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Abstract. We provide a unified view of many recent developments in Bayesian mechanism de-
sign, including the black-box reductions of Cai, Daskalakis, and Weinberg [in Proceedings of the 54th
Annual IEEE Symposium on Foundations of Computer Science, 2013], simple auctions for additive
buyers [S. Hart and N. Nisan, in Proceedings of the 13th ACM Conference on Electronic Commerce,
2012], and posted-price mechanisms for unit-demand buyers [S. Chawla, J. D. Hartline, and R. D.
Kleinberg, in Proceedings of the 8th ACM Conference on Electronic Commerce, 2007, pp. 243--251].
Additionally, we show that viewing these three previously disjoint lines of work through the same lens
leads to new developments as well. First, we provide a duality framework for Bayesian mechanism de-
sign, which naturally accommodates multiple agents and arbitrary objectives/feasibility constraints.
Using this, we prove that either a posted-price mechanism or the Vickrey--Clarke--Groves auction
with per-bidder entry fees achieves a constant factor of the optimal revenue achievable by a Bayesian
Incentive Compatible mechanism whenever buyers are unit-demand or additive, unifying previous
breakthroughs of Chawla et al. [in Proceedings of the 42nd ACM Symposium on Theory of Comput-
ing, 2010] and Yao [in Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, 2015, pp. 92--109], and improving both approximation ratios (from 30 to 24 and 69 to 8,
respectively). Finally, we show that this view also leads to improved structural characterizations in
the framework of Cai, Daskalakis, and Weinberg.
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1. Introduction. In the past several years, we have seen a tremendous advance
in the field of Bayesian Mechanism Design, based on ideas and concepts rooted in
Theoretical Computer Science (TCS). For instance, due to a line of work initiated
by Chawla, Hartline, and Kleinberg [CHK07], we now know that posted-price mech-
anisms are approximately optimal with respect to the optimal Bayesian Incentive
Compatible1 (BIC) mechanism whenever buyers are unit-demand2 and values are
independent3 [CHMS10, CMS15, KW12]. Due to a line of work initiated by Hart
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1A mechanism is Bayesian Incentive Compatible (BIC) if it is in every bidder's interest to tell
the truth, assuming that all other bidders reported their true values. A mechanism is Dominant
Strategy Incentive Compatible (DSIC) if it is in every bidder's interest to tell the truth no matter
what reports the other bidders make.

2A valuation is unit-demand if v(S) = maxi\in S\{ v(\{ i\} )\} . A valuation is additive if v(S) =\sum 
i\in S v(\{ i\} ).
3That is, the random variables \{ vij\} i,j are independent (where vij denotes bidder i's value for

item j).
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BAYESIAN MECHANISM DESIGN STOC16-161

and Nisan [HN12], we now know that either running Myerson's auction separately for
each item or running the Vickrey--Clarke--Groves (VCG) mechanism with a per-bidder
entry fee4 is approximately optimal with respect to the optimal BIC mechanism when-
ever buyers are additive and values are independent [LY13, BILW14, Yao15]. Due to
a line of work initiated by Cai, Daskalakis, and Weinberg [CDW12a], we now know
that optimal mechanisms are distributions over virtual welfare maximizers and have
computationally efficient algorithms to find them in quite general settings [CDW12b,
CDW13a, CDW13b, BGM13, DW15, DDW15]. The main contribution of this work
is a unified approach to these three previously disjoint research directions. At a high
level, we show how a new interpretation of the Cai--Daskalakis--Weinberg (CDW)
framework provides a duality theory, which then allows us to strengthen the charac-
terization results of Cai, Daskalakis, and Weinberg, as well as interpret the bench-
marks used in [CHK07, CHMS10, CMS15, KW12, HN12, CH13, LY13, BILW14] as
dual solutions. Surprisingly, we learn that essentially the same dual solution yields
all the key benchmarks in these works. We show how to extend this dual solution
to multibidder settings and analyze the mechanisms developed in [CHMS10, Yao15]
with respect to the resulting benchmarks. In both cases, our analysis yields improved
approximation ratios.

1.1. Simple versus optimal auction design. It is well known by now that
optimal multi-item auctions suffer many properties that are undesirable in practice.
For example, with just a single additive buyer and two items, the optimal auc-
tion could be randomized [Tha04, Pav11]. Moreover, there exist instances where
the buyer's two values are drawn from a correlated distribution where the optimal
revenue achieves infinite revenue, while the best deterministic mechanism achieves
revenue \leq 1 [BCKW10, HN13]. Even when the two item values are drawn indepen-
dently, the optimal mechanism might offer uncountably many different randomized
options for the buyer to choose from [DDT13]. Additionally, revenue-optimal multi-
item auctions behave nonmonotonically: there exist distributions F and F+, where
F+ stochastically dominates F , such that the revenue-optimal auction when a single
additive buyer's values for two items are drawn from F \times F achieves strictly larger
revenue than the revenue-optimal auction when a single additive buyer's values are
drawn from F+ \times F+ [HR12]. Finally, it is known that revenue-optimal auctions
may not be Dominant Strategy Incentive Compatible (DSIC) [Yao17] and are also
\#P-hard to find [DDT14].

In light of the aforementioned properties, simple mechanisms are often used in
lieu of optimal mechanisms in practice, and an active line of research coined ``simple
versus optimal"" mechanism design [HR09] aims to rigorously understand when simple
mechanisms are appropriate in practice. Still, prior work essentially shows that simple
mechanisms are never exactly optimal, so the main goal of these works is to understand
when simple mechanisms are approximately optimal.5 Some of the most exciting
contributions from TCS to Bayesian mechanism design have come from this direction
and include a line of work initiated by Chawla, Hartline, and Kleinberg [CHK07] for

4By this, we mean that the mechanism offers each bidder the option to participate for bi, which
might depend on the other bidders' bids but not bidder i's. If they choose to participate, then they
play in the VCG auction (and pay any additional prices that VCG charges them).

5On this front, one should not interpret, say, an 8-approximation as suggesting that sellers should
be happy with 1/8 of the revenue they could potentially achieve. Rather, these guarantees are meant
to be interpreted more qualitatively and suggest claims like ``If simple auction A guarantees a small
constant-factor approximation in the worst case, but simple auction B does not, maybe it's safer to
use auction A in practice.""
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unit-demand buyers and by Hart and Nisan [HN12] for additive buyers.
In a setting with m heterogeneous items for sale and n unit-demand buyers whose

values for the items are drawn independently, the state-of-the-art shows that a simple
posted-price mechanism6 obtains a constant factor of the optimal BIC revenue (the
revenue of the optimal BIC mechanism) [CHK07, CHMS10, CMS15, KW12]. The
main idea behind these works is a multi- to single-dimensional reduction. They con-
sider a related setting where each bidder is split into m separate copies, one for each
item, with bidder i's copy j interested only in item j. The value distributions are the
same as in the original multidimensional setting. One key ingredient driving these
works is that the optimal revenue in the original setting is upper bounded by a small
constant times the optimal revenue in the Copies setting.

In a setting with m heterogeneous items for sale and n additive buyers whose
values for the items are drawn independently, the state-of-the-art result shows that
for all inputs, either running Myerson's optimal single-item auction for each item
separately or running the VCG auction with a per-bidder entry fee obtains a constant
factor of the optimal BIC revenue [HN12, LY13, BILW14, Yao15]. One main idea
behind these works is a ``core-tail decomposition,"" which breaks the revenue down
into cases where the buyers have either low (the core) or high (the tail) values.

Although these two approaches appear different at first, we are able to show that
they in fact arise from basically the same dual in our duality theory. Essentially, we
show that a specific dual solution within our framework gives rise to an upper bound
that decomposes into the sum of two terms, one that looks like the Copies benchmark
and one that looks like the core-tail benchmark. In terms of concrete results, this
new understanding yields improved approximation ratios on both fronts. For additive
buyers, we improve the ratio provided by Yao [Yao15] from 69 to 8. For unit-demand
buyers, we improve the approximation ratio provided by Chawla et al. [CHMS10]
from 30 to 24.

In addition to these concrete results, our work makes the following conceptual
contributions as well. First, while the single-buyer core-tail decomposition techniques
(first introduced by Li and Yao [LY13]) are now becoming standard [LY13, BILW14,
RW15, BDHS15], they do not generalize naturally to multiple buyers. Yao [Yao15] in-
troduced new techniques in his extension to multibuyers termed ``\beta -adjusted revenue""
and ``\beta -exclusive mechanisms,"" which are technically quite involved. Our duality-
based proof can be viewed as a natural generalization of the core-tail decomposition
to multibuyer settings. Second, we use basically the same analysis for both additive
and unit-demand valuations, meaning that our framework provides a unified approach
to tackle both settings. Finally, we wish to point out that the key difference between
our proofs and those of [CHMS10, BILW14, Yao15] are our duality-based benchmarks:
we are able to immediately get more mileage out of these benchmarks while barely
needing to develop new approximation techniques. Indeed, the bulk of the work is
in properly decomposing our benchmarks into terms that can be approximated using
ideas similar to prior work. All these suggest that our techniques are likely be useful
in more general settings (and indeed, they have been; see section 1.3).

1.2. Optimal multidimensional mechanism design. Another recent contri-
bution of the TCS community is the CDW framework for generic Bayesian mechanism
design problems. Here, it is shown that Bayesian mechanism design problems for es-

6A posted price mechanism visits each buyer one at a time and posts a price for each item. The
buyer can then select any subset of items and pay the corresponding prices. Observe that such a
mechanism is DSIC.
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sentially any objective can be solved with black-box access just to an algorithm that
optimizes a perturbed version of that same objective. That is, even though the origi-
nal mechanism design problem involves incentives, the optimal BIC mechanism can be
found via black-box queries to an algorithm (where the input is known/given and there
are no incentives), but this algorithm optimizes a perturbed objective instead. One
aspect of this line of work is computational: we now have computationally efficient
algorithms to find the optimal (or approximately optimal) mechanism in numerous
settings of interest (including the aforementioned cases of many additive/unit-demand
buyers, but significantly more general cases as well). Another aspect is structural: we
now know, for instance, that in all settings that fit into this framework, the revenue-
optimal mechanism is a distribution over virtual welfare optimizers.7 A mechanism
is a virtual welfare optimizer if it pointwise optimizes the virtual welfare (that is,
on every input, it selects an outcome that maximizes the virtual welfare). The vir-
tual welfare is given by a virtual valuation/transformation, which is a mapping from
valuations to linear combinations of valuations.

The structural characterization from previous work roughly ends here: the guar-
anteed virtual transformations were randomized with no promise of any additional
properties beyond their existence (and that they could be found in poly-time). Our
contribution to this line of work is to improve the existing structural characterization.
Specifically, we show that every instance has a strong dual in the form of n disjoint
flows, one for each agent. The nodes in agent i's flow correspond to possible types
of this agent,8 and nonzero flow from type ti(\cdot ) to t\prime i(\cdot ) captures that the incentive
constraint between ti(\cdot ) and t\prime i(\cdot ) binds. We show how a flow induces a virtual trans-
formation and that the optimal dual gives a virtual valuation function such that the
following hold:

1. This virtual valuation function is deterministic and can be found computa-
tionally efficiently.

2. The optimal mechanism has expected revenue = its expected virtual wel-
fare, and every BIC mechanism has expected revenue \leq its expected virtual
welfare.

3. The optimal mechanism optimizes virtual welfare pointwise (i.e., on every
input, the virtual welfare maximizing outcome is selected).9

Here are a few examples of the benefits of such a characterization (which cannot
be deduced from [CDW13b]). First, the promised virtual valuation function certifies
the optimality of the optimal mechanism: every BIC mechanism has expected revenue
\leq its expected virtual welfare, yet the optimal mechanism maximizes virtual welfare
pointwise. Second, by looking at the promised virtual valuation function, we can
immediately determine which incentive constraints ``matter."" Specifically, if the flow
corresponding to the promised virtual valuation function sends flow from ti(\cdot ) to t\prime i(\cdot ),
then removing the constraint guaranteeing that ti(\cdot ) prefers to tell the truth rather
than report t\prime i(\cdot ) (e.g., through some form of verification) would increase the opti-

7Their reduction applies to objectives beyond revenue, such as makespan. The focus of the
present paper is on revenue, so we only focus on the projection of their results onto this setting.

8Both the CDW framework and our duality theory only apply directly if there are finitely many
possible types for each agent.

9This could be randomized ; there is always a deterministic maximizer, but in cases where the
optimal mechanism is randomized, the virtual transformations are such that there are numerous
maximizers, and the optimal mechanism selects one of them from a particular probability distribution.
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mal achievable revenue.10 Such a characterization should prove a valuable analytical
tool for multi-item auctions, akin to Myerson's virtual values for single-dimensional
settings [Mye81].

1.3. Related work.

1.3.1. Duality frameworks. Recently, strong duality frameworks for a single
additive buyer were developed in [DDT13, DDT15, DDT16, GK14, Gia14, GK15].
These frameworks show that the dual problem to revenue optimization for a single
additive buyer can be interpreted as an optimal transport/bipartite matching prob-
lem. Work of Haghpanah and Hartline also provides an alternative ``path-finding""
duality framework for a single additive or unit-demand buyer and has a flavor more
similar to ours (as flows can be interpreted as distributions over paths) [HH15]. When
they exist, these paths provide a witness that a certain Myerson-type mechanism is
optimal, but the paths are not guaranteed to exist in all instances. Also similar is in-
dependent work of Carroll [Car16], which also makes use of a partial Lagrangian over
incentive constraints, again for a single additive buyer. In addition to their mathe-
matical beauty, these duality frameworks also serve as tools to prove that mechanisms
are optimal. These tools have been successfully applied to provide conditions when
pricing only the grand bundle (give the buyer only the choice to buy everything or
nothing) [DDT13], posting a uniform item pricing (post the same price on every
item) [HH15], or even employing a randomized mechanism [GK15] is optimal when
selling to a single additive or unit-demand buyer. However, none of these frameworks
currently applies in multibidder settings, and to date they have been unable to yield
any approximate optimality results in the (single-bidder) settings where they do apply.

We also wish to argue that our duality is perhaps more transparent than existing
theories. For instance, it is easy to interpret dual solutions in our framework as virtual
valuation functions, and dual solutions for multiple buyer instances just list a dual for
each single buyer. In addition, we are able to rederive and improve the breakthrough
results of [CHK07, CHMS10, CMS15, HN12, LY13, BILW14, Yao15] using essentially
the same dual solution. Still, it is not our goal to subsume previous duality theories,
and our new theory certainly doesn't. For instance, previous frameworks are capa-
ble of proving that a mechanism is exactly optimal when the input distributions are
continuous. Our theory as is can only handle distributions with finite support ex-
actly.11 However, we have demonstrated that there is at least one important domain
(simple and approximately optimal mechanisms) where our theory seems to be more
applicable.

1.3.2. Related techniques. Techniques similar to ours have appeared in prior
works as well. For instance, the idea to use Lagrangian multipliers/linear program
(LP) duality for mechanism design dates back at least to early work of Laffont and
Robert [LR98] for selling a single item to budget-constrained bidders, is discussed
extensively, for instance, in [Mye97, Voh11], and is also used, for example, in recent
works as well [BGM13, Voh12]. It is also apparently informal knowledge among
some economists that Myerson's seminal result [Mye81] can be proved using some
form of LP duality, and some versions of these proofs have been published as well
(e.g., [MV04]). Still, we include in section 4 a proof of [Mye81] in our framework to

10This claim is only guaranteed to be true in nondegenerate instances with a unique optimal dual---
and exactly results from the fact that relaxing tight constraints in nondegenerate LPs improves the
optimal solution.

11Our theory can still handle continuous distributions arbitrarily well. See section 2.
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serve as a warm-up (and because some elements of the proof are simplified via our
approach).

The idea to use ``paths"" of incentive compatibility constraints to upper bound
revenue in single-bidder problems dates back at least to work of Rochet and Chon\'e
[RC98] studying revenue optimization in general multi-item settings, and to work of
Armstrong [Arm96, Arm99], which studies the special case of a single bidder and two
items. More recently, Cai, Daskalakis, and Weinberg [CDW13b] use this approach
to prove hardness of approximation for a single bidder with submodular valuations
for multiple items, Haghpanah and Hartline [HH15] provide sufficient conditions for
especially simple mechanisms to be optimal for a single unit-demand or additive bid-
der, and Carroll [Car16] proves that selling separately is max-min optimal for a single
additive buyer when only the marginals are known but not the (possibly correlated)
joint value distribution. Indeed, many of these works also observe that the term
``virtual welfare"" is appropriate to describe the resulting upper bounds. Still, these
works focus exclusively on providing conditions for certain mechanisms to be exactly
optimal and therefore impose some technical conditions on the settings where they
apply. In comparison, our work pushes the boundaries by accommodating both ap-
proximation (in the sense that our framework can prove that simple mechanisms are
approximately optimal and not just that optimal mechanisms are optimal) and unre-
stricted settings (in the sense that our framework isn't restricted to a single buyer or
to additive/unit-demand valuations).

Finally, we note that some of the benchmarks used in later sections can be derived
without appealing to duality [CMS15]. Therefore, a duality theory is not ``necessary""
in order to obtain our benchmarks. Still, prior to our work it was unknown that these
benchmarks were at all useful outside of the unit-demand settings for which they
were developed. Additionally, both the primal and the dual understanding of these
benchmarks are valuable for extending the state-of-the-art, discussed in more detail
below. Prior work has also obtained approximately optimal auctions via some sort of
``benchmark decomposition"" in the unrelated setting of digital goods [CGL15].

1.3.3. Approximation in multidimensional mechanism design. Finally,
we provide a brief overview of recent work providing simple and approximately op-
timal mechanisms in multi-item settings. Seminal work of Chawla, Hartline, and
Kleinberg [CHK07] proves that a posted-price mechanism gets a 3-approximation to
the optimal deterministic mechanism for a single unit-demand buyer with indepen-
dently drawn item values. Chawla et al. [CHMS10] improve the ratio to 2 and prove
a bound of 6.75 against the optimal deterministic DSIC mechanism for multiple buy-
ers. Chawla, Malec, and Sivan [CMS15] show that the bound degrades by at most a
factor of 5 when comparing to the optimal randomized BIC mechanism. Kleinberg
and Weinberg [KW12] improve the bound of 6.75 to 6. Roughgarden, Talgam-Cohen,
and Yan [RTCY12] provide a prior-independent ``supply-limiting"" mechanism in this
setting and also prove a Bulow--Klemperer [BK96] result: the VCG mechanism with
additional bidders yields more expected revenue than the optimal deterministic DSIC
mechanism (with the original number of bidders) when bidder valuations are unit-
demand and i.i.d., and values for items are regular and independent (possibly asym-
metric). All of these results get mileage from the ``OPTCopies"" benchmark initiated
in [CHK07]. More recent influential work of Hart and Nisan [HN12] proves that selling
each item separately at its Myerson reserve12 gets an O(log2 m)-approximation to the
optimal mechanism for a single additive buyer and m independent (possibly asym-

12The Myerson reserve of a single-dimensional distribution refers to the revenue-optimal price to
set if one seller is selling only this item to a single buyer.
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metric) items. Li and Yao [LY13] improve this to O(logm), which is tight. Babaioff
et al. [BILW14] prove that the better of selling separately and bundling together gets
a 6-approximation. Bateni et al. [BDHS15] extend this to a model of limited correla-
tion. Rubinstein and Weinberg [RW15] extend this to a single buyer with ``subadditive
valuations over independent items."" Yao [Yao15] shows that the better of selling each
item separately using Myerson's auction and running VCG with a per-bidder entry
fee gets a 69-approximation when there are many additive buyers and all values for all
items are independent. Goldner and Karlin [GK16] show how to use these results to
obtain approximately optimal prior-independent mechanisms for many additive buy-
ers. More recently, Chawla and Miller [CM16] show that a posted-price mechanism
with per-bidder entry fee gets a constant-factor approximation for many bidders with
``additive valuations subject to matroid constraints."" All of these results get mileage
from the ``core-tail decomposition"" initiated in [LY13].

The present paper unifies these two lines of work by showing that the OPTCopies

benchmark and the core-tail decomposition both arise from essentially the same dual
in our duality theory. These benchmarks provide a necessary starting point for the
above results, but proving guarantees against these benchmarks of course still requires
significant work. We believe that our duality theory now provides the necessary
starting point to extend these results to much more general settings, as evidenced by
the follow-up works discussed below.

1.3.4. Subsequent work. Since the presentation of an earlier version of this
work at STOC 2016, numerous follow-up works have successfully made use of our
framework to design (approximately) optimal auctions in much more general settings.
For example, Cai and Zhao [CZ17] show that the better of a posted-price mechanism
and an anonymous posted-price mechanism with per-bidder entry fee gets a constant-
factor approximation for many bidders with ``XOS valuations over independent items.""
This extends the previous state-of-the-art [CM16] from gross substitutes to XOS valu-
ations. Eden et al. [EFF+17b] show that the better of selling separately and bundling
together gets an O(d)-approximation for a single bidder with ``complementarity-d val-
uations over independent items."" The same authors [EFF+17a] also prove a Bulow--
Klemperer result: the VCG mechanism with additional bidders yields more expected
revenue than the optimal randomized BIC mechanism (with the original number of
bidders) when bidder valuations are ``additive subject to downward closed constraints""
and i.i.d., and values for items are regular and independent (possibly asymmetric).
Brustle et al. [BCWZ17] design a simple mechanism that achieves one-half of the opti-
mal gains from trade in certain two-sided markets, such as bilateral trading and double
auctions. Devanur and Weinberg [DW17] provide an alternative proof of the solution
by Fiat et al. [FGKK16] to the ``FedEx Problem"" and extend it to design the optimal
auction for a single buyer with a private budget. Finally, Liu and Psomas [LP16] pro-
vide a Bulow--Klemperer result for dynamic auctions, and Fu et al. [FLLT17] design
approximately optimal BIC mechanisms for correlated bidders.

Organization. We provide preliminaries and notation below. In section 3, we
present our duality theory for revenue maximization in the special case of additive/unit-
demand bidders. In section 4, we present a duality proof of Myerson's seminal result,
and in section 5 we present a canonical dual solution that proves useful in different
settings. As a warm-up, we show in section 6 how to analyze this dual solution when
there is just a single buyer. In section 7, we provide the multibidder analysis, which
is more technical. In section 8, we conclude with a formal statement of our duality
theory in general settings.
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2. Preliminaries.

Optimal auction design. For the bulk of the paper, we will study the following
setting (in section 8, we will show that our duality theory holds much more generally).
The buyers (we will use the terms buyer and bidder interchangeably) are either all
unit-demand or all additive, with buyer i having value tij for item j. Recall that
a valuation is unit-demand if v(S) = maxi\in S\{ v(\{ i\} )\} , and a valuation is additive if
v(S) =

\sum 
i\in S v(\{ i\} ). We use ti = (ti1, . . . , tim) to denote buyer i's values for all the

goods and t - i to denote every buyer's (except i's) values for all the goods. Tij is the set
of all possible values of buyer i for item j, Ti = \times jTij , T - i = \times i\ast \not =iTi\ast , and T = \times iTi.
All values for all items are drawn independently. We denote by Dij the distribution
of tij , Di = \times jDij , Di, - j = \times j\ast \not =jDij\ast , D = \times iDi, and D - i = \times i\ast \not =iDi\ast , and by
fij (or fi, fi, - j , f - i, etc.) the densities of these finite-support distributions (that is,
fi(x) = Prti\sim Di

[ti = x]). We define \scrF to be a set system over [n]\times [m] that describes
all feasible allocations.13

A mechanism takes as input a reported type from each bidder and selects (pos-
sibly randomly) an outcome in \scrF and payments to charge the bidders. A mechanism
is Bayesian Incentive Compatible (BIC) if it is in each buyer's interest to report her
true type, assuming that the other buyers do so as well, and is Bayesian Individually
Rational (BIR) if each buyer gets nonnegative utility for reporting her true type (as-
suming that the other bidders do so as well). The revenue of an auction is simply the
expected sum of payments made when bidders drawn from D report their true values.
The optimal auction optimizes expected revenue over all BIC and BIR mechanisms.
For a given value distribution D, we denote by Rev(D) the expected revenue achieved
by this auction, and it will be clear from the context whether buyers are additive or
unit-demand. For a specific BIC mechanism M , we will also use RevM (D) to denote
the expected revenue achieved by M when bidders with valuations drawn from D
report truthfully.

Reduced forms. The reduced form of an auction stores for all bidders i, items j,
and types ti the probability that bidder i will receive item j when reporting ti to the
mechanism (over the randomness in the mechanism and randomness in other bidders'
reported types, assuming they come from D - i) as \pi ij(ti). It is easy to see that if a
buyer is additive or unit-demand and receives only one item at a time, her expected
value for reporting type t\prime i to the mechanism is just ti \cdot \pi i(t

\prime 
i) (where we treat ti and

\pi i(t
\prime 
i) as vectors and \cdot denotes a vector dot-product). We say that a reduced form is

feasible if there exists some feasible mechanism (that ex-post selects an outcome in \scrF 
with probability 1) that matches the probabilities promised by the reduced form. If
P (\scrF , D) is defined to be the set of all feasible reduced forms, it is easy to see (and is
shown in [CDW12a], for instance) that P (\scrF , D) is closed and convex.

We will also use pi(ti) to refer to the expected payment made by bidder i when
reporting ti to the mechanism (over the randomness in the mechanism and randomness
in other bidders' reported types, assuming they come from D - i).

Simple mechanisms. Even though the benchmark we target is the optimal
randomized BIC mechanism, the simple mechanisms we design will all be deterministic
and DSIC. For a single buyer, the two mechanisms we consider are selling separately
and selling together. Selling separately posts a price pj on each item j and lets the
buyer purchase whatever subset of items she pleases. We denote by SRev(D) the

13When bidders are additive, \scrF only allows allocating each item at most once. When bidders are
unit-demand, \scrF contains all matchings between the bidders and the items.
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revenue of the optimal such pricing. Selling together posts a single price p on the
grand bundle and lets the buyer purchase the entire bundle for p or nothing. We
denote by BRev(D) the revenue of the optimal such pricing. For multiple buyers
the generalization of selling together is the VCG mechanism with an entry fee, which
offers to each bidder i the opportunity to pay an entry fee ei(t - i) and participate in
the VCG mechanism (paying any additional fees charged by the VCG mechanism). If
they choose not to pay the entry fee, they pay nothing and receive nothing. We denote
the revenue of the mechanism that charges the optimal entry fees to the buyers as
BVCG(D), and the revenue of the VCG mechanism with no entry fees as VCG(D).
The generalization of selling separately is a little different and is described immediately
below.

Single-dimensional copies. A benchmark that shows up in our decompositions
relates the multidimensional instances we care about to a single-dimensional setting,
and originated in work of Chawla, Hartline, and Kleinberg [CHK07]. For any multi-
dimensional instance D we can imagine splitting bidder i into m different copies, with
bidder i's copy j interested only in receiving item j and nothing else. So in this new
instance there are nm single-dimensional bidders, and copy (i, j)'s value for winning
is tij (which is still drawn from Dij). The set system \scrF from the original setting

now specifies which copies can simultaneously win. We denote by OPTCopies(D) the
revenue of Myerson's optimal auction [Mye81] in the Copies setting induced by D.14

Continuous versus finite-support distributions. Our approach explicitly as-
sumes that the input distributions have finite support. This is a standard assumption
when computation is involved. However, most existing works in the simple versus op-
timal paradigm hold even for continuous distributions (including [CHK07, CHMS10,
CMS15, HN12, LY13, BILW14, Yao15, RW15, BDHS15]). Fortunately, it is known
that every D can be discretized into D+ such that Rev(D) \in [(1 - \epsilon )Rev(D+), (1 +
\epsilon )Rev(D+)] and D+ has finite support. So all of our results can be made arbitrar-
ily close to exact for continuous distributions. We conclude this section by proving
this formally, making use of the following theorem proved in [RW15], which draws
from prior works [HL10, HKM11, BH11, DW12]. Note that the theorem below holds
for distributions over arbitrary valuation functions ti(\cdot ), and not just additive/unit-
demand.

Theorem 1 (see [RW15, DW12]). Let M be any BIC mechanism for values drawn
from distribution D, and for all i, let Di and D+

i be any two distributions, with coupled
samples ti(\cdot ) and t+i (\cdot ) such that t+i (x) \geq ti(x) for all x \in \scrF . If \delta i(\cdot ) = t+i (\cdot )  - ti(\cdot ),
then for any \epsilon > 0, there exists a BIC mechanism M \prime such that RevM \prime 

(D+) \geq 
(1  - \epsilon )(RevM (D)  - Val(\delta )

\epsilon ), where Val(\delta ) denotes the expected welfare of the VCG
allocation when buyer i's type is drawn according to the random variable \delta i(\cdot ).

To see how this implies that our duality is arbitrarily close to exact for continuous
distributions, let D\epsilon 

i be the distribution that first samples ti(\cdot ) from Di and then
outputs t\epsilon i(\cdot ) such that t\epsilon i(x) = ti(x) \cdot 1(ti([m]) \leq 1/\epsilon ).15 It is easy to see that as
\epsilon \rightarrow 0, RevM (D\epsilon ) \rightarrow RevM (D): for every mechanism M and every \eta > 0, there
exists an \epsilon > 0 such that a (1  - \eta ) fraction of M 's revenue when buyers' types are

14Note that when buyers are additive, OPTCopies is exactly the revenue of selling items separately
using Myerson's optimal auction in the original setting.

15That is, if the value of ti for the grand bundle satisfies ti([m]) \leq 1/\epsilon , then t\epsilon i(x) = ti(x).
Otherwise, t\epsilon i(x) = 0 for all x.
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drawn from D comes from buyers with ti([m]) \leq 1/\epsilon .16 For the chosen \epsilon , M is still
a BIC mechanism when buyers' types are drawn from D\epsilon , and its revenue under D\epsilon 

is at least a (1  - \eta ) fraction of its revenue under D. So we can get arbitrarily close
while only considering distributions that are bounded.

Now for any bounded distribution Di, define D+,\epsilon 
i to first sample ti(\cdot ) from Di

and then output t+,\epsilon 
i (\cdot ) such that t+,\epsilon 

i (x) = \epsilon 2 \cdot \lceil ti(x)/\epsilon 2\rceil . Similarly defineD - ,\epsilon 
i to first

sample ti(\cdot ) from Di and then output t - ,\epsilon 
i (\cdot ) such that t - ,\epsilon 

i (x) = \epsilon 2 \cdot 
\bigl( 
\lceil ti(x)/\epsilon 2\rceil  - 1

\bigr) 
.

Then it's clear that D+,\epsilon 
i , Di, and D - ,\epsilon 

i can be coupled so that t+,\epsilon 
i (x) \geq ti(x) \geq 

t - ,\epsilon 
i (x) for all x, and that taking either of the two consecutive differences results in a
\delta i(\cdot ) such that \delta i(x) \leq \epsilon 2 for all x. So for any desired \epsilon , applying Theorem 1 withM as
the optimal mechanism for D, we get a mechanism M \prime for D+,\epsilon with revenue at least
(1 - \epsilon )Rev(D) - n\epsilon . Similarly, applying Theorem 1 with M as the optimal mechanism
for D - ,\epsilon , we get a mechanism M \prime for D with revenue at least (1 - \epsilon )Rev(D - ,\epsilon ) - n\epsilon .

Together, these claims imply that Rev(D) \in [(1  - \epsilon )Rev(D - ,\epsilon )  - n\epsilon , Rev(D+,\epsilon )
1 - \epsilon +

n\epsilon /(1 - \epsilon )]. Finally, we just observe that Rev(D+,\epsilon ) = Rev(D - ,\epsilon ) + n\epsilon (the revenue
of the optimal mechanism increases by exactly n\epsilon going from D - ,\epsilon to D+,\epsilon ), as every
buyer values every outcome at exactly \epsilon more in D+,\epsilon versus D - ,\epsilon . So as \epsilon \rightarrow 0, both
approach Rev(D). Note that both D+,\epsilon and D - ,\epsilon have finite support, so our theory
will directly design M that achieves constant-factor approximations for Rev(D - ,\epsilon ).

3. Our duality theory. In this section we provide our duality framework, spe-
cialized to unit-demand/additive bidders. We begin by writing the LP for revenue
maximization (Figure 1). For ease of notation, assume that there is a special type \varnothing 
to represent the option of not participating in the auction. That means \pi i(\varnothing ) = 0
and pi(\varnothing ) = 0. Now a Bayesian Individually Rational (BIR) constraint is simply
another BIC constraint: for any type ti, bidder i will not want to lie to type \varnothing . We
let T+

i = Ti \cup \{ \varnothing \} . To proceed, we will introduce a variable \lambda i(t, t
\prime ) for each of the

BIC constraints and take the partial Lagrangian of LP 1 by Lagrangifying all BIC
constraints. The theory of Lagrangian multipliers tells us that the solution to LP 1 is
equivalent to the primal variables solving the partially Lagrangified dual (Figure 2).

Definition 2. Let \scrL (\lambda , \pi , p) be the partial Lagrangian defined as follows:

\scrL (\lambda , \pi , p) =
n\sum 

i=1

\biggl( \sum 
ti\in Ti

fi(ti) \cdot pi(ti)

+
\sum 
ti\in Ti

\sum 
t\prime i\in T+

i

\lambda i(ti, t
\prime 
i) \cdot 
\Bigl( 
ti \cdot 
\bigl( 
\pi (ti) - \pi (t\prime i)

\bigr) 
 - 
\bigl( 
pi(ti) - pi(t

\prime 
i)
\bigr) \Bigr) \biggr) 

(1)

=

n\sum 
i=1

\sum 
ti\in Ti

pi(ti)

\biggl( 
fi(ti) +

\sum 
t\prime i\in Ti

\lambda i(t
\prime 
i, ti) - 

\sum 
t\prime i\in T+

i

\lambda i(ti, t
\prime 
i)

\biggr) 

+

n\sum 
i=1

\sum 
ti\in Ti

\pi i(ti)

\biggl( \sum 
t\prime i\in T+

i

ti \cdot \lambda i(ti, t
\prime 
i) - 

\sum 
t\prime i\in Ti

t\prime i \cdot \lambda i(t
\prime 
i, ti)

\biggr) 
.(2)

16Similarly, if M achieves infinite revenue, then for every \eta > 0, there exists an \epsilon > 0 such that
the revenue of M when buyers' types are drawn from D coming from buyers with ti([m]) \leq 1/\epsilon is
at least 1/\eta . So our approach will still show that whenever Rev(D) is infinite, the revenue of the
approximately optimal mechanisms we use is unbounded.D
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Variables:
\bullet pi(ti) for all bidders i and types ti \in Ti, denoting the expected price paid
by bidder i when reporting type ti over the randomness of the mechanism
and the other bidders' types.

\bullet \pi ij(ti) for all bidders i, items j, and types ti \in Ti, denoting the probability
that bidder i receives item j when reporting type ti over the randomness of
the mechanism and the other bidders' types.

Constraints:
\bullet \pi i(ti)\cdot ti - pi(ti) \geq \pi i(t

\prime 
i)\cdot ti - pi(t

\prime 
i) for all bidders i and types ti \in Ti, t

\prime 
i \in T+

i ,
guaranteeing that the reduced form mechanism (\pi , p) is BIC and BIR.

\bullet \pi \in P (\scrF , D), guaranteeing that \pi is feasible.
Objective:

\bullet Maximize:
\sum n

i=1

\sum 
ti\in Ti

fi(ti) \cdot pi(ti), the expected revenue.

Fig. 1. An LP for revenue optimization.

Variables:
\bullet \lambda i(ti, t

\prime 
i) for all i, ti \in Ti, t

\prime 
i \in T+

i , the Lagrangian multipliers for BIC con-
straints.

Constraints:
\bullet \lambda i(ti, t

\prime 
i) \geq 0 for all i, ti \in Ti, t

\prime 
i \in T+

i , guaranteeing that the Lagrangian
multipliers are nonnegative.

Objective:
\bullet Minimize:max\pi \in P (\scrF ,D),p \scrL (\lambda , \pi , p).

Fig. 2. Partial Lagrangian of the revenue maximization LP.

3.1. Useful properties of the dual problem. In this section, we make some
observations about the dual problem to get some traction on which duals might induce
useful upper bounds.

Definition 3 (useful dual). We say that a feasible dual solution \lambda is useful if
max\pi \in P (\scrF ,D),p \scrL (\lambda , \pi , p) < \infty .

Lemma 4 (useful dual). A dual solution \lambda is useful if and only if for each bidder
i, \lambda i forms a valid flow, i.e., if and only if the following satisfy flow conservation (flow
in = flow out) at all nodes except the source and the sink:

\bullet nodes: A super source s and a super sink \varnothing , along with a node ti for every
type ti \in Ti;

\bullet flow from s to ti of weight fi(ti) for all ti \in Ti;
\bullet flow from t to t\prime of weight \lambda i(t, t

\prime ) for all t \in T and t\prime \in T+
i (including the

sink \varnothing ).

Proof. Let us think of \scrL (\lambda , \pi , p) using expression (2). Clearly, if there exist any
i and ti \in Ti such that

fi(ti) +
\sum 
t\prime i\in Ti

\lambda i(t
\prime 
i, ti) - 

\sum 
t\prime i\in T+

i

\lambda i(ti, t
\prime 
i) \not = 0,

then since pi(ti) is unconstrained (note that we do not include the constraints pi(ti) \geq 
0 in Figure 1, so these variables are indeed unconstrained) and has a nonzero multiplier
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in the objective, max\pi \in P (\scrF ,D),p \scrL (\lambda , \pi , p) = +\infty . Therefore, in order for \lambda to be
useful, we must have

fi(ti) +
\sum 
t\prime i\in Ti

\lambda i(t
\prime 
i, ti) - 

\sum 
t\prime i\in T+

i

\lambda i(ti, t
\prime 
i) = 0

for all i and ti \in Ti. This is exactly saying that what we described in the lemma
statement is a flow. The other direction is simple: whenever \lambda forms a flow, \scrL (\lambda , \pi , p)
depends only on \pi . Since \pi is bounded, the maximization problem has a finite value.

Definition 5 (virtual value function). For each \lambda , we define a corresponding
virtual value function \Phi \lambda (\cdot ), such that for every bidder i and every type ti \in Ti,
\Phi \lambda 

i (ti) = ti  - 1
fi(ti)

\sum 
t\prime i\in Ti

\lambda i(t
\prime 
i, ti)(t

\prime 
i  - ti). Note that for all i, \Phi \lambda 

i (\cdot ) is a vector-

valued function, so we use \Phi \lambda 
ij(\cdot ) to refer to the jth component of \Phi \lambda 

i (\cdot ), and we refer
to this as bidder i's virtual value for item j.

Theorem 6 (virtual welfare \geq revenue). Let \lambda be any useful dual solution and
M = (\pi , p) be any BIC mechanism. The revenue of M is less than or equal to the
virtual welfare of \pi with respect to the virtual value function \Phi \lambda (\cdot ) corresponding to
\lambda . That is,

n\sum 
i=1

\sum 
ti\in Ti

fi(ti) \cdot pi(ti) \leq 
n\sum 

i=1

\sum 
ti\in Ti

fi(ti) \cdot \pi i(ti) \cdot \Phi \lambda 
i (ti).

Equality holds if and only if for all i, t, t\prime such that \lambda i(t, t
\prime ) > 0, the BIC constraint for

bidder i between t and t\prime binds in M (that is, bidder i with type t is indifferent between
reporting t and t\prime ). Furthermore, let \lambda \ast be the optimal dual variables and M\ast =
(\pi \ast , p\ast ) be the revenue-optimal BIC mechanism; then the expected virtual welfare with
respect to \Phi \ast (induced by \lambda \ast ) under \pi \ast equals the expected revenue of M\ast , and

\pi \ast \in argmax\pi \in P (\scrF ,D)

\Biggl\{ 
n\sum 

i=1

\sum 
ti\in Ti

fi(ti) \cdot \pi i(ti) \cdot \Phi \ast 
i (ti)

\Biggr\} 
.

Proof. When \lambda is useful, we can simplify \scrL (\lambda , \pi , p) by removing all terms associ-
ated with p (because all such terms have a multiplier of zero, by Lemma 4) and replace
the terms

\sum 
t\prime i\in T+

i
\lambda i(ti, t

\prime 
i) with fi(ti) +

\sum 
t\prime i\in Ti

\lambda i(t
\prime 
i, ti). After the simplification, we

have \scrL (\lambda , \pi , p) =
\sum n

i=1

\sum 
ti\in Ti

fi(ti)\cdot \pi i(ti)\cdot 
\bigl( 
ti - 1

fi(ti)
\cdot 
\sum 

t\prime i\in Ti
\lambda i(t

\prime 
i, ti)(t

\prime 
i - ti)

\bigr) 
, which

equals
\sum n

i=1

\sum 
ti\in Ti

fi(ti) \cdot \pi i(ti) \cdot \Phi \lambda 
i (ti), exactly the virtual welfare of \pi . Now, we

need only prove that \scrL (\lambda , \pi , p) is greater than the revenue of M . Let us think of
\scrL (\lambda , \pi , p) using expression (1). Since M is a BIC mechanism, ti \cdot 

\bigl( 
\pi (ti)  - pi(t

\prime 
i)
\bigr) 
 - \bigl( 

pi(ti) - pi(t
\prime 
i)
\bigr) 
\geq 0 for any i and ti \in Ti, t

\prime 
i \in T+

i . Also, all the dual variables \lambda are
nonnegative. Therefore, it is clear that \scrL (\lambda , \pi , p) is at least as large as the revenue
of M . Moreover, if the BIC constraint for bidder i between t and t\prime binds in M for
all i, t, t\prime such that \lambda i(t, t

\prime ) > 0, then we in fact have \scrL (\lambda , \pi , p) =
\sum 

i

\sum 
ti
fi(ti)pi(ti),

so the revenue of M is equal to its expected virtual welfare under \Phi \lambda (\cdot ) (because the
Lagrangian terms added to the revenue are all zero).

When \lambda \ast is the optimal dual solution, by strong LP duality applied to the LP
of Figure 1, we know max\pi \in P (\scrF ,D),p \scrL (\lambda \ast , \pi , p) equals the revenue of M\ast . But we
also know that \scrL (\lambda \ast , \pi \ast , p\ast ) is at least as large as the revenue of M\ast , so \pi \ast neces-
sarily maximizes the virtual welfare over all \pi \in P (\scrF , D), with respect to the virtual
transformation \Phi \ast corresponding to \lambda \ast .
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To summarize, we have shown that every flow induces a finite upper bound on
how much revenue a BIC mechanism can possibly achieve. We have also observed
that this upper bound can be interpreted as the maximum virtual welfare obtainable
with respect to a virtual valuation function that is decided by the flow. In the next
two sections, we will instantiate this theory by designing specific flows and obtain
benchmarks that upper bound the optimal revenue.

4. Canonical flow for a single item. In this section, we provide a canonical
flow for single-item settings, and show that it implies the main result from Myerson's
seminal work [Mye81]. Essentially, Myerson proposes a specific virtual valuation func-
tion and shows that for this virtual valuation function, the expected revenue of any
BIC mechanism is always upper bounded by its expected virtual welfare. Moreover,
he describes an ironing procedure to guarantee that this virtual valuation is mono-
tone, and proves that the revenue-optimal mechanism simply awards the item to the
bidder with the highest virtual value. Myerson's proof is quite elegant, and we are
not claiming that our proof below is simpler.17 The purpose of the proof below is to

\bullet serve as a warm-up for the reader to get comfortable with flows and virtual
valuations;

\bullet separate out parts of the proof that can be directly applied to more general
settings (e.g., Theorem 6);

\bullet provide a specific flow that will be used in later sections to provide bench-
marks in multi-item settings.

In this section, we will have m = 1 and drop the item subscript j. We begin with
a definition of Myerson's (ironed) virtual valuation function, adapted to the discrete
setting.

Definition 7 (single-dimensional virtual value). For a single-dimensional dis-

crete distribution Di, if fi(ti) > 0, let \varphi Di
i (ti) = ti  - 

(t\prime i - ti)\cdot Prt\sim Di
[t>ti]

fi(ti)
, where

t\prime i = mint>ti,t\in Ti
\{ t\} . If fi(ti) = 0, let \varphi Di

i (ti) = 0.18 If the distribution Di is clear
from the context, we will just write \varphi i(ti).

The ironing procedure described below essentially finds any nonmonotonicities in
\varphi i(\cdot ) and ``irons"" them out. Note that steps 4 and 5 maintain that ironed virtual
values are consistent within any ironed interval.

Definition 8 (ironing). Let \sim be an equivalence relation on the support of Di,
and let \~\varphi (\cdot ) be the ironed virtual valuation function defined in the following way. We
say that an interval [t\ast i , ti] is ironed if t \sim t\prime for all t, t\prime \in [t\ast i , ti].

1. Initialize ti = maxt\in Ti
\{ t\} , the highest unironed type.

2. For any t \leq ti, define the average virtual value a([t, ti]) =
\sum 

t\prime \in [t,ti]
fi(t

\prime )\cdot \varphi i(t
\prime )\sum 

t\prime \in [t,ti]
fi(t\prime )

.

3. Let t\ast i maximize the average virtual value. That is, t\ast i = argmaxt\leq ti a([t, ti])
(break ties in favor of the maximum such t\ast i ).

4. Update \~\varphi i(t) = a([t\ast i , ti]) for all t \in [t\ast i , ti].
5. Update t \sim t\prime for all t, t\prime \in [t\ast i , ti].
6. Update ti = maxt<t\ast i ,t\in Ti

\{ t\} , the highest unironed type.
7. Return to step 2.

17If one's goal is simply to understand Myerson's result and nothing more, the original proof and
ours are comparable in simplicity. Many alternative comparably simple proofs exist as well, some of
which are not much different from ours (e.g., [MV04]).

18Actually we could define \varphi 
Di
i (ti) arbitrarily, and everything that follows would still hold.
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These definitions in the discrete case might be slightly different from what readers
are used to in the continuous case. In section 4.1, we briefly provide some observations
proving that this is the ``right"" definition for the discrete case. Our proof continues
in section 4.2.

4.1. Discrete Myersonian virtual values. In the continuous setting, Myer-

son's virtual valuation is defined as \varphi i(v) = v - 1 - Fi(v)
fi(v)

, where Fi and fi are the CDF

and PDF of Di. We first show that for any continuous distribution, discretizing it into
multiples of \epsilon and taking virtual valuations as in Definition 7, we recover Myerson's
virtual valuation in the limit as \epsilon \rightarrow 0.

Observation 9. Let Di be any continuous distribution and D\epsilon 
i the discretization

of Di with point-masses at all multiples of \epsilon . That is, f \epsilon 
i (c\epsilon ) =

\int (c+1)\epsilon 

c\epsilon 
fi(x)dx for all

c \in \BbbN . Then for all ti,

lim sup
\epsilon \rightarrow 0

\varphi 
D\epsilon 

i
i (ti) = ti  - 

1 - Fi(ti)

fi(ti)
.

Proof. For fixed ti, consider the set of \epsilon \in \{ ti/c | c \in \BbbN \} . Then clearly for

all \epsilon outside this set, \varphi 
D\epsilon 

i
i (ti) = 0. For any \epsilon in this set, we have \varphi 

D\epsilon 
i

i (ti) = ti  - 
\epsilon \cdot Prt\sim Di

[t>ti+\epsilon ]

Prt\sim Di
[t\in [ti,ti+\epsilon ]] . It's also clear that as \epsilon \rightarrow 0, we have Prt\sim Di

[t > ti+\epsilon ] \rightarrow Prt\sim Di
[t >

ti] = 1  - Fi(ti), and
\epsilon 

Prt\sim Di
[t\in [ti,ti+\epsilon ]] \rightarrow 

1
fi(ti)

(the latter is simply the definition of

probability density).

A second valuable property of Myersonian virtual values is that they capture the
``marginal revenue."" That is, if the seller was selling to a single bidder at price just
above (i.e., dv above) v and decreased the price to just below (i.e., dv below) v, the
revenue would go up by exactly \varphi (v) \cdot f(v)dv. We confirm that discrete virtual values
as per Definition 7 satisfy this property as well.

Observation 10. For any single-dimensional discrete distribution Di, we have
ti \cdot Prt\sim Di [t \geq ti]  - t\prime i \cdot Prt\sim Di [t \geq t\prime i] = fi(ti) \cdot \varphi i(ti), where t\prime i = mint>ti,t\in Ti\{ t\} .
In other words, \varphi i(ti) captures the marginal change in revenue as we go from setting
price t\prime i to price ti.

Proof. This follows immediately from the definition of \varphi i(\cdot ). But to be thorough,

ti\cdot Prt\sim Di
[t \geq ti]

= ti \cdot (Prt\sim Di
[t \geq t\prime i] + fi(ti)) (using that t\prime i = min

t>ti,t\in Ti

\{ t\} )

= t\prime i \cdot (Prt\sim Di
[t \geq t\prime i] + fi(ti)) - (t\prime i  - ti) \cdot (Prt\sim Di

[t \geq t\prime i] + fi(ti))

= t\prime i \cdot Prt\sim Di
[t \geq t\prime i] + ti \cdot fi(ti) - (t\prime i  - ti) \cdot Prt\sim Di

[t \geq t\prime i]

= t\prime i \cdot Prt\sim Di
[t \geq t\prime i] + fi(ti) \cdot \varphi i(ti) (definition of \varphi i(\cdot )).

We need one more definition specific to discrete-type spaces before we can get
back to the proof. A little more specifically, Myerson's payment identity, which
shows that allocation rules uniquely determine payments for any BIC mechanism
over continuous-type spaces, does not apply for all BIC mechanisms when types are
discrete. Fortunately, the payment identity still holds for any mechanism that might
possibly maximize revenue, but we need to be formal about this.

Definition 11. A BIC mechanism has proper payments if it is not possible to
increase payments while keeping the allocation rule the same without violating BIC.
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Formally, a BIC mechanism M = (\pi , p) has proper payments if for all i and all subsets
S \subseteq Ti, and all \epsilon > 0, increasing pi(ti) by \epsilon for all ti \in S while keeping \pi the same
does not result in a BIC mechanism. Note that all revenue-optimal mechanisms have
proper payments.

Lemma 12. Let \pi i(\cdot ) be monotone nondecreasing for all i. Then there exist
\{ pi(\cdot )\} i\in [n] such that M = (\pi , p) is BIC and has proper payments.

Proof. For ease of notation in the proof, label the types in Ti so that 0 = t0i \leq 
t1i < \cdot \cdot \cdot < t

| Ti| 
i (tji \in Ti for j \in \{ 1, . . . , | Ti| \} ). Then for a given \pi i(\cdot ), define

pi(t
j
i ) =

j\sum 
k=1

tki \cdot (\pi i(t
k
i ) - \pi i(t

k - 1
i )).

We first claim that all tji are indifferent between telling the truth and reporting

tj - 1
i . This is clear, as by definition of pi(\cdot ) we have pi(t

j
i ) = pi(t

j - 1
i ) + tji \cdot (\pi i(t

j
i )  - 

\pi i(t
j - 1
i )), which implies

tji \cdot \pi i(t
j
i ) - pi(t

j
i ) = tji \cdot \pi i(t

j
i ) - pi(t

j - 1
i ) - tji \cdot \pi i(t

j
i )+tji \cdot \pi i(t

j - 1
i ) = tji \cdot \pi i(t

j - 1
i ) - pi(t

j - 1
i ).

Now, consider any set S \subseteq Ti and any \epsilon > 0, and imagine raising the payments
of all types t \in S by \epsilon . If we have tji \in S, tj - 1

i \not \in S for any tji , then increasing all

payments in S by \epsilon will cause tji to prefer reporting tj - 1
i instead of telling the truth.

So S must contain all of Ti, and in particular t1i . But if we increase the payment of
t1i by \epsilon > 0, we violate individual rationality, as we defined pi(t

1
i ) = t1i \cdot \pi i(t

1
i ). So no

such S, \epsilon can exist, and M = (\pi , p) has proper payments.
Finally, we just need to show that M is BIC. Notice that by definition of pi(\cdot ), for

any j > k, we have pi(t
j
i ) - pi(t

k
i ) \in 

\bigl[ 
tk+1
i \cdot (\pi i(t

j
i ) - \pi i(t

k
i )), t

j
i \cdot (\pi i(t

j
i ) - \pi i(t

k
i ))
\bigr] 
. The

lower bound corresponds to the case that all the change from \pi i(t
k
i ) to \pi i(t

j
i ) occurs

going from tki to tk+1
i (i.e., \pi i(t

k+1
i ) = \pi i(t

j
i )), and the upper bound corresponds to

the case that all the change occurs going from tj - 1
i to tji (i.e., \pi i(t

k
i ) = \pi i(t

j - 1
i )).

The lower bound directly implies that tki prefers telling the truth to reporting tji
as

tki \cdot (\pi i(t
j
i ) - \pi i(t

k
i )) \leq pi(t

j
i ) - pi(t

k
i ) \Rightarrow tki \cdot \pi i(t

k
i ) - pi(t

k
i ) \geq tki \cdot \pi i(t

j
i ) - pi(t

j
i ).

Similarly, the upper bound directly implies that tji prefers telling the truth to reporting
tki as

tji \cdot (\pi i(t
j
i ) - \pi i(t

k
i )) \geq pi(t

j
i ) - pi(t

k
i ) \Rightarrow tji \cdot \pi i(t

j
i ) - pi(t

j
i ) \geq tji \cdot \pi i(t

k
i ) - pi(t

k
i ).

As the above holds for any j > k, M is BIC.

4.2. Proof of Myerson's theorem via duality. Now we return to our proof
of Myerson's theorem. Let us first quickly confirm that indeed the resulting \~\varphi i(\cdot ) by
our ironing procedure is monotone.

Observation 13 (see [Mye81]). ti > t\prime i \Rightarrow \~\varphi i(ti) \geq \~\varphi i(t
\prime 
i).

Proof. First, all types in the same ironed interval share the same ironed virtual
value. So if \~\varphi i(\cdot ) is not monotone nondecreasing, there exist two adjacent ironed
intervals [x, y] and [z, w] such that x > w but a([x, y]) < a([z, w]). Note that

D
ow

nl
oa

de
d 

07
/2

9/
21

 to
 1

28
.3

6.
7.

10
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BAYESIAN MECHANISM DESIGN STOC16-175

a([z, y]) = c\cdot a([x, y])+(1 - c)\cdot a([z, w]) for some c \in (0, 1).19 Since a([x, y]) < a([z, w]),
we have a([z, y]) > a([x, y]). However, this is in contradiction to the choice of an
ironed interval for y as specified in step 3 of the ironing process. Hence, no such
ironed intervals exist, and \~\varphi i(\cdot ) is monotone nondecreasing.

And now, we can state Myerson's theorem applied to discrete-type spaces. Af-
terwards, we will provide a proof using our new duality framework. One should map
the theorem statement below to the statement of Theorem 6 and see that our proof
will essentially follow by providing a flow \lambda that induces a virtual valuation function
\Phi \lambda 

i (\cdot ) = \varphi i(\cdot ) and another flow \lambda \prime inducing \Phi \lambda \prime 

i (\cdot ) = \~\varphi i(\cdot ), and understanding which
edges have nonzero flow in each.

Theorem 14 (see [Mye81]). For any BIC mechanism M = (\pi , p), the revenue of
M is less than or equal to the virtual welfare of \pi with respect to the virtual valuation
function \varphi (\cdot ), and is less than or equal to the virtual welfare of \pi with respect to the
ironed virtual valuation function \~\varphi (\cdot ). That is,

n\sum 
i=1

\sum 
ti\in Ti

fi(ti) \cdot pi(ti) \leq 
n\sum 

i=1

\sum 
ti\in Ti

fi(ti) \cdot \pi i(ti) \cdot \varphi i(ti),(3)

n\sum 
i=1

\sum 
ti\in Ti

fi(ti) \cdot pi(ti) \leq 
n\sum 

i=1

\sum 
ti\in Ti

fi(ti) \cdot \pi i(ti) \cdot \~\varphi i(ti).(4)

Equality holds in (3) whenever M has proper payments. Equality holds in (4)
if and only if M has proper payments and \pi i(ti) = \pi i(t

\prime 
i) for all ti \sim t\prime i. Further-

more, the revenue-optimal BIC mechanism awards the item to the bidder with the
highest nonnegative ironed virtual value (if one exists), breaking ties arbitrarily but
consistently across inputs.20 If no such bidder exists, the item remains unallocated.

We first provide a canonical flow inducing Myerson's virtual values as the virtual
transformation. The first two lemmas below relate to proving (3). The third relates
to proving (4).

Lemma 15. Define \lambda i(t
\prime 
i, ti) = Prt\sim Di [t > ti], where t\prime i = mint>ti,t\in Ti\{ t\} , and

\lambda i(t, ti) = 0 for all t \not = t\prime i. Then \lambda is a useful dual, and \Phi \lambda 
i (ti) = \varphi i(ti).

Proof. That \lambda is a useful dual follows immediately by considering the total flow in
and flow out of any given ti. The total flow in is equal to fi(ti)+Prt\sim Di

[t > ti]. This
is because ti receives flow Prt\sim Di [t > ti] from t\prime i, and fi(ti) from the super source.
The total flow out is equal to Prt\sim Di [t \geq ti], so the two are equal.

To compute \Phi \lambda 
i (ti), simply plug the choice of \lambda into Definition 5.

Lemma 16. In any BIC mechanism M with proper payments, bidder i with type
ti is indifferent between reporting ti and t\prime i = maxt<ti,t\in Ti

\{ t\} .
Proof. We first recall that if M = (\pi , p) is BIC, then \pi i(\cdot ) and pi(\cdot ) are both

monotone nondecreasing for all i [Mye81]. Because M is BIC, we know that t\prime i \cdot 
\pi i(t

\prime 
i) - pi(t

\prime 
i) \geq t\prime i \cdot \pi i(t) - pi(t) for all t \in Ti. Therefore, we also have

t\prime i \cdot (\pi i(t
\prime 
i) - \pi i(t)) \geq pi(t

\prime 
i) - pi(t).

19In fact, c =

\sum 
t\in [x,y] fi(t)\sum 
t\in [z,y] fi(t)

.

20Breaking ties consistently means that for any two different inputs, as long as they have the same
ironed virtual value profile, the tie-breaking should be the same.
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By monotonicity, the left-hand side (LHS) above is nonnegative whenever t\prime i > t.
Therefore, ti \cdot (\pi i(t

\prime 
i) - \pi i(t)) \geq pi(t

\prime 
i) - pi(t) as well. This directly says that ti prefers

reporting t\prime i to reporting any t < t\prime i. Assume now for contradiction that there is some
ti that is not indifferent between reporting ti and t\prime i. Then we have the following chain
of inequalities:

ti \cdot \pi i(ti) - pi(ti) > ti \cdot \pi i(t
\prime 
i) - pi(t

\prime 
i) \geq ti \cdot \pi i(t

\prime ) - pi(t
\prime ) \forall t\prime < ti

\Rightarrow ti \cdot (\pi i(ti) - \pi i(t
\prime )) > pi(ti) - pi(t

\prime ) \forall t\prime \leq t\prime i

\Rightarrow t \cdot (\pi i(ti) - \pi i(t
\prime )) > pi(ti) - pi(t

\prime ) \forall t\prime < ti, t \geq ti

\Rightarrow t \cdot \pi i(t) - pi(t) \geq t \cdot \pi i(ti) - pi(ti) > t \cdot \pi i(t
\prime ) - pi(t

\prime ) \forall t\prime < ti, t \geq ti.

The last line explicitly states that all t \geq ti strictly prefer telling the truth to reporting
any t\prime \leq t\prime i. Therefore, there exists a sufficiently small \epsilon > 0 such that if we increase
all pi(t) by \epsilon for all t \geq ti, then M remains BIC, contradicting the assumption that
M has proper payments.

At this point, we have proved (3) and the related statements for unironed virtual
values (but we will wrap up concretely at the end of the section). We now turn to (4)
and first show how to ``fix"" nonmonotonicities in virtual values by adding cycles.

Lemma 17. Starting from any flow \lambda and induced virtual values \Phi \lambda , adding a
cycle of flow x between bidder i's type ti and type t\prime i < ti

\bullet increases \Phi \lambda 
i (ti);

\bullet decreases \Phi \lambda 
i (t

\prime 
i);

\bullet preserves fi(ti) \cdot \Phi \lambda 
i (ti) + fi(t

\prime 
i) \cdot \Phi \lambda 

i (t
\prime 
i).

Proof. Recall the definition of \Phi \lambda 
i (ti) = ti +

\sum 
t(ti - t)\lambda i(t,ti)

fi(ti)
. Adding a cycle of

flow x between ti and t\prime i increases \lambda i(t
\prime 
i, ti) and \lambda i(ti, t

\prime 
i), but otherwise doesn't change

\lambda . So \Phi \lambda 
i (ti) increases by (ti  - t\prime i)x/fi(ti). Similarly, \Phi \lambda 

i (t
\prime 
i) decreases by exactly

(ti  - t\prime i)x/fi(t
\prime 
i). It is therefore clear that fi(ti) \cdot \Phi \lambda 

i (ti) + fi(t
\prime 
i) \cdot \Phi \lambda 

i (t
\prime 
i) preserved, as

the changes are inversely proportional to the types' densities.

Thus, we may now conclude that a flow exists inducing Myerson's ironed virtual
values as well.

Corollary 18. There exists a flow \lambda such that
\bullet \Phi \lambda 

i (ti) = \~\varphi i(ti);
\bullet \lambda i(ti, t

\prime 
i) > 0 whenever t\prime i = maxt<ti,t\in T \{ t\} ;

\bullet \lambda i(t
\prime 
i, ti) > 0 when t\prime i = maxt<ti,t\in T \{ t\} if and only if ti and t\prime i are in the same

ironed interval ;
\bullet \lambda i(t, t

\prime ) = 0 for all other t, t\prime .

Proof. Start with the \lambda inducing \Phi \lambda 
i (ti) = \varphi i(ti), and consider any ironed interval

[x, y]. First, observe that we must have \varphi i(x) > a(x, y), as otherwise [x, y] would not
be an ironed interval (as x doesn't maximize a(x, y), a(z, y) would be at least as large
where z = mint>x,t\in Ti

\{ t\} , and recall that we would break a tie in favor of z).
Now, add a cycle between x and z = mint>x,t\in Ti

\{ t\} . Per Lemma 17, this increases
\Phi \lambda 

i (z) and decreases \Phi \lambda 
i (x). So increase the weight along this cycle until \Phi \lambda 

i (x) de-
creases to \~\varphi i(x). At this point, either [x, z] is the entire ironed interval, in which case
this interval is ``finished,"" or maybe z < y. In this case, we claim that we can iterate
the process with z. To see this, observe that by Lemma 17, we must have preserved
a(x, z). Observe again that we must have a(x, z) > a(x, y) in order for [x, y] to be an
ironed interval, and we have just set \Phi \lambda 

i (x) = \~\varphi i(x) = a(x, y) < a(x, z), so we must
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have \Phi \lambda 
i (z) > a(x, z) > a(x, y) = \~\varphi i(z). So we can again add a cycle between z and

w = mint>z,t\in Ti
\{ t\} to decrease \Phi \lambda 

i (z) to \~\varphi i(z) while preserving a(x,w). Iterating
this process all the way until y necessarily adds a cycle between all adjacent types
and results in \Phi \lambda 

i (t) = \~\varphi i(t) for all t \in [x, y], again by Lemma 17. Repeating this
argument for all ironed intervals proves the corollary.

Now we may complete the proof of Theorem 14. The bulk of the proof is captured
by Lemma 15 and Corollary 18; the only remaining work is to confirm the structure
of the optimal mechanism.

Proof of Theorem 14. Inequality (3) now immediately follows from Theorem 6
and Lemma 15, and the condition for it to be an equality is implied by Lemma 16.
Inequality (4) follows immediately from Theorem 6 and Corollary 18. Next, we argue
why inequality (4) is an equality when the stated condition holds. When a mechanism
is BIC and \pi i(ti) = \pi i(t

\prime 
i), then pi(ti) = pi(t

\prime 
i), because 0 = ti \cdot (\pi i(ti)  - \pi i(t

\prime 
i)) \geq 

pi(ti) - pi(t
\prime 
i) \geq t\prime i \cdot (\pi i(ti) - \pi i(t

\prime 
i)) = 0 (implied by the BIC constraints). Therefore,

when the condition holds, any bidder i with type ti is indifferent between reporting ti
and any type t\prime i \sim ti. Combining this observation with Lemma 16, we know that for
the flow specified in Corollary 18, all BIC constraints bind between any two types ti
and t\prime i with \lambda (ti, t

\prime 
i) > 0. Thus, inequality (4) is an equality when the condition holds

due to Theorem 6.
Finally, to see that the optimal mechanism has the prescribed format, observe

that the allocation rule that awards the item to the highest nonnegative ironed vir-
tual value clearly maximizes ironed virtual welfare. So we get that the revenue of
the optimal BIC mechanism is upper bounded by the ironed virtual welfare of this
allocation rule. Moreover, ironed virtual values are always monotone nondecreasing,
so by Lemma 12, this allocation rule has corresponding proper payments that com-
bine to a BIC mechanism. Finally, because the allocation rule by definition satisfies
\pi i(ti) = \pi i(t

\prime 
i) whenever ti \sim t\prime i, we have that the revenue of this mechanism is equal

to its expected ironed virtual welfare (again by Theorem 6) and is therefore optimal
(as its expected ironed virtual welfare is an upper bound on the expected revenue of
any BIC mechanism).

In summary, we have provided a duality-based proof of Myerson's theorem [Mye81].
This gives some intuition for the flows we will develop in the following section. Also,
it provides a different insight into the difference between ironed and nonironed virtual
values. Expected revenue is equal to expected virtual welfare for all BIC mechanisms
(with proper payments) because the flow necessary to derive virtual values only sends
nonzero flow along edges that correspond to BIC constraints that are always tight. On
the other hand, revenue is only upper bounded by ironed virtual welfare for all BIC
mechanisms because the flow necessary to derive ironed virtual values sends nonzero
flow along all edges between adjacent types in an equivalence class. So revenue is only
equal to ironed virtual welfare if all of the corresponding BIC constraints are tight
(and there exist truthful mechanisms for which this doesn't hold).

5. Canonical flow and virtual valuation function for multiple items. In
this section, we present a canonical way to set the Lagrangian multipliers/flow that
induces our benchmarks for multi-item settings. This flow will use ideas similar to
those in section 4. Informally, our approach for a single bidder first divides the entire
type space of the bidder into regions based on her favorite item (that is, argmaxj\{ vj\} ).
We'll then use a different ``Myerson-like"" flow within each region, described in more
detail shortly. For multiple bidders, we'll still divide the type space of each bidder
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into regions based on her favorite item, but we will define the ``favorite"" item slightly
differently.

Specifically, let Pij(t - i) denote the price that bidder i could pay to receive exactly
item j in the VCG mechanism against bidders with types t - i.

21 We will partition the

type space Ti into m+1 regions: (i) R
(t - i)
0 contains all types ti such that tij < Pij(t - i)

for all j; (ii) R
(t - i)
j contains all types ti such that tij  - Pij(t - i) \geq 0 and j is the

smallest index in argmaxk\{ tik  - Pik(t - i)\} . This partitions the types into subsets
based on which item provides the largest surplus (value minus price), and we break
ties lexicographically. We'll refer to the largest surplus item as the bidder's favorite
item. We'll refer to all other items as nonfavorite items. For any bidder i and any

type profile t - i of everyone else, we define \lambda 
(t - i)
i to be the following flow. The flow as

defined below will look similar to Myerson's (nonironed) virtual values, and we will
need to similarly iron it to accommodate irregular distributions.

Definition 19 (initial canonical flow). Define our initial canonical flow to be the
following:

1. For all j > 0, any flow entering R
(t - i)
j is from s (the super source) and any

flow leaving R
(t - i)
j is to \varnothing (super sink).

2. For every type ti in region R
(t - i)
0 , the flow goes directly to \varnothing . That is,

\lambda i(ti,\varnothing ) = fi(ti) for all ti \in R
(t - i)
0 .

3. For every type ti in region R
(t - i)
j , define type t\prime i such that t\prime ij = maxt<tij ,t\in Tij

\{ t\} ,
and t\prime ik = tik for all k \not = j.

\bullet If t\prime i \in Rj as well, then set \lambda i(ti, t
\prime 
i) =

\sum 
t\ast i : t\ast ik=tik \forall k \not =j \wedge t\ast ij\geq tij

fi(t
\ast 
i ).

\bullet If t\prime i /\in Rj, set \lambda i(ti,\varnothing ) =
\sum 

t\ast i : t\ast ik=tik \forall k \not =j \wedge t\ast ij\geq tij
fi(t

\ast 
i ).

Observe that this indeed defines a flow. All nodes in R
(t - i)
0 have no flow in (except

from the super source) and send exactly this flow to the super sink. All other nodes
get flow in from exactly one type (in addition to the super source) and send flow out
to exactly one type, and the flow is balanced, just as in Lemma 15. At a high level,
what we are doing is restricting attention to a single item and attempting to use the
canonical single item flow for just this item. We restrict attention to different items
for different types, depending on which item gives them highest utility at the prices

Pij(t - i). Let's first study the induced virtual values \Phi 
(t - i)
ik (ti) for when ti /\in R

(t - i)
k .

Claim 20. For any type ti \in R
(t - i)
j , its corresponding virtual value \Phi 

(t - i)
ik (ti) for

item k is exactly its value tik for all k \not = j.

Proof. By the definition of \Phi 
(t - i)
i (\cdot ), \Phi (t - i)

ik (ti) = tik - 1
fi(ti)

\sum 
t\prime i
\lambda 
(t - i)
i (t\prime i, ti)(t

\prime 
ik - 

tik). Since ti \in Rj , by the definition of the flow \lambda 
(t - i)
i , for any t\prime i such that \lambda 

(t - i)
i (t\prime i, ti)

> 0, t\prime ik  - tik = 0 for all k \not = j; therefore \Phi 
(t - i)
ik (ti) = tik.

Let's now study the corresponding \Phi 
(t - i)
ij (ti) for this flow when ti \in Rj . This turns

out to be closely related to Myerson's virtual value function for single-dimensional dis-
tributions discussed in section 4. For each i, j, we use \varphi ij(\cdot ) and \~\varphi ij(\cdot ) to denote the
Myerson virtual value and ironed virtual value function for distribution Dij , respec-
tively, as defined in section 4.

21Note that when buyers are additive, this is exactly the highest bid for item j from buyers besides
i. When buyers are unit-demand, buyer i only ever buys one item, and this is the price she would
pay for receiving j.
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Claim 21. For any type ti \in R
(t - i)
j , then the initial canonical flow induces vir-

tual values satisfying \Phi 
(t - i)
ij (ti) = \varphi ij(tij) = tij  - 

(t\prime ij - tij)\cdot Prt\sim Dij
[t>tij ]

fij(tij)
, where t\prime ij =

mint>tij ,t\in Tij\{ t\} .
Proof. Let us fix ti, - j and prove this is true for all choices of ti, - j . If tij is the

largest value in Tij , then there is no flow coming into it except the one from the

source, so \Phi 
(t - i)
ij (ti) = tij . For every other value of tij , the flow coming from its

predecessor (t\prime ij , ti, - j) is exactly (note below that several steps make use of the fact
that fi(ti) =

\prod 
j fij(tij))\sum 

t\ast i : t\ast ik=tik\forall k \not =j \wedge t\ast ij\geq t\prime ij

fi(t
\ast 
i ) =

\sum 
t\ast i : t\ast ik=tik\forall k \not =j \wedge t\ast ij\geq t\prime ij

fij(t
\ast 
ij) \cdot 

\prod 
k \not =j

fik(tik)

=
\prod 
k \not =j

fik(tik) \cdot 
\sum 

t\ast ij>tij

fij(t
\ast 
ij)

=
\prod 
k \not =j

fik(tik) \cdot Pr
t\sim Dij

[t > tij ].

Now, we can compute according to Definition 5:

\Phi 
(t - i)
ij (ti) = tij  - 

(t\prime ij  - tij) \cdot 
\prod 

k \not =j fik(tik) \cdot Prt\sim Dij [t > tij ]

fi(ti)

= tij  - 
(t\prime ij  - tij) \cdot Prt\sim Dij

[t > tij ]

fij(tij)
= \varphi ij(tij).

Claims 20 and 21 show that our initial canonical flow induces virtual values such
that the virtual value of each bidder for each of her nonfavorite items is exactly its
value, while her virtual value for her favorite item is exactly its Myersonian virtual
value as per Definition 7. When Dij is regular, this is the canonical flow we use. When
the distribution is not regular, we also need to ``iron"" the virtual values as in section 4.
Essentially all we are doing is applying the same procedure as in Definition 8, but we
repeat it below to be clear exactly how the substitutions occur. Below, we use \~\varphi \ast 

ij to
denote the ironed virtual values instead of \~\varphi ij because we reserve \~\varphi ij to refer exactly
to the ironed virtual values that result in the single item case, and we haven't yet
proved that they are (essentially) the same.

Definition 22 (ironed canonical virtual values). For a given bidder i and valu-

ation vector ti \in R
(t - i)
j , obtain the ironed canonical values, \~\varphi \ast 

ij(\cdot ), in the following

manner: let X denote the minimum tij such that (tij ; ti, - j) \in R
(t - i)
j . Let \sim \ast be an

equivalence relation on Tij. We say that an interval [t\ast ij , tij ] is ironed if t \sim \ast t\prime for all
t, t\prime \in [t\ast ij , tij ].

1. Initialize tij = maxt\in Tij
\{ t\} , the highest unironed type.

2. For any t \in [X, tij ], define the average virtual value

a([t, tij ]) =

\sum 
t\prime \in [t,tij ]

fij(t
\prime ) \cdot \varphi ij(t

\prime )\sum 
t\prime \in [t,tij ]

fij(t\prime )
.

3. Let t\ast i maximize the average virtual value. That is,

t\ast ij = arg max
t\in [X,tij ]

\{ a([t, tij ])\} 

(break ties in favor of the maximum such t\ast ij).
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4. Update \~\varphi \ast 
ij(t) = a([t\ast ij , tij ]) for all t \in [t\ast ij , tij ].

5. Update t \sim \ast t\prime for all t, t\prime \in [t\ast ij , tij ].
6. Update tij = maxt\in [X,t\ast ij),t\in Ti

\{ t\} , the highest unironed type.
7. Return to step 2.

Lemma 23. The initial canonical flow can be ironed into a \lambda so that for all j

and all ti \in Rj, \Phi 
\lambda 
ij(ti) = \~\varphi \ast 

ij(tij) by only adding cycles between types ti, t
\prime 
i \in R

(t - i)
j

satisfying ti, - j = t\prime i, - j.

Proof. The proof is exactly the same as that of Corollary 18, plus the observation
that any flow sent to iron values for item j will be between types that have identical
values for items \not = j.

Now that we have a flow ``ironing"" one of the virtual values, we want to wrap up
by observing that \~\varphi \ast 

ij(v) \leq \~\varphi ij(v) for all v (where \~\varphi ij(v) is Myerson's ironed virtual
value for the distribution Dij).

Lemma 24. For any i, j, t - i, ti, - j , tij, \~\varphi \ast 
ij(tij) \leq \~\varphi ij(tij).

Proof. Observe that the ironing procedure in Definition 22 is nearly identical to
that of Definition 8. In fact, for all x, y \geq X (X is defined in Definition 22), if x \sim \ast y
as in Definition 22, then x \sim y as in Definition 8. This immediately yields that
\~\varphi ij(tij) = \~\varphi \ast 

ij(tij) for all tij in ironed intervals [x, y] (as in Definition 8) such that
x \geq X. But the ironed virtual values might differ if tij lies inside an ironed interval
that is ``cut"" by X in Definition 8. But observe that by the definition of ironing, we
necessarily have a([x, y]) \geq a([X, y]) in order for [x, y] to possibly be an ironed interval
containing X. Therefore, we may immediately conclude that \~\varphi ij(tij) \geq \~\varphi \ast 

ij(tij) for
all tij , even those in ironed intervals cut by X.

Lemma 25. There exists a flow \lambda 
(t - i)
i such that \Phi 

(t - i)
ij (ti) satisfies the following

properties:

\bullet For any j > 0, ti \in R
(t - i)
j , \Phi 

(t - i)
ij (ti) \leq \~\varphi ij(tij), where \~\varphi ij(\cdot ) is Myerson's

ironed virtual value for Dij.

\bullet For any j, ti \in R
(t - i)
j , \Phi 

(t - i)
ik (ti) = tik for all k \not = j. In particular, \Phi 

(t - i)
i (ti) =

ti for all ti \in R
(t - i)
0 .

Proof. To see the first bullet, combine Lemmas 23 and 24. To see the second
bullet, observe Claim 20, combined with the fact that the cycles added via Lemma 23
don't affect virtual values for the nonfavorite items.

At this point, for each t - i \in T - i, we have defined a different flow for bidder i.
We have shown that this flow induces a virtual valuation function such that bidder
i's virtual value for all nonfavorite items is equal to her value for those items, and her
virtual value for her favorite item is at most her Myersonian ironed virtual value for
that item. Figure 3 contains a diagram illustrating our flow for a single bidder, and
Figure 4 illustrates what the flow might look like for nonzero (t - i).

Finally, note that we've defined many possible flows for bidder i: each t - i defines

different Pij(t - i)'s, which in turn define different R
(t - i)
j 's, which define different flows.

But we only get to pick one flow for bidder i, and it cannot change depending on t - i.
The flow that we will finally use essentially averages these flows according to D - i.

Definition 26 (canonical flow for multiple items). Our flow for bidder i is \lambda i =\sum 
t - i\in T - i

f - i(t - i)\lambda 
(t - i)
i . Accordingly, the virtual value function \Phi i of \lambda i is \Phi i(\cdot ) =\sum 

t - i\in T - i
f - i(t - i)\Phi 

(t - i)
i (\cdot ).
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Fig. 3. An example of \lambda (with ironing) for a single bidder.

Fig. 4. An example of \lambda 
(t - i)

i for two items.

Intuition behind our flow. The social welfare is a trivial upper bound for
revenue, which can be arbitrarily bad in the worst case. To design a good benchmark,
we want to replace some of the terms that contribute the most to the social welfare

with more manageable ones. The flow \lambda 
(t - i)
i aims to achieve exactly this. For each

bidder i, we find the item j that contributes the most to the social welfare when
awarded to i. Then we turn the virtual value of item j into its Myerson's single-
dimensional (ironed) virtual value and keep the virtual value of all the other items
equal to the value. This transformation is feasible only if we know exactly t - i and
could use a different dual solution for each t - i. Since we can't, a natural idea is to
define a flow by taking an expectation over t - i. This is indeed our flow.

We conclude this section with one final lemma and our main theorem regarding
the canonical flow. Both proofs are immediate corollaries of the flow definition and
Theorem 6. Note also that our flow only ever sends flow between types that are
identical on all but one coordinate and adjacent in the final coordinate (and that this
coordinate is their ``favorite"" item---adjusted by t - i). This means that our benchmark
not only upper bounds the optimal revenue of any BIC mechanism, but also upper
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bounds the optimal revenue of any (nontruthful) mechanism where bidder i with type
ti has no incentive to lie by misreporting her value for a single item to an adjacent
value. A corollary of our work in the following sections is that this relaxation does
not improve the optimal revenue by more than a constant factor.

Lemma 27. For all i, j, ti, \Phi ij(ti) \leq tij \cdot Prv - i\sim D - i

\bigl[ 
ti /\in R

(v - i)
j

\bigr] 
+ \~\varphi ij(tij) \cdot 

Prv - i\sim D - i

\bigl[ 
ti \in R

(v - i)
j

\bigr] 
.

Theorem 28. Let M be any BIC mechanism with
\bigl( 
\pi , p
\bigr) 
as its reduced form. The

expected revenue of M is upper bounded by the expected virtual welfare of the same
allocation rule with respect to the canonical virtual value function \Phi i(\cdot ). In particular,\sum 

i

\sum 
ti\in Ti

fi(ti) \cdot pi(ti) \leq 
\sum 
i

\sum 
ti\in Ti

\sum 
j

fi(ti) \cdot \pi ij(ti) \cdot \Phi ij(ti)

\leq 
\sum 
i

\sum 
ti\in Ti

\sum 
j

fi(ti)\cdot \pi ij(ti)\cdot 
\biggl( 
tij \cdot Pr

v - i\sim D - i

\Bigl[ 
ti /\in R

(v - i)
j

\Bigr] 
+ \~\varphi ij(tij)\cdot Pr

v - i\sim D - i

\Bigl[ 
ti \in R

(v - i)
j

\Bigr] \biggr) 
.

(5)

6. Warm-up: Single bidder. As a warm-up, we start with the single bid-
der case. In this section, our goal is to show how to use the bounds obtained via
Theorem 28 to prove that simple mechanisms are approximately optimal for a sin-
gle additive or unit-demand bidder with independent item values, recovering results
of [CMS15] and [BILW14]. Throughout this section, we keep the same notation but
drop the subscript i and superscript (t - i) whenever appropriate.

Canonical flow for a single bidder. Since the canonical flow and the corre-
sponding virtual valuation functions are defined based on other bidders' types t - i, let
us see how it is simplified when there is only a single bidder. First, the VCG prices
are all 0; therefore \lambda is simply one flow instead of a distribution of different flows.
Second, for the same reason, the region R0 is empty, and region Rj contains all types
t with tj \geq tk for all k (see Figure 3 for an example). This simplifies expression (5) to\sum 

t\in T

\sum 
j

f(t) \cdot \pi j(t) \cdot 
\Bigl( 
tj \cdot 1[t /\in Rj ] + \~\varphi j(tj) \cdot 1[t \in Rj ]

\Bigr) 
=
\sum 
t\in T

\sum 
j

f(t) \cdot \pi j(t) \cdot tj \cdot 1[t /\in Rj ] (Nonfavorite)

+
\sum 
t\in T

\sum 
j

f(t) \cdot \pi j(t) \cdot \~\varphi j(tj) \cdot 1[t \in Rj ] (Single).

Above, Single refers to the bound coming from cases where t \in Rj . We name
it ``single"" to reference the connection to single-dimensional settings. Nonfavorite
refers to the bound coming from cases where t /\in Rj , and we name it ``nonfavorite""
because this contribution only comes from nonfavorite items. We bound Single
below, and Nonfavorite differently for unit-demand and additive valuations.

Lemma 29. For any feasible \pi (\cdot ), Single \leq OPTCopies.

Proof. Assume M is the mechanism that induces \pi (\cdot ). Consider another mecha-
nism M \prime for the Copies setting, such that for every type profile t, M \prime serves agent j
if and only if M allocates item j in the original setting and t \in Rj . As M is feasible
in the original setting, M \prime is clearly feasible in the Copies setting. When agent j's
type is tj , its probability of being served in M \prime is

\sum 
t - j

f - j(t - j) \cdot \pi j(tj , t - j) \cdot 1[t \in Rj ]
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for all j and tj . Therefore, Single is the ironed virtual welfare achieved by M \prime with
respect to \~\varphi (\cdot ). Since the Copies setting is a single-dimensional setting, the optimal
revenue OPTCopies equals the maximum ironed virtual welfare, and thus is no smaller
than Single. Note that this proof makes use of the assumption that item values are
independent, as otherwise Myerson's theory doesn't apply.

Upper bound for a unit-demand bidder. As mentioned previously, the bulk
of our work is in obtaining a benchmark and properly decomposing it. Now that
we have a decomposition, we can use techniques similar to those of Chawla and
colleagues [CHK07, CHMS10, CMS15] to approximate each term.

Lemma 30. When the types are unit-demand, for any feasible \pi (\cdot ), Nonfavorite
\leq OPTCopies.

Proof. Indeed, we will prove that Nonfavorite is upper bounded by the revenue
of the VCG mechanism in the Copies setting. Define S(t) to be the second largest
number in \{ t1, . . . , tm\} . When the types are unit-demand, the Copies setting is a single
item auction with m bidders. Therefore, if we run the Vickrey auction in the Copies
setting, the revenue is

\sum 
t\in T f(t) \cdot S(t). If t /\in Rj , then there exists some k \not = j such

that tk \geq tj , so tj \cdot 1[t \in Rj ] \leq S(t) for all j. Therefore,
\sum 

t\in T

\sum 
j f(t) \cdot \pi j(t) \cdot tj \cdot 1[t /\in 

Rj ] \leq 
\sum 

t\in T

\sum 
j f(t) \cdot \pi j(t) \cdot S(t) \leq 

\sum 
t\in T f(t) \cdot S(t). The last inequality is because

the bidder is unit-demand, so
\sum 

j \pi j(t) \leq 1.

Combining Lemmas 29 and 30, we recover the result of Chawla, Malec, and
Sivan [CMS15].22

Theorem 31. For a single unit-demand bidder, the optimal revenue is upper
bounded by 2OPTCopies.

Upper bound for an additive bidder. When the bidder is additive, we need
to further decompose Nonfavorite into two terms that we call Core and Tail.
For simplicity of notation in the proofs that follow, define r = SRev. Again, we
remind the reader that most of our work is already done in obtaining our decomposi-
tion. The remaining portion of the proof is indeed inspired by prior work of Babaioff
et al. [BILW14].23\sum 
t\in T

\sum 
j

f(t) \cdot \pi j(t) \cdot tj \cdot 1[t /\in Rj ] \leq 
\sum 
t\in T

\sum 
j

f(t) \cdot tj \cdot 1[t /\in Rj ]

=
\sum 
j

\sum 
tj>r

fj(tj) \cdot tj \cdot 
\sum 
t - j

f - j(t - j) \cdot 1[t /\in Rj ]

+
\sum 
j

\sum 
tj\leq r

fj(tj) \cdot tj \cdot 
\sum 
t - j

f - j(t - j) \cdot 1[t /\in Rj ]

\leq 
\sum 
j

\sum 
tj>r

fj(tj) \cdot tj \cdot Pr
t - j\sim D - j

[t /\in Rj ] (Tail) +
\sum 
j

\sum 
tj\leq r

fj(tj) \cdot tj (Core).

Before proceeding, let's parse term Tail above (we'll parse Core shortly after).
Tail captures contributions to the bound coming from nonfavorite items whose value
is at least SRev. In the term Tail, the main idea is that we should expect tj \cdot Pr[t /\in 

22This bound combined with [CHMS10] recovers the state-of-the-art 4-approximation via item-
pricing.

23The resulting 6-approximation is roughly the state of the art---subsequent works have improved
the analysis of the same mechanism to guarantee a 5.2-approximation [MSL15].
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Rj ] to be small when tj > SRev. This is because tj is already quite large, so
we should expect the probability of seeing another item with even larger value (a
necessary condition for t /\in Rj) to be quite small. Lemma 32 captures this formally
and makes use of the fact that item values are independent.

Lemma 32. Tail \leq SRev.

Proof. (Recall that we define r = SRev for ease of notation in some places.) By
the definition of Rj , for any given tj ,

Pr
t - j\sim D - j

[t /\in Rj ] \leq Pr
t - j\sim D - j

[\exists k \not = j, tk \geq tj ].
24

It is clear that by setting price tj on each item separately, we can make revenue at least
tj \cdot Prt - j\sim D - j

[\exists k \not = j, tk \geq tj ], as the buyer will certainly choose to purchase something
at price tj whenever there is an item she values above tj . So we see that therefore
SRev \geq tj \cdot Prt - j\sim D - j

[t /\in Rj ] for all tj . Thus, Tail \leq SRev \cdot 
\sum 

j

\sum 
tj>r fj(tj) =\sum 

j SRev \cdot Prtj\sim Dj
[tj > SRev] = the revenue of selling each item separately at price

SRev, which by the same exact reasoning is also \leq SRev.

Now, let's parse Core. Core captures contributions to the bound coming from
nonfavorite items whose value is at most SRev. The main idea is that Core is
the expected sum of independent random variables, each supported on [0,SRev]. So
maybe Core = O(SRev), which is great. Or, maybe Core \gg SRev, in which case it
should concentrate (due to being the sum of ``small"" independent random variables).
In the latter case, we should expect to have BRev = \Omega (Core), which is also great.
Lemma 33 states this formally, and also makes use of the fact that item values are
independent.

Lemma 33. If we sell the grand bundle at price Core  - 2r, the bidder will
purchase it with probability at least 1/2. In other words, BRev \geq Core

2  - r, or
Core \leq 2BRev+ 2SRev.

Proof. We will first need a technical lemma (also used in [BILW14], but proved
here for completeness).

Lemma 34. Let x be a positive single-dimensional random variable drawn from
F of finite support,25 such that for any number a, a \cdot Prx\sim F [x \geq a] \leq \scrB where \scrB is an
absolute constant. Then for any positive number s, the second moment of the random
variable xs = x \cdot 1[x \leq s] is upper bounded by 2\scrB \cdot s.

Proof. Let \{ a1, . . . , a\ell \} be the intersection of the support of F and [0, s], and let
a0 = 0. Then

\BbbE [x2
s] =

\ell \sum 
k=0

Pr
x\sim F

(x = ak) \cdot a2k

=

\ell \sum 
k=1

(a2k  - a2k - 1) \cdot 
\ell \sum 

d=k

Pr
x\sim F

(x = ad)

\leq 
\ell \sum 

k=1

(a2k  - a2k - 1) \cdot Pr
x\sim F

[x \geq ak]

24If not for issues of tie-breaking, this would be equality.
25The same statement holds for continuous distribution as well, and can be proved using integra-

tion by parts.
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BAYESIAN MECHANISM DESIGN STOC16-185

\leq 
\ell \sum 

k=1

2(ak  - ak - 1) \cdot ak \cdot Pr
x\sim F

[x \geq ak]

\leq 2\scrB \cdot 
\ell \sum 

k=1

(ak  - ak - 1)

\leq 2\scrB \cdot s.

The penultimate inequality is because ak \cdot Prx\sim F [x \geq ak] \leq \scrB .
Now with Lemma 34, for each j define a new random variable cj based on the fol-

lowing procedure. Draw a sample vj fromDj . If vj lies in [0, r], then cj = vj ; otherwise
cj = 0. Let c =

\sum 
j cj . It is not hard to see that we have \BbbE [c] =

\sum 
j

\sum 
tj\leq r fj(tj) \cdot tj .

Now we are going to show that c concentrates because it has small variance. Since
the cj 's are independent, Var[c] =

\sum 
j Var[cj ] \leq 

\sum 
j \BbbE [c2j ]. We will bound each \BbbE [c2j ]

separately. Let rj = maxx\{ x \cdot Prtj\sim Dj [tj \geq x]\} . By Lemma 34, we can upper bound
\BbbE [c2j ] by 2rj \cdot r. On the other hand, it is easy to see that r =

\sum 
j rj (as this is exactly

the definition of SRev), so Var[c] \leq 2r2. By the Chebyshev inequality,

Pr[c < \BbbE [c] - 2r] \leq Var[c]

4r2
\leq 1

2
.

Therefore,

Pr
t\sim D

\biggl[ \sum 
j

tj \geq \BbbE [c] - 2r

\biggr] 
\geq Pr[c \geq \BbbE [c] - 2r] \geq 1

2
.

So BRev \geq \BbbE [c] - 2r
2 , as we can sell the grand bundle at price \BbbE [c] - 2r, and it will be

purchased with probability at least 1/2.

Theorem 35. For a single additive bidder, the optimal revenue is \leq 2BRev +
4SRev.

Proof. Combining Lemmas 29, 32, and 33, the optimal revenue is upper bounded
byOPTCopies+SRev+2BRev+2SRev. It is not hard to see thatOPTCopies= SRev,
because the optimal auction in the Copies setting just sells everything separately. So
the optimal revenue is upper bounded by 2BRev+ 4SRev.

7. Multiple bidders. In this section, we show how to use the upper bound
in Theorem 28 to show that deterministic DSIC mechanisms can achieve a constant
fraction of the (randomized) optimal BIC revenue in multibidder settings when the
bidders' valuations are all unit-demand or additive. Before beginning, we remind
the reader of some notation from section 2: VCG(D) refers to the revenue of the
VCG mechanism when buyers have values drawn from D, and BVCG refers to the
revenue of the optimal ``VCG with entry fees"" mechanism. OPTCopies(D) refers to the
optimal achievable revenue in the related single-dimensional ``Copies"" setting, where
each buyer has been split into m different buyers (one for each item).

Similarly to the single-bidder case, we first decompose the upper bound (expres-
sion (5)) into three components and bound them separately. In the last expression
in what follows, we call the first term Nonfavorite, the second term Under, and
the third term Single. We further break Nonfavorite into two parts, Over and
Surplus, and bound them separately. The following are the approximation factors
we achieve.

Theorem 36. For multiple unit-demand bidders, the optimal revenue is upper
bounded by 4OPTCopies.
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Theorem 37. For multiple additive bidders, the optimal revenue is upper bounded
by 6OPTCopies+2BVCG.

Note that a simple posted-price mechanism achieves revenue OPTCopies/6 when
all buyers are unit-demand [CHMS10, KW12], and selling each item separately using
Myerson's auction achieves revenue OPTCopies when buyers are additive. Therefore,
the posted-price mechanism of Chawla et al. [CHMS10] and Kleinberg and Weinberg
[KW12] achieves a 24-approximation to the optimal BIC mechanism (previously, it
was known to be a 30-approximation), and Yao's approximation ratios [Yao15] are
improved from 69 to 8. Some parts of the following analysis draw inspiration from
prior works of Chawla et al. [CHMS10] and Yao [Yao15]; however, much of the anal-
ysis also represents new techniques. In particular, it is worth pointing out that our
proof of Theorem 37 looks similar to our single-bidder case, whereas Yao's original
proof required the entirely new machinery of ``\beta -adjusted revenue"" and ``\beta -exclusive
mechanisms."" Below is our decomposition, first into Nonfavorite, Under, and
Single, then further decomposing Nonfavorite into Over and Surplus. Recall
that \wedge refers to ``AND"" and \vee refers to ``OR.""\sum 
i

\sum 
ti\in Ti

\sum 
j

fi(ti) \cdot \pi ij(ti) \cdot 
\Bigl( 
tij \cdot Pr

v - i\sim D - i

[ti /\in R
(v - i)
j ] + \~\varphi ij(tij) \cdot Pr

v - i\sim D - i

[ti \in R
(v - i)
j ]

\Bigr) 
\leq 
\sum 
i

\sum 
ti\in Ti

\sum 
j

fi(ti) \cdot \pi ij(ti) \cdot 
\sum 

v - i\in T - i

tijf - i(v - i)

\cdot 1
\Bigl[ \bigl( 
\exists k \not = j, tik  - Pik(v - i) \geq tij  - Pij(v - i)

\bigr) 
\vee 
\bigl( 
tij < Pij(v - i)

\bigr) \Bigr] 
+
\sum 
i

\sum 
ti\in Ti

\sum 
j

fi(ti)\pi ij(ti) \~\varphi ij(tij) Pr
v - i\sim D - i

[ti \in R
(v - i)
j ]

\leq 
\sum 
i

\sum 
ti\in Ti

\sum 
j

fi(ti) \cdot \pi ij(ti) \cdot 
\sum 

v - i\in T - i

tijf - i(v - i)

\cdot 1
\Bigl[ \bigl( 
\exists k \not = j, tik  - Pik(v - i) \geq tij  - Pij(v - i)

\bigr) 
\wedge 
\bigl( 
tij \geq Pij(v - i)

\bigr) \Bigr] 
(Nonfavorite)

+
\sum 
i

\sum 
ti\in Ti

\sum 
j

fi(ti) \cdot \pi ij(ti) \cdot 
\sum 

v - i\in T - i

tij \cdot f - i(v - i) \cdot 1[tij < Pij(v - i)] (Under)

+
\sum 
i

\sum 
ti\in Ti

\sum 
j

fi(ti) \cdot \pi ij(ti) \cdot \~\varphi ij(tij) \cdot Pr
v - i\sim D - i

[ti \in R
(v - i)
j ] (Single),

Nonfavorite \leq 
\sum 
i

\sum 
ti\in Ti

\sum 
j

fi(ti) \cdot \pi ij(ti)

\cdot 
\sum 

v - i\in T - i

Pij(v - i)f - i(v - i)1[tij \geq Pij(v - i)] (Over)

+
\sum 
i

\sum 
ti\in Ti

\sum 
j

fi(ti) \cdot \pi ij(ti) \cdot 
\sum 

v - i\in T - i

(tij  - Pij(v - i)) \cdot f - i(v - i)

\cdot 1
\Bigl[ \bigl( 
\exists k \not = j, tik  - Pik(v - i) \geq tij  - Pij(v - i)

\bigr) 
\wedge 
\bigl( 
tij \geq Pij(v - i)

\bigr) \Bigr] 
(Surplus).

Before continuing, let's try to parse these five terms:
\bullet All terms sum over all bidders, all types, and all items. Each term takes the
density of a type times the interim probability that a bidder receives an item
when reporting that type, times some portion of the virtual valuation for that
item.
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\bullet Nonfavorite takes the value for the item, times the probability that it is
not the bidder's favorite item, as defined in section 5, when v - i is drawn from

D - i (this roughly corresponds to items k such that ti \in R
(v - i)
j for j \not = k, but

not perfectly).
\bullet Under takes the value for the item, times the probability that the bidder is

not even willing to purchase the item at the VCG prices defined by v - i drawn

from D - i (this roughly corresponds to when ti \in R
(v - i)
0 , but not perfectly).

\bullet Single takes the Myerson ironed virtual value for the item, times the prob-
ability that it is the bidder's favorite item (this corresponds to items j such

that ti \in R
(v - i)
j ).

\bullet Over and Surplus split Nonfavorite in the following way:
-- Over replaces the value in Nonfavorite with the VCG price induced

by v - i (and also upper bounds some probabilities by 1). This roughly
corresponds to the revenue obtained by VCG (but not perfectly).

-- Surplus replaces the value in Nonfavorite with (value  - VCG price
induced by v - i). This roughly corresponds to the bidder's utility for
participating in the VCG auction (but not perfectly).

-- Observe that value = VCG price + (value  - VCG price), so this is
indeed a decomposition of Nonfavorite.

The plan of attack is as follows: Single will be handled the same way as in sec-
tion 6. Surplus will be handled similarly to Nonfavorite from section 6, and both
terms yield the same approximation guarantees as their single-bidder counterparts.
That leaves Under and Over, which we will show each contribute at most an addi-
tional OPTCopies and account for the ``plus two"" in transitioning from single-bidder
to multibidder bounds. We now proceed to address these terms formally, beginning
with Surplus.

