
An Efficient ε-BIC to BIC Transformation and Its Application to
Black-Box Reduction in Revenue Maximization

Yang Cai*

Yale University, USA
yang.cai@yale.edu

Argyris Oikonomou
Yale University, USA

argyris.oikonomou@yale.edu

Grