= ηF(zt− 1

2
) + ηct − ηF(zt+ 1

2
)− ηct+1 (14)

Next, we simplify

Vt − Vt+1 − t(t + 1)× LHS of Inequality (12)− t(t + 1)

4p
× LHS of Inequality (13)

using the second identity in Proposition 2: replace x0 with z0; for k ∈ [4], replace xk with z
t−1+ k

2
and replace

yk with ηF(z
t−1+ k

2
); replace u2 with ηct; replace u4 with ηct+1; replace k with t; replace p with q. Note that

x3 = x2 − y1 − u2 +
1

k+1 (x0 − x2) and x4 = x2 − y3 − u4 ++ 1
k+1 (x0 − x2) hold due to the above equivalent

formations of zt+ 1
2

and zt+1. Expression (18) and (19) appear on both sides of the following equation.

Vt − Vt+1 − t(t + 1)× LHS of Inequality (12)− t(t + 1)

4p
× LHS of Inequality (13)

=
t(t + 1)

4

∥

∥

∥
ηct+1 − ηct + ηF(zt− 1

2
)− 2ηF(zt) + ηF(zt+ 1

2
)
∥

∥

∥

2
(15)

+

(

(1 − 4p)t − 4p

4p
(t + 1)

)

·
∥

∥

∥
ηF(zt+ 1

2
)− ηF(zt+1)

∥

∥

∥

2
(16)

+ (t + 1) ·
〈

ηF(zt+ 1
2
)− ηF(zt+1), ηF(zt+1) + ηct+1

〉

(17)

+ t(t + 1)
ρ

η
· ‖ηF(zt+1) + ηct+1 − ηF(zt)− ηct‖2 (18)

− t(t + 1)

4p
·
((

(1 − ρ

3η
)η2L2 − p

)

·
∥

∥

∥
zt+1 − zt+ 1

2

∥

∥

∥

2
+

ρ

3η

∥

∥

∥
ηF(zt+1)− ηF(zt+ 1

2
)
∥

∥

∥

2
)

(19)
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Since ‖a‖2 + 〈a, b〉 = ‖a + b
2‖

2 − ‖b‖2

4 , we have

Expression (16)+ Expression (17)

=

∥

∥

∥

∥

∥

√

(1 − 4p)t − 4p

4p
(t + 1) ·

(

ηF(z
t+ 1

2
)− ηF(zt+1)

)

+

√

p(t + 1)

(1 − 4p)t − 4p
· (ηF(zt+1) + ηct+1)

∥

∥

∥

∥

∥

2

− p(t + 1)

(1 − 4p)t − 4p
· ‖ηF(zt+1) + ηct+1‖2

≥ − p(t + 1)

(1 − 8p)t
· ‖ηF(zt+1) + ηct+1‖2 (t ≥ 1)

≥ − 2p

1 − 8p
· ‖ηF(zt+1) + ηct+1‖2 ( t+1

t ≤ 2)

= −1

8
‖ηF(zt+1) + ηct+1‖2 (p = 1

24 )

Now it remains to show that the sum of Expression (15), (18), and (19) is non-negative. Multiplying 4
t(t+1)

and replacing p = 1
24 , we get

4

t(t + 1)
· (Expression (15) + Expression (18)+ Expression (19))

=
∥

∥

∥
ηct+1 − ηct + ηF(zt− 1

2
)− 2ηF(zt) + ηF(zt+ 1

2
)
∥

∥

∥

2
+

(

1 − (24 − 8ρ

η
)η2L2

)

·
∥

∥

∥
zt+1 − zt+ 1

2

∥

∥

∥

2

+
4ρ

η
· ‖ηF(zt+1) + ηct+1 − ηF(zt)− ηct‖2 − 8ρ

η

∥

∥

∥
ηF(zt+1)− ηF(zt+ 1

2
)
∥

∥

∥

2

Denote

B1 = ηct+1 − ηct + ηF(zt− 1
2
)− 2ηF(zt) + ηF(zt+ 1

2
)

B2 = zt+1 − zt+ 1
2
= ηF(zt− 1

2
) + ηct − ηF(zt+ 1

2
)− ηct+1 (By (14))

B3 = ηF(zt+1) + ηct+1 − ηF(zt)− ηct

B4 = ηF(zt+1)− ηF(zt+ 1
2
).