Analyzing SURPLUS for unit-demand bidders. The proof of this lemma is
similar in spirit to that of Lemma 30.

Lemma 38. When the types are unit-demand, for any feasible \pi (\cdot ), Surplus \leq 
OPTCopies.

Proof. Indeed, we will prove that Surplus is bounded above by the revenue of
the VCG mechanism in the Copies setting. For any i define Si(ti, v - i) to be the
second largest number in \{ ti1  - Pi1(v - i), . . . , tim  - Pim(v - i)\} . Now consider running
the VCG mechanism on type profile (ti, v - i). An agent (i, j) is served in the VCG
mechanism in the Copies setting if and only if item j is allocated to i in the VCG
mechanism in the original setting, which is equivalent to saying tij  - Pij(v - i) \geq 0
and tij  - Pij(v - i) \geq tik  - Pik(v - i) for all k. The Copies setting is single-dimensional;
therefore any agent's payment is her threshold bid. For agent (i, j), her threshold bid
is Pij(v - i)+max\{ 0,maxk \not =j tik - Pik(v - i)\} , which is at least Si(ti, v - i). On the other
hand, for any i, whenever there exists j\prime , tij\prime  - Pij\prime (v - i) \geq 0, there exists some ji such
that (i, ji) is served in the VCG mechanism. Combining the two conclusions above,
we show that on any profile (ti, v - i), the payment in the VCG mechanism collected
from agents in \{ (i, j)\} j\in [m] is at least Si(ti, v - i) \cdot 1[\exists j\prime , tij\prime  - Pij\prime (v - i) \geq 0]. So the
total revenue of the VCG Copies mechanism is at least\sum 

i

\sum 
(ti,v - i)\in Ti

f(ti, v - i) \cdot Si(ti, v - i) \cdot 1[\exists j\prime , tij\prime  - Pij\prime (v - i) \geq 0].D
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Next we argue that for any j and (ti, v - i), the following inequality holds:

(tij  - Pij(v - i)) \cdot 1
\Bigl[ 
\exists k \not = j, tik  - Pik(v - i) \geq tij  - Pij(v - i) \geq 0

\Bigr] 
\leq Si(ti, v - i) \cdot 1[\exists j\prime , tij\prime  - Pij\prime (v - i) \geq 0].(6)

We need only consider the case when the LHS is nonzero. In that case, the right-hand
side (RHS) has value Si(ti, v - i), and also there exists some k such that tik - Pik(v - i) \geq 
tij  - Pij(v - i), so tij  - Pij(v - i) \leq Si(ti, v - i).

So now we can rewrite Surplus and upper bound it with the revenue of the VCG
mechanism in the Copies setting:\sum 

i

\sum 
ti\in Ti

\sum 
j

fi(ti) \cdot \pi ij(ti)
\sum 

v - i\in T - i

(tij  - Pij(v - i)) \cdot f - i(v - i)

\cdot 1
\Bigl[ 
\exists k \not = j, tik  - Pik(v - i) \geq tij  - Pij(v - i) \geq 0

\Bigr] 
=
\sum 
i

\sum 
(ti,v - i)\in Ti

f(ti, v - i)
\sum 
j

\pi ij(ti) \cdot (tij  - Pij(v - i))

\cdot 1
\Bigl[ 
\exists k \not = j, tik  - Pik(v - i) \geq tij  - Pij(v - i) \geq 0

\Bigr] 
\leq 
\sum 
i

\sum 
(ti,v - i)\in Ti

f(ti, v - i)
\sum 
j

\pi ij(ti) \cdot Si(ti, v - i)

\cdot 1[\exists j\prime , tij\prime  - Pij\prime (v - i) \geq 0] (inequality (6))

\leq 
\sum 
i

\sum 
(ti,v - i)\in Ti

f(ti, v - i) \cdot Si(ti, v - i)

\cdot 1[\exists j\prime , tij\prime  - Pij\prime (v - i) \geq 0]

\biggl( \sum 
j

\pi ij(ti) \leq 1 \forall i, ti
\biggr) 
.

The last inequality is upper bounded by the revenue of the VCG mechanism in the
Copies setting by our work above, which is clearly upper bounded by OPTCopies.

Analyzing SURPLUS for additive bidders. Similarly to the single-bidder
case, we will again break the term Surplus into the Core and the Tail and ana-
lyze them separately. Before we proceed, we first define the cutoffs. Let rij(v - i) =
maxx\geq Pij(v - i)\{ x \cdot Prtij\sim Dij

[tij \geq x]\} . The observant reader will notice that this is

bidder i's ex-ante payment for item j in Ronen's single-item mechanism [Ron01] con-
ditioned on other bidders' types being v - i, but this connection is not necessary to
understand the proof. Further let ri(v - i) =

\sum 
j rij(v - i), ri = \BbbE v - i\sim D - i [ri(v - i)] and

r =
\sum 

i ri, the expected revenue of running Ronen's mechanism separately for each
item (again, the connection to Ronen's mechanism is not necessary to understand
the proof). We first bound Tail and Core, using arguments similar to those in the
single-item case of Lemmas 32 and 33):

Surplus \leq 
\sum 
i

\sum 
v - i\in T - i

f - i(v - i)
\sum 
j

\sum 
tij\geq Pij(v - i)

fij(tij) \cdot (tij  - Pij(v - i))

\cdot 
\sum 

ti, - j\in Ti, - j

fi, - j(ti, - j) \cdot 1[\exists k \not = j, tik  - Pik(v - i) \geq tij  - Pij(v - i)]

=
\sum 
i

\sum 
v - i\in T - i

f - i(v - i)
\sum 
j

\sum 
tij\geq Pij(v - i)

fij(tij)
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\cdot (tij  - Pij(v - i)) \cdot Pr
ti, - j\sim Di, - j

[\exists k \not = j, tik  - Pik(v - i) \geq tij  - Pij(v - i)]

\leq 
\sum 
i

\sum 
v - i\in T - i

f - i(v - i)
\sum 
j

\sum 
tij>Pij(v - i)+ri(v - i)

fij(tij)

\cdot (tij  - Pij(v - i)) \cdot Pr
ti, - j\sim Di, - j

[\exists k \not = j, tik  - Pik(v - i) \geq tij  - Pij(v - i)] (Tail)

+
\sum 
i

\sum 
v - i\in T - i

f - i(v - i)
\sum 
j

\sum 
tij\in [Pij(v - i),Pij(v - i)+ri(v - i)]

fij(tij)

\cdot (tij  - Pij(v - i)) (Core).

Lemma 39. Tail \leq r.

Proof. First, by union bound,

Pr
ti, - j\sim Di, - j

[\exists k \not = j, tik  - Pik(v - i) \geq tij  - Pij(v - i)]

\leq 
\sum 
k \not =j

Pr
tik\sim Dik

[ tik  - Pik(v - i) \geq tij  - Pij(v - i)].

By the definition of rik(v - i), we certainly have rik(v - i) \geq (Pik(v - i)+ tij  - Pij(v - i)) \cdot 
Prtik\sim Dik

[ tik  - Pik(v - i) \geq tij  - Pij(v - i)], so we can also derive

Pr
tik\sim Dik

[ tik  - Pik(v - i) \geq tij  - Pij(v - i)] \leq 
rik(v - i)

Pik(v - i) + tij  - Pij(v - i)
\leq rik(v - i)

tij  - Pij(v - i)
.

Using these two inequalities, we can upper bound Tail:\sum 
i

\sum 
v - i\in T - i

f - i(v - i)
\sum 
j

\sum 
tij>Pij(v - i)+ri(v - i)

fij(tij) \cdot 
\sum 
k \not =j

rik(v - i)

\leq 
\sum 
i

\sum 
v - i

f - i(v - i) \cdot 
\sum 
j

ri(v - i) \cdot 
\sum 

tij>Pij(v - i)+ri(v - i)

fij(tij)

\leq 
\sum 
i

\sum 
v - i

f - i(v - i)
\sum 
j

rij(v - i) (definition of rij(v - i))

= r.

Lemma 40. BVCG \geq Core
2  - r. In other words, 2r + 2BVCG \geq Core.

Proof. Fix any v - i \in T - i, let tij \sim Dij , and define two new random variables

bij(v - i) = (tij  - Pij(v - i))1[tij \geq Pij(v - i)]

and
cij(v - i) = bij(v - i)1[bij(v - i) \leq ri(vi)].

Clearly, cij(v - i) is supported on [0, ri(v - i)]. Also, we have

\BbbE tij\sim Dij
[cij(v - i)] =

\sum 
tij\in [Pij(v - i),Pij(v - i)+ri(v - i)]

fij(tij) \cdot (tij  - Pij(v - i)).

So we can rewrite Core as\sum 
i

\sum 
v - i\in T - i

f - i(v - i)
\sum 
j

\BbbE [cij(v - i)].
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Now we will describe a VCGmechanism with per-bidder entry fee. Define an entry
fee function for bidder i depending on v - i as ei(v - i) =

\sum 
j \BbbE [cij(v - i)] - 2ri(v - i). We

will show that for any i and other bidders' types v - i \in T - i, bidder i accepts the
entry fee ei(v - i) with probability at least 1/2. Since bidders are additive, the VCG
mechanism is exactly m separate Vickrey auctions, one for each item. So Pij(v - i) =
max\ell \not =i\{ v\ell j\} , and for any set of S, its Clarke pivot price for i to receive set S is\sum 

j\in S Pij(v - i).
This also means

\sum 
j bij(v - i) is the random variable that represents bidder i's

utility in the VCG mechanism when other bidders' bids are v - i. If we can prove
Pr[
\sum 

j bij(v - i) \geq ei(v - i)] \geq 1/2 for all v - i, then we know bidder i accepts the entry
fee with probability at least 1/2.

It is not hard to see that for any nonnegative number a,

a \cdot Pr[bij(v - i) \geq a] \leq (a+ Pij(v - i)) \cdot Pr[tij \geq a+ Pij(v - i)] \leq rij(v - i).

Therefore, because each cij(v - i) \in [0, ri(v - i)], by Lemma 34 we can again bound the
second moment as \BbbE [cij(v - i)

2] \leq 2ri(v - i)rij(v - i). Since cij 's are independent,

Var

\biggl[ \sum 
j

cij(v - i)

\biggr] 
=
\sum 
j

Var[cij(v - i)] \leq 
\sum 
j

\BbbE [cij(v - i)
2] \leq 2ri(v - i)

2.

By the Chebyshev inequality, we know that

Pr

\biggl[ \sum 
j

cij(v - i) \leq 
\sum 
j

\BbbE [cij(v - i)] - 2ri(v - i)

\biggr] 
\leq 

Var[
\sum 

j cij(v - i)]

4ri(v - i)2
\leq 1/2.

Therefore, as bij(v - i) \geq cij(v - i), we can conclude that

Pr

\biggl[ \sum 
j

bij(v - i) \geq ei(v - i)

\biggr] 
\geq 1/2.

So the entry fee is accepted with probability at least 1/2 for all i and v - i. Thus,

BVCG \geq 1

2

\sum 
i

\sum 
v - i\in T - i

f - i(v - i)
\bigl( 
\BbbE [cij(v - i)] - 2ri(v - i)

\bigr) 
=

Core

2
 - r.

Analyzing SINGLE, OVER, and UNDER. First we consider Single, which is
similar to Lemma 29.

Lemma 41. For any feasible \pi (\cdot ), Single \leq OPTCopies.

Proof. Assume M is the ex-post allocation rule that induces \pi (\cdot ). Consider an-
other ex-post allocation rule M \prime for the Copies setting, such that for every type profile
t, if M allocates item j to bidder i in the original setting, then M \prime serves agent (i, j)

with probability Prv - i\sim D - i
[ti \in R

(v - i)
j ]. As M is feasible in the original setting, M \prime 

is clearly feasible in the Copies setting. When agent (i, j) has type tij , her probability
of being served in M \prime is\sum 

ti, - j

fi, - j(ti, - j) \cdot \pi ij(tij , ti, - j) \cdot Pr
v - i\sim D - i

[(tij , ti, - j) \in R
(v - i)
j ]

for all j and tij . Therefore, Single is the ironed virtual welfare achieved by M \prime with
respect to \~\varphi (\cdot ). Since the Copies setting is a single-dimensional setting, the optimal
revenue OPTCopies equals the maximum ironed virtual welfare, and thus is no smaller
than Single.
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Next, we move to Over. Recall that the terms in Over are VCG prices times
an indicator that the bidder's value exceeds the VCG prices. So we should hope to
be able to cover Over with some VCG-like mechanism. We begin with the following
technical propositions.

Proposition 42. Let \pi (\cdot ) be any reduced form of a BIC mechanism in the orig-
inal setting. Define

\Pi ij(tij) = \BbbE ti, - j\sim Di, - j
[\pi ij(ti)].

Then \Pi ij(tij) is monotone in tij.

Proof. In fact, for all ti, - j , we must have \pi ij(\cdot , ti, - j) monotone increasing in
tij . Assume for contradiction that this were not the case, and let tij < t\prime ij with
\pi ij(tij , ti, - j) > \pi ij(t

\prime 
ij , ti, - j). Then (tij , ti, - j), (t

\prime 
ij , ti, - j) form a 2-cycle that violates

cyclic monotonicity. This is because both types value all items except for j exactly
the same.

To expand a bit for readers not familiar with cyclic monotonicity, observe that
tij < t\prime ij , but \pi ij(tij , ti, - j) > \pi ij(t

\prime 
ij , ti, - j) implies that

(tij , ti, - j) \cdot \pi i(tij , ti, - j) + (t\prime ij , ti, - j) \cdot \pi i(t
\prime 
ij , ti, - j) < (t\prime ij , ti, - j) \cdot \pi i(tij , ti, - j)

+ (tij , ti, - j) \cdot \pi i(t
\prime 
ij , ti, - j)

\Rightarrow (tij , ti, - j) \cdot \pi i(tij , ti, - j) - (tij , ti, - j) \cdot \pi i(t
\prime 
ij , ti, - j)

< (t\prime ij , ti, - j) \cdot \pi i(tij , ti, - j) - (t\prime ij , ti, - j) \cdot \pi i(t
\prime 
ij , ti, - j).

This directly implies that no matter what prices are set for pi(tij , ti, - j) and
pi(t

\prime 
ij , ti, - j), if bidder i with type (tij , ti, - j) is happy to tell the truth, then type

(t\prime ij , ti, - j) strictly prefers to lie and report (tij , ti, - j) than to tell the truth.

Proposition 43. For any v \in T , any \pi (\cdot ) that is a reduced form of some BIC
mechanism,

OPTCopies \geq 
\sum 
i

\sum 
ti\in Ti

\sum 
j

fi(ti) \cdot \pi ij(ti) \cdot Pij(v - i) \cdot 1[tij \geq Pij(v - i)].

Proof. Recall from Proposition 42 that every BIC interim form \pi (\cdot ) in the original
setting corresponds to a monotone interim form in the Copies setting, \Pi (\cdot ). Let
M be any (possibly randomized) allocation rule that induces \Pi (\cdot ), and let p(\cdot ) be
a corresponding price rule (without loss of generality we can let (M,p) be ex-post
individually rational). Consider the following mechanism instead: on input t, first
run (M,p) to (possibly randomly) determine a set of potential winners. Then, if (i, j)
is a potential winner, offer (i, j) service at price max\{ pij(t), Pij(v - i)). Whenever (i, j)
is a potential winner, tij \geq pij(t). It is clear that in the event that (i, j) is a potential
winner and tij \geq Pij(t - i), (i, j) will accept the price and pay at least Pij(v - i).
Therefore, for any t as long as (i, j) is served in M , the payment from (i, j) in the
new proposed mechanism is at least Pij(v - i)1[tij \geq Pij(v - i)]. That means the total
revenue of the new mechanism is at least

\sum 
i

\sum 
ti\in Ti

\sum 
j fi(ti)\cdot \pi ij(ti)\cdot Pij(v - i)\cdot 1[tij \geq 

Pij(v - i)], which is upper bounded by OPTCopies.

Lemma 44. Over \leq OPTCopies.

Proof. This can be proved by rewriting Over and then applying Proposition 43:

Over =
\sum 
i

\sum 
ti\in Ti

\sum 
j

fi(ti) \cdot \pi ij(ti) \cdot 
\sum 
v\in T

Pij(v - i)f(v)1[tij \geq Pij(v - i)]
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=
\sum 
v\in T

f(v)
\sum 
i

\sum 
ti\in Ti

\sum 
j

fi(ti) \cdot \pi ij(ti) \cdot Pij(v - i) \cdot 1[tij \geq Pij(v - i)]

\leq 
\sum 
v\in T

f(v) \cdot OPTCopies = OPTCopies.