It is not hard to check that B1 − B2 = 2(B3 − B4):

B1 − B2 = 2ηct+1 − 2ηct − 2ηF(zt) + 2ηF(zt+ 1
2
) = 2(B3 − B4)
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Note that ρ is non-positive and we have

4

t(t + 1)
· (Expression (15)+ Expression (18) + Expression (19))

= ‖B1‖2 +

(

1 − (24 − 8ρ

η
)η2L2

)

· ‖B2‖2 +
ρ

η
· ‖2B3‖2 − 2ρ

η
‖2B4‖2

≥
(

1

2
− (12 − 4ρ

η
)η2L2

)

· ‖B1 − B2‖2 +
ρ

η
· ‖2B3‖2 − 2ρ

η
‖2B4‖2

(‖a‖2 + ‖b‖2 ≥ 1
2‖a − b‖2 and (24 − 8ρ

η )η2L2 ≥ 0)

≥
(

1

2
− (12 − 4ρ

η
)η2L2

)

· ‖B1 − B2‖2 +
2ρ

η
· ‖2B3 − 2B4‖2 (−‖a‖2 + 2‖b‖2 ≥ −2‖a − b‖2 and − ρ

η ≥ 0)

=

(

1

2
− (12 − 4ρ

η
)η2L2 +

2ρ

η

)

· ‖B1 − B2‖2 (B1 − B2 = 2(B3 − B4))

≥ 0. (Inequality (11))

The last inequality holds by the choice of η as shown in Fact 3.

C.3 Bouding Potential at Iteration 1

Lemma 3. Let F be a L-Lipschitz operator and A be a maximally monotone operator. For any z0 = z 1
2
∈ R

n,

η ∈ (0, 1
2L ), and z1 = JηA[z0 − ηF(z0)], we have the following

1. ‖z1 − z0‖ ≤ η · rtan
F,A(z0).

2. ‖ηF(z1) + ηc1‖ ≤ (1 + ηL)‖z1 − z0‖

3. V1 ≤ 4‖z1 − z0‖2 where V1 is defined in (10)

Proof. For any c ∈ A(z0), due to non-expansiveness of JηA, we have

‖z1 − z0‖ =
∥

∥JηA[z0 − ηF(z0)]− JηA[z0 + ηc]
∥

∥ ≤ η‖F(z0) + c‖

Thus ‖z1 − z0‖ ≤ η · rtan
F,A(z0).

By definition of V1 in (10), we have

V1 = ‖ηF(z1) + ηc1‖2 + ‖ηF(z1)− ηF(z0)‖2 + 〈ηF(z1) + ηc1, z1 − z0〉.

We bound ‖ηF(z1) + ηc1‖ first. Note that by definition, we have ηc1 = z0 − ηF(z0)− z1. Thus we have

‖ηF(z1) + ηc1‖ = ‖z0 − z1 + ηF(z1)− ηF(z0)‖
≤ ‖z0 − z1‖+ ‖ηF(z1)− ηF(z0)‖ (triangle inequality)

≤ (1 + ηL)‖z1 − z0‖ (F is L-Lipschitz)
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Then we can apply the bound on ‖ηF(z1) + ηc1‖ to bound V1 as follows:

V1 = ‖ηF(z1) + ηc1‖2 + ‖ηF(z1)− ηF(z0)‖2 + 〈ηF(z1) + ηc1, z1 − z0〉
≤ ‖ηF(z1) + ηc1‖2 + η2L2‖z1 − z0‖2 + ‖ηF(z1) + ηc1‖‖z1 − z0‖
≤ (1 + ηL)2‖z1 − z0‖2 + η2L2‖z1 − z0‖2 + (1 + ηL)‖z1 − z0‖2

= (2 + 3ηL + 2η2L2)‖z1 − z0‖2

≤ 4‖z1 − z0‖2

where we use L-Lipschitzness of F and Cauchy-Schwarz inequality in the first inequality; we use ‖ηF(z1) + ηc1‖ ≤
(1 + ηL)‖z1 − z0‖ in the second inequality; we use ηL ≤ 1

2 in the last inequality.

C.4 Proof of Theorem 2

We first show that the potential function Vt = Ω(t2 · rtan(zt)2).

Lemma 4. In the same setup as Theorem 2, for any t ≥ 1, we have

t(t + 1
2 )

4
‖ηF(zt) + ηct‖2 ≤ Vt + ‖z∗ − z0‖2

Proof. Since 0 ∈ F(z∗) + A(z∗), by ρ-comonotonicity of F + A and Fact 3, we have

〈ηF(zt) + ηct, zt − z∗〉 ≥ ρ

η
‖ηF(zt) + ηct‖2 ≥ −1

4
‖ηF(zt) + ηct‖2 (20)

By definition of Vt in (10), for any t ≥ 1, we have

Vt =
t(t + 1)

2
‖ηF(zt) + ηct‖2 +

t(t + 1)

2

∥

∥

∥
ηF(zt)− ηF(zt− 1

2
)
∥

∥

∥

2
+ t〈ηF(zt) + ηct, zt − z0〉

≥ t(t + 1)

2
‖ηF(zt) + ηct‖2 + t〈ηF(zt) + ηct, zt − z∗〉+ t〈ηF(zt) + ηct, z∗ − z0〉

≥ t(t + 1)

2
‖ηF(zt) + ηct‖2 − 1

4
‖ηF(zt) + ηct‖2 + t〈ηF(zt) + ηct, z∗ − z0〉 (By Inequality (20))

≥ t(t + 1
2 )

2
‖ηF(zt) + ηct‖2 − t(t + 1

2 )

4
‖ηF(zt) + ηct‖2 − t

t + 1
2

‖z∗ − z0‖2

≥ t(t + 1
2 )

4
‖ηF(zt) + ηct‖2 − ‖z∗ − z0‖2 ( t

t+ 1
2

< 1)

where in the second last inequality we we apply 〈a, b〉 ≥ − α
4‖a‖2 − 1

α‖b‖2 with a =
√

t(ηF(zt) + ηct),

b =
√

t(z∗ − z0), and α = t + 1
2 .

Proof of Theorem 2. It is equivalent to prove that for every T ≥ 1, we have

‖ηF(zT) + ηcT‖2 ≤ 6H2

T2
.

From Lemma 3, we have

‖ηF(z1) + ηc1‖2 ≤ (1 + ηL)2‖z1 − z0‖2 ≤ H2.
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So the theorem holds for T = 1.
For any T ≥ 2, by Lemma 4 we have

T(T + 1
2 )

4
‖ηF(zT) + ηcT‖2 ≤ VT + ‖z0 − z∗‖2

≤ V1 + ‖z0 − z∗‖2 +
1

8

T

∑
t=2

‖ηF(zt) + ηct‖2

= H2 +
1

8

T

∑
t=2

‖ηF(zt) + ηct‖2

By subtracting 1
8‖ηF(zT) + ηcT‖2 from both sides of the above inequality, we get

T2

4
‖ηF(zT) + ηcT‖2 ≤ H2 +

1

8

T−1

∑
t=2

‖ηF(zt) + ηct‖2

which is in the form of Proposition 3 with C1 = H2 and p = 1
9 . Thus we have for any T ≥ 2

‖ηF(zT) + ηcT‖2 ≤ 6H2

T2
.