Finally, we move to Under. When there is only one bidder, Under is always 0.
Here, Under \leq OPTCopiesand turns out to be the trickiest part to bound. Recall
that Under contains terms that are (nonfavorite) values times indicators that these
values do not exceed the VCG prices. So the high-level hope is that the reason the
VCG price for bidder i to receive item j exceeds tij is because someone else is paying
at least tij for something, and we might hope to be able to come up with a clever
charging argument. At a high level, this is indeed the plan, but the proof approach
doesn't clearly map onto this intuition. We apply Proposition 45 (below) once for each
type profile t, using the allocation of this mechanism on type profile t to specify (ij , j),
and let xj = tijj . Then taking the convex combination of the RHS of Proposition 45

for all profiles t with multipliers f(t) gives Under\leq OPTCopies.

Proposition 45. Let \{ (ij , j)\} j\in S\subseteq [m] be a feasible allocation in the Copies set-

ting. For all choices x1, . . . , xm \geq 0, OPTCopies\geq 
\sum 

v\in T f(v)\cdot 
\sum 

j\in S xj \cdot 1[Pijj(v - ij ) >
xj ].

Proof. Before beginning the proof of Proposition 45, we will need the following
definition and theorem due to Gul and Stacchetti [GS99].

Definition 46. Let WT (S) be the maximum attainable welfare using only bidders
in T and items in S.

Theorem 47 (see [GS99]). If all bidders in T have gross substitute valuations,
then WT (\cdot ) is a submodular function.

Now with Theorem 47, consider in the Copies setting the VCG mechanism with
lazy reserve xj for each copy (i, j). Specifically, we will first solicit bids, then find
the max-welfare allocation and call all (i, j) who get allocated temporary winners.
Then, if (i, j) is a temporary winner, (i, j) is given the option to receive service for
the maximum of her Clarke pivot price in the Copies setting and xj . It is clear that
in this mechanism, whenever any agent (i, j) receives service, the price she pays is at
least xj . Also, it is not hard to see that this is a truthful mechanism (for the copies):
for all other fixed bids, copy (i, j) can report a bid exceeding the maximum of xj and
her Clarke pivot price, or not. If she reports a higher bid, she will receive service and
pay the maximum of her Clarke pivot price and xj . If she reports a smaller number,
she remains unserved. It's clear that bidding the copy's true value is always optimal.
Next, we argue that for any v \in T and j \in S, whenever Pijj(v - ij ) > xj , there exists
some i such that (i, j) is served in the mechanism above.

By the definition of Clarke pivot price, we know

Pijj(v - ij ) = W[n] - \{ ij\} ([m]) - W[n] - \{ ij\} ([m] - \{ j\} ).

First, we show that if item j is allocated to some bidder i in the max-welfare allocation
in the original setting, then vij \geq Pij(v - i). Assume S\prime to be the set of items allocated
to bidder i. Since the VCG mechanism is truthful, the utility for winning set S\prime is
better than winning set S\prime  - \{ j\} :\sum 

k\in S\prime 

vik  - (W[n] - \{ i\} ([m]) - W[n] - \{ i\} ([m] - S\prime ))
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\geq 
\sum 

k\in S\prime  - \{ j\} 

vik  - (W[n] - \{ i\} ([m]) - W[n] - \{ i\} ([m] - S\prime + \{ j\} )).

Rearranging the terms, we get

vij \geq W[n] - \{ i\} ([m] - S\prime + \{ j\} ) - W[n] - \{ i\} ([m] - S\prime )

\geq W[n] - \{ i\} ([m]) - W[n] - \{ i\} ([m] - \{ j\} ) (Theorem 47)

= Pij(v - i).

Now we still need to argue that whenever Pijj(v - ij ) > xj , item j is always
allocated in the max-welfare allocation to some bidder i with vij \geq xj .

1. If agent (ij , j) is a temporary winner,

vijj \geq Pijj(v - ij ) > xj .

Therefore, agent (ij , j) will accept the price.
2. If agent (ij , j) is not a temporary winner, let S\prime be the set of items that are

allocated to bidder ij in the welfare maximizing allocation in the original set-
ting. Since W[n] - \{ ij\} ([m] - S\prime ) - W[n] - \{ ij\} ([m] - S\prime  - \{ j\} ) \geq W[n] - \{ ij\} ([m]) - 
W[n] - \{ ij\} ([m] - \{ j\} ) = Pijj(v - ij ) (by Theorem 47) and Pijj(v - ij ) > xj , the
following are true: (i) item j is awarded to some bidder i \not = ij in the welfare
maximizing allocation, because otherwise W[n] - \{ ij\} ([m]  - S\prime ) will have the
same value as W[n] - \{ ij\} ([m] - S\prime  - \{ j\} ), and (ii) vij > xj because

vij \geq W[n] - \{ ij\} ([m] - S\prime ) - W[n] - \{ ij\} ([m] - S\prime  - \{ j\} ) = Pijj(v - ij ) > xj .

So now we can conclude that for any j \in S there is certainly some i such that
(i, j) is served whenever Pijj > xj , and therefore the revenue of this mechanism in the
Copies setting is at least

\sum 
v\in T f(v) \cdot 

\sum 
j\in S xj \cdot 1[Pijj(v - ij ) > xj ], which is exactly

the same as the sum in the proposition statement.

Lemma 48. Under \leq OPTCopies.

Proof. The idea is to interpret Under as the revenue of the following mechanism:
let M be the mechanism that induces \pi (\cdot ). Sample t from D, and let S be the set of
agents that will be served in M for type profile t in the Copies setting. Use tij to be
the reserve price for j if (i, j) \in S, and use the mechanism in Proposition 45.

First, the inner sum \sum 
v - i\in T - i

tij \cdot f - i(v - i) \cdot 1[tij < Pij(v - i)]

depends only on ti, so the maximum of Under is achieved by a \pi (\cdot ) induced by some
deterministic mechanism. Without loss of generality, we consider \pi (\cdot ) to be induced
by a deterministic mechanism whose ex-post allocation rule is x(\cdot ). Let us rewrite
Under using x(\cdot ):\sum 

i

\sum 
ti\in Ti

\sum 
j

fi(ti) \cdot \pi ij(ti) \cdot 
\sum 

v - i\in T - i

tij \cdot f - i(v - i) \cdot 1[tij < Pij(v - i)]

=
\sum 
t\in T

f(t)
\sum 
i

\sum 
j

xij(t) \cdot tij \cdot 
\sum 
v\in T

f(v) \cdot 1[tij < Pij(v - i)]

=
\sum 
t\in T

f(t) \cdot 
\sum 
v\in T

f(v)
\sum 
i

\sum 
j

xij(t) \cdot tij \cdot 1[tij < Pij(v - i)]
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\leq 
\sum 
t\in T

f(t) \cdot OPTCopies = OPTCopies.

The penultimate inequality holds because if we let \{ (ij , j)\} j\in S be the set of agents
such that xijj(t) = 1, then\sum 
v\in T

f(v)
\sum 
i

\sum 
j

xij(t) \cdot tij \cdot 1[tij < Pij(v - i)] =
\sum 
v\in T

f(v) \cdot 
\sum 
j\in S

xj \cdot 1[Pijj(v - ij ) > xj ],

and by Proposition 45, this is upper bounded by OPTCopies.

Combining the above lemmas now yields our theorems.

Proof of Theorem 36. Combine Lemmas 38, 41, 44, and 48.

Proof of Theorem 37. Combining Lemmas 39, 40, 41, 44, and 48, we get that the
optimal revenue is upper bounded by

3OPTCopies + 3r + 2BVCG.

Since OPTCopiesis exactly the revenue of selling each item separately optimally using
Myerson's auction, and r is the revenue of some mechanism (Ronen's) that sells the
items separately, we have OPTCopies\geq r, proving the statement.

8. Duality theory beyond additive bidders. In this section we provide a
statement of our duality theory that holds much more generally than when bidders
are unit-demand or additive. The technical ideas are exactly the same as in section 3
and just require updated notation.

Buyer valuations. In this section, we will consider buyers with arbitrary val-
uation functions for subsets of items. That is, buyer i has some valuation function
ti(\cdot ) that takes as input a set of items and outputs a value. Buyer i's type is drawn
from some distribution Di, and D = \times iDi is the joint distribution over profiles of
buyer types. We define \scrF to be a set system over [n]\times [m] that describes all feasible
allocations.

Implicit forms. The implicit form of an auction stores for all bidders i, and pairs
of types ti, t

\prime 
i, the expected value that agent i will receive when her real valuation

function is ti, but she reports t\prime i to the mechanism instead (over the randomness in
the mechanism and randomness in other agents' reported types, assuming they come
from D - i) as \pi i(ti, t

\prime 
i). We say that an implicit form is feasible if there exists some

feasible mechanism (that selects an outcome in \scrF with probability 1) that matches
the expectations promised by the implicit form. If P (\scrF , D) is defined to be the set
of all feasible implicit forms, it is easy to see (and shown in [CDW13b], for instance)
that P (\scrF , D) is closed and convex. Note that implicit forms are computed over the
same randomness as reduced forms, but store directly the value that bidder i receives
for having type ti and reporting t\prime i, instead of indirectly via interim probabilities.

We begin by writing the LP for revenue maximization in this more general set-
ting (Figure 5). To proceed, we'll again introduce a variable \lambda i(t, t

\prime ) for each of the
BIC constraints and take the partial Lagrangian of LP 5 by Lagrangifying all BIC
constraints. The theory of Lagrangian multipliers tells us that the solution to LP 5 is
equivalent to the primal variables solving the partially Lagrangified dual (Figure 6).
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Variables:
\bullet pi(ti), for all bidders i and types ti \in Ti, denoting the expected price paid
by bidder i when reporting type ti over the randomness of the mechanism
and the other bidders' types.

\bullet \pi i(ti, t
\prime 
i), for all bidders i and types ti, t

\prime 
i \in Ti, denoting the expected value

that bidder i receives when her real type is type ti, but she reports t\prime i, over
the randomness of the mechanism and the other bidders' types.

Constraints:
\bullet \pi i(ti, ti) - pi(ti) \geq \pi i(ti, t

\prime 
i) - pi(t

\prime 
i), for all bidders i and types ti \in Ti, t

\prime 
i \in 

T+
i , guaranteeing that the implicit form mechanism (\pi , p) is BIC and BIR.

\bullet \pi \in P (\scrF , D), guaranteeing \pi is feasible.
Objective:

\bullet Maximize:
\sum n

i=1

\sum 
ti\in Ti

fi(ti) \cdot pi(ti), the expected revenue.

Fig. 5. An LP for revenue optimization.

Variables:
\bullet \lambda i(ti, t

\prime 
i) for all i, ti \in Ti, t

\prime 
i \in T+

i , the Lagrangian multipliers for BIC con-
straints.

Constraints:
\bullet \lambda i(ti, t

\prime 
i) \geq 0 for all i, ti \in Ti, t

\prime 
i \in T+

i , guaranteeing that the Lagrangian
multipliers are nonnegative.

Objective:
\bullet Minimize:max\pi \in P (\scrF ,D),p \scrL (\lambda , \pi , p).

Fig. 6. Partial Lagrangian of the revenue maximization LP.

Definition 49. Let \scrL (\lambda , \pi , p) be a partial Lagrangian defined as follows:

\scrL (\lambda , \pi , p) =
n\sum 

i=1

\Biggl( \sum 
ti\in Ti

fi(ti) \cdot pi(ti)

(7)

+
\sum 
ti\in Ti

\sum 
t\prime i\in T+

i

\lambda i(ti, t
\prime 
i) \cdot 
\Bigl( 
\pi i(ti, ti) - \pi i(ti, t

\prime 
i) - 

\bigl( 
pi(ti) - pi(t

\prime 
i)
\bigr) \Bigr) \Biggr) 

=

n\sum 
i=1

\sum 
ti\in Ti

pi(ti)

\Biggl( 
fi(ti) +

\sum 
t\prime i\in Ti

\lambda i(t
\prime 
i, ti) - 

\sum 
t\prime i\in T+

i

\lambda i(ti, t
\prime 
i)

\Biggr) 

+

n\sum 
i=1

\sum 
ti\in Ti

\Biggl( \sum 
t\prime i\in T+

i

\lambda i(ti, t
\prime 
i) \cdot ti(Xi(ti)) - 

\sum 
t\prime i\in Ti

t\prime i \cdot \lambda i(t
\prime 
i, ti) \cdot t\prime i(Xi(ti))

\Biggr) 
.(8)

In (8), we use Xi(ti) to denote the random set awarded to bidder i when reporting
type ti to the mechanism. That is, ti(Xi(t

\prime 
i)) := \pi i(ti, t

\prime 
i).

Lemma 4 immediately holds in this setting as well, and the proof is identical.
That is, a feasible dual solution is still useful if and only if it induces a flow in the
same graph. We will define virtual valuation functions in essentially the same way,
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just updating notation.

Definition 50 (virtual value function). For each \lambda , we define a corresponding
virtual value function \Phi (\cdot ), such that for every bidder i, every type ti \in Ti, \Phi i(ti)(\cdot ) =
ti(\cdot )  - 1

fi(ti)

\sum 
t\prime i\in Ti

\lambda i(t
\prime 
i, ti)(t

\prime 
i(\cdot )  - ti(\cdot )). That is, \Phi i(ti) is a function that takes

as input sets of items and outputs a value. For any set of items S, \Phi i(ti)(S) =
ti(S) - 1

fi(ti)

\sum 
t\prime i\in Ti

\lambda i(t
\prime 
i, ti)(t

\prime 
i(S) - ti(S)).

We can now state the proper generalization of Theorem 6 in this general setting.
The proof is identical to that of Theorem 6, and we omit it. In the theorem statement,
Xi(ti) again denotes the random set allocated to bidder i when reporting type ti, so
that \pi i(ti, t

\prime 
i) = ti(Xi(t

\prime 
i)).

Theorem 51 (virtual welfare \geq revenue). Let \lambda be any useful dual solution, and
let M = (\pi , p) be any BIC mechanism. Then the revenue of M is \leq the virtual welfare
of \pi with respect to the virtual value function \Phi (\cdot ) corresponding to \lambda . That is,

n\sum 
i=1

\sum 
ti\in Ti

fi(ti) \cdot pi(ti) \leq 
n\sum 

i=1

\sum 
ti\in Ti

fi(ti) \cdot \Phi i(ti)(Xi(ti)).

Equality holds if and only if for all i, t, t\prime such that \lambda i(t, t
\prime ) > 0, the BIC constraint

for bidder i between t and t\prime binds in M (that is, bidder i with type t is indifferent
between reporting t and t\prime ). Furthermore, let \lambda \ast be the optimal dual variables, and
let M\ast = (\pi \ast , p\ast ) be the revenue optimal BIC mechanism; then the expected virtual
welfare with respect to \Phi \ast (induced by \lambda \ast ) under \pi \ast equals the expected revenue of
M\ast , and

\pi \ast \in argmax\pi \in P (\scrF ,D)

\Biggl\{ 
n\sum 

i=1

\sum 
ti\in Ti

fi(ti) \cdot \Phi \ast 
i (ti)(Xi(ti))

\Biggr\} 
.

9. Conclusion. We present a new duality framework for Bayesian mechanism
design and show how to recover and improve the state-of-the-art mechanisms for
additive or unit-demand bidders with independent item values. Additionally, our
proofs for the single-item, unit-demand, and additive settings are ``unified"" in the
sense that we've separated out part of the proof that is (nearly) identical for all
three settings (the duality-based upper bound, section 5), so that the additional work
necessary for each result is minimized (sections 6 and 7).26

Additionally, our framework provides a principled starting point for future work
(as evidenced by the numerous recent follow-ups to section 1.3.4). Many of these works
themselves explore new areas and present further open questions (such as competition
complexity [EFF+17b, LP16], limited complementarity [EFF+17a], two-sided mar-
kets [BCWZ17], and ``one-and-a-half""-dimensional settings [FGKK16, DW17, DHP17]).

Our approach also yields insight into any incentives problem that can be captured
by an LP with ``incentive constraints"" and ``feasibility constraints."" Domains such as
signaling (e.g., [Dug14]) and contract theory (e.g., [Car15]) are amenable to such
LP formulations. Bayesian persuasion seems an especially enticing domain, as the
algorithmic CDW framework has already found application there [DX15].

26One way to think of this is that if one wishes to exclusively understand the main result from one
of [Mye81, CMS15, BILW14, Yao15], the quickest way to do so probably is to just read the original
paper. However, if one wishes to understand all of these results, a substantial fraction of the proofs
overlap via our approach.
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