D Missing Proofs in Section 5

To prove Theorem 3, our analysis is based on a potential function argument and can be summarized in the
following three steps. (1) We construct a potential function and show that it is non-increasing between two
consecutive iterates; (2) We prove that the RG algorithm has a best-iterate convergence rate, i.e., for any
T ≥ 1, there exists one iterate t∗ ∈ [T] such that our potential function at iterate t∗ is small; (3) We combine
the above steps to show that the the last iterate has the same convergence guarantee as the best iterate and

derive the O( 1√
T
) last-iterate convergence rate.

D.1 Non-increasing Potential

Potential Function. We denote

ct+1 :=
zt − ηF(zt+ 1

2
)− zt+1

η
, ∀t ≥ 0 (21)

Note that according to the update rule of RG, zt+1 = ΠZ [zt − ηF(zt+ 1
2
)], so ct+1 ∈ NZ(zt+1).

The potential function we adopt is Pt defined as

Pt := ‖F(zt) + ct‖2 +
∥

∥

∥
F(zt)− F(zt− 1

2
)
∥

∥

∥

2
, ∀t ≥ 1. (22)

Lemma 5. In the same setup of Theorem 3, Pt ≥ Pt+1 for any t ≥ 1.

Proof. The plan is to show that Pt − Pt+1 plus a few non-positive terms is non-negative, which certifies that
Pt − Pt+1 ≥ 0.
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Three Non-Positive Terms. Since F is monotone, we have

(−2) · 〈ηF(zt+1)− ηF(zt), zt+1 − zt〉 ≤ 0. (23)

Since F is L-Lipschitz and 0 < η < 1
(1+

√
2)L

< 1
2L , we have

(−2) ·
(

1

4
·
∥

∥

∥
zt+1 − zt+ 1

2

∥

∥

∥

2
−
∥

∥

∥
ηF(zt+1)− ηF(zt+ 1

2
)
∥

∥

∥

2
)

≤ 0. (24)

By definition, we have ct+1 ∈ NZ (zt+1) and ct ∈ NZ (zt). Since the normal cone operator NZ is maximally
monotone, we have

(−2) · 〈ηct+1 − ηct, zt+1 − zt〉 ≤ 0. (25)

Sum-of-Squares Identity. We use the following equivalent formations of zt+ 1
2

and zt+1.

zt+ 1
2
= 2zt − zt−1 = zt − (zt−1 − zt) = zt − ηF(zt− 1

2
)− ηct

zt+1 = ΠZ
[

zt − ηF(zt+ 1
2
)
]

= zt − ηF(zt+ 1
2
)− ηct+1

The following identity holds according to Proposition 2. To see this, we replace xk with z
t−1+ k

2
; replace

yk with ηF(z
t−1+ k

2
); replace u2 with ηct; replace u4 with ηct+1; also note that x3 = x2 − y1 − u2 and x4 =

x2 − y3 − u4 hold due to the above equivalent formations of zt+ 1
2

and zt+1.

η2 · (Pt − Pt+1) + LHS of Inequality(23) + LHS of Inequality(24)+ LHS of Inequality(25)

=

∥

∥

∥

∥

∥

zt+ 1
2
− zt+1

2
+ ηF(z

t− 1
2
)− ηF(zt)

∥

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∥

zt+ 1
2
+ zt+1

2
− zt + ηF(zt) + ηct

∥

∥

∥

∥

∥

2

.

The right-hand side of the above equality is clearly ≥ 0, thus we conclude Pt − Pt+1 ≥ 0.

D.2 Best-Iterate Convergence

In this section, we show that for any T ≥ 1, there exists some iterate t∗ such that Pt∗ = O( 1
T ), which is

implied by ∑
T
t=1 Pt = O(1). To prove this, we first show ∑

T
t=1 ‖zt+ 1

2
− zt‖2 = ∑

T
t=1 ‖zt − zt−1‖2 = O(1) and

then relate ∑
T
t=1 Pt to these two quantities.

Lemma 6. In the same setup of Theorem 3, for any T ≥ 1, we have

T

∑
t=1

∥

∥

∥
zt+ 1

2
− zt

∥

∥

∥

2
=

T

∑
t=1

‖zt − zt−1‖2 ≤ H2

1 − (1 +
√

2)ηL

Proof. First note that by the update rule of RG, we have zt+ 1
2
= 2zt − zt−1 thus zt+ 1

2
− zt = zt − zt−1.

Therefore, it suffices to only prove the inequality for ∑
T
t=1 ‖zt+ 1

2
− zt‖2.

From the proof of [Hsieh et al., 2019, Lemma 2], for any t ≥ 1 and p ∈ Z , we have

(

1 − (1 +
√

2)ηL
)

·
∥

∥

∥
zt+ 1

2
− zt

∥

∥

∥

2
≤ ‖zt − p‖2 − ‖zt+1 − p‖2 − 2η

〈

F(zt+ 1
2
), zt+ 1

2
− p

〉

+ ηL

(

∥

∥

∥
zt − zt− 1

2

∥

∥

∥

2
−
∥

∥

∥
zt+1 − zt+ 1

2

∥

∥

∥

2
)

. (26)
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We set p = z∗ to be a solution of the variational inequality (VI) problem in the above inequality. Note that

−2η
〈

F(zt+ 1
2
), zt+ 1

2
− z∗

〉

= −2η
〈

F(zt+ 1
2
)− F(z∗), zt+ 1

2
− z∗

〉

− 2η
〈

F(z∗), zt+ 1
2
− z∗

〉

≤ −2η
〈

F(z∗), zt+ 1
2
− z∗

〉

(F is monotone)

= 2η〈F(z∗), zt−1 − z∗〉 − 4η〈F(z∗), zt − z∗〉 (27)

where the last equality holds since zt+ 1
2
= 2zt − zt−1. Also note that 〈F(z∗), zt − z∗〉 ≥ 0 for all t ≥ 0 since

zt ∈ Z and z∗ is a solution to (VI). Combing Inequality (26) and Inequality (27), telescoping the terms for

t = 1, 2, · · · , T, and dividing both sides by 1 − (1 +
√

2)ηL > 0, we get

T

∑
t=1

∥

∥

∥
zt+ 1

2
− zt

∥

∥

∥

2
≤

‖z1 − z∗‖2 + ‖z1 − z 1
2
‖2 + 2η〈F(z∗), z0 − z∗〉

1 − (1 +
√

2)ηL
.

To get a cleaner constant that only relies on the starting point z0 = z 1
2
, we further simplify the three terms

on the right-hand side. Note that since η <
1

2L and z1 = ΠZ [z0 − ηF(z0)], we have

∥

∥

∥
z1 − z 1

2

∥

∥

∥

2
= ‖z1 − z0‖2 ≤ η2‖F(z0)‖2 ≤ 4

L2
‖F(z0)‖2

Thus we have

‖z1 − z∗‖2 ≤ 2‖z1 − z0‖2 + 2‖z0 − z∗‖2 ≤ 8

L2
‖F(z0)‖2 + 2‖z0 − z∗‖2.

Moreover,

2η〈F(z∗), z0 − z∗〉 ≤ 2η‖F(z∗)‖‖z0 − z∗‖
≤ 2η(‖F(z∗)− F(z0)‖+ ‖F(z0)‖)‖z0 − z∗‖ (‖A‖ ≤ ‖A − B‖+ ‖B‖)

≤ 2ηL‖z0 − z∗‖2 + 2η‖F(z0)‖‖z0 − z∗‖

≤ ‖z0 − z∗‖2 +
1

L
‖F(z0)‖‖z0 − z∗‖ (η < 1

2L )

≤ 2‖z0 − z∗‖2 +
1

L2
‖F(z0)‖2 (2ab ≤ a2 + b2)

Thus

‖z1 − z∗‖2 +
∥

∥

∥
z1 − z 1

2

∥

∥

∥

2
+ 2η〈F(z∗), z0 − z∗〉 ≤ 13

L2
‖F(z0)‖2 + 4‖z0 − z∗‖2 = H2.

This completes the proof.

Lemma 7. In the same setup of Theorem 3, for any T ≥ 1, we have

T

∑
t=1

Pt ≤ λ2H2L2.
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Proof. We first show an upper bound for Pt

Pt = ‖F(zt) + ct‖2 +
∥

∥

∥
F(zt)− F(zt− 1

2
)
∥

∥

∥

2

=

∥

∥

∥

∥

F(zt)− F(zt− 1
2
) +

zt − zt−1

η

∥

∥

∥

∥

2

+
∥

∥

∥
F(zt)− F(zt− 1

2
)
∥

∥

∥

2
(definition of ct (21))

≤ 3
∥

∥

∥
F(zt)− F(zt− 1

2
)
∥

∥

∥

2
+

2

η2
‖zt − zt−1‖2 (‖A + B‖2 ≤ 2‖A‖2 + 2‖B‖2)

≤ 3L2
∥

∥

∥
zt − zt− 1

2

∥

∥

∥

2
+

2

η2
‖zt − zt−1‖2 (F is L-Lipschitz)

= 3L2
∥

∥

∥
zt − zt−1 + zt−1 − zt− 1

2

∥

∥

∥

2
+

2

η2
‖zt − zt−1‖2

≤ 6L2
∥

∥

∥
zt− 1

2
− zt−1

∥

∥

∥

2
+

(

2

η2
+ 6L2

)

‖zt − zt−1‖2 (‖A + B‖2 ≤ 2‖A‖2 + 2‖B‖2)

≤ 2 + 6η2L2

η2

(

∥

∥

∥
zt− 1

2
− zt−1

∥

∥

∥

2
+ ‖zt − zt−1‖2

)

.

Summing the above inequality of t = 1, 2, · · ·T, we get

T

∑
t=1

Pt ≤
2 + 6η2L2

η2

T

∑
t=1

(

∥

∥

∥
zt− 1

2
− zt−1

∥

∥

∥

2
+ ‖zt − zt−1‖2

)

=
2 + 6η2L2

η2

(

‖z1 − z0‖2 +
T−1

∑
t=1

(

∥

∥

∥
zt+ 1

2
− zt

∥

∥

∥

2
+ ‖zt+1 − zt‖2

)

)

≤ 2 + 6η2L2

η2

(

‖z1 − z0‖2 +
2H2

1 − (1 +
√

2)ηL

)

≤ 6(1 + 3η2L2)H2

η2(1 − (1 +
√

2)ηL)
.

The second last inequality holds by Lemma 6. The last inequality holds since ‖z1 − z0‖2 ≤ 4
L2 ‖F(z0)‖2 ≤

H2. Recall that λ =

√

6(1+3η2L2)

η2 L2(1−(1+
√

2)ηL)
. This completes the proof.

D.3 Proof of Theorem 3

Fix any T ≥ 1. From Lemma 5, we know that the potential function Pt is non-increasing for all t ≥ 1.

Lemma 7 guarantees that the sum of potential functions ∑
T
t=1 Pt is upper bounded by λ2H2L2, where λ2 =

6(1+3η2L2)

η2L2(1−(1+
√

2)ηL)
. Combining the above, we can conclude that the potential function at the last iterate PT

is upper bounded by λ2 H2 L2

T . Since PT = ‖F(zT) + cT‖2 + ‖F(zT)− F(zT− 1
2
)‖2, we obtain the last-iterate

convergence rate rtan
F,Z(zT)

2 ≤ ‖F(zT) + cT‖2 ≤ λ2 H2 L2

T .

The convergence rate on ‖F(zT) + cT‖2 implies a convergence rate on the gap function GAPZ,F,D(zT) by
Lemma 1:

GAPZ ,F,D(zT) ≤ D · ‖F(zT) + cT‖ ≤ λDHL√
T

.
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E Auxiliary Propositions

Proposition 2 (Two Identities). Let (xk)k∈[4], (yk)k∈[4], x0, u2 and u4 be arbitrary vectors in Rn. Let k ≥ 1 and

q ∈ (0, 1) be two real numbers. If the following two equations holds:

x3 = x2 − y1 − u2

x4 = x2 − y3 − u4

then the following identity holds:

‖y2 + u2‖2 + ‖y2 − y1‖2 − ‖y4 + u4‖2 − ‖y4 − y3‖2

− 2 · 〈y4 − y2, x4 − x2〉

− 2 ·
(

1

4
· ‖x4 − x3‖2 − ‖y4 − y3‖2

)

− 2 · 〈u4 − u2, x4 − x2〉

=

∥

∥

∥

∥

x3 − x4

2
+ y1 − y2

∥

∥

∥

∥

2

+

∥

∥

∥

∥

x3 + x4

2
− x2 + y2 + u2

∥

∥

∥

∥

2

If the following two equations holds:

x3 = x2 − y1 − u2 +
1

k + 1
(x0 − x2)

x4 = x2 − y3 − u4 +
1

k + 1
(x0 − x2)

then the following identity holds:

k(k + 1)

2

(

‖y2 + u2‖2 + ‖y2 − y1‖2
)

+ k〈y2 + u2, x2 − x0〉

− (k + 1)(k + 2)

2

(

‖y4 + u4‖2 + ‖y4 − y3‖2
)

− (k + 1)〈y4 + u4, x4 − x0〉
− k(k + 1) · 〈y4 + u4 − y2 − u2, x4 − x2〉

− k(k + 1)

4q
·
〈

q · ‖x4 − x3‖2 − ‖y4 − y3‖2
〉

=
k(k + 1)

4
· ‖u4 − u2 + y1 − 2y2 + y3‖2

+

(

(1 − 4q)k − 4q

4q
(k + 1)

)

· ‖y3 − y4‖2

+ (k + 1) · 〈y3 − y4, y4 + u4〉

Proof. We verify the two identities by MATLAB. The code is available at
https://github.com/weiqiangzheng1999/Single-Call.

Proposition 3 ([Cai et al., 2022a]). Let {ak ∈ R

+}k≥2 be a sequence of real numbers. Let C1 ≥ 0 and p ∈ (0, 1
3 )

be two real numbers. If the following condition holds for every k ≥ 2,

k2

4
· ak ≤ C1 +

p

1 − p
·

k−1

∑
t=2

at, (28)
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then for each k ≥ 2 we have

ak ≤
4 · C1

1 − 3p
· 1

k2
. (29)

Proof. We prove the statement by induction.
Base Case: k = 2. From Inequality (28), we have

22

4
· a2 ≤ C1 ⇒ a2 ≤ C1 ≤ 4 · C1

1 − 3p
· 1

22
.

Thus, Inequality (29) holds for k = 2.
Inductive Step: for any k ≥ 3. Fix some k ≥ 3 and assume that Inequality (29) holds for all 2 ≤ t ≤ k − 1.

We slightly abuse notation and treat the summation in the form ∑
2
t=3 as 0. By Inequality (28), we have

k2

4
· ak ≤ C1 +

p

1 − p
·

k−1

∑
t=2

at

≤ C1

1 − p
+

p

1 − p
·

k−1

∑
t=3

at (a2 ≤ C1)

≤ C1

1 − p
+

4p · C1

(1 − p)(1− 3p)
·

k−1

∑
t=3

1

t2
(Induction assumption on Inequality (29))

≤ C1

1 − p
+

2p · C1

(1 − p)(1− 3p)
(∑∞

t=3
1
t2 = π2

6 − 5
4 ≤ 1

2 )

=
C1

1 − 3p
.

This complete the inductive step. Therefore, for all k ≥ 2, we have ak ≤ 4·C1
1−3p · 1

k2 .
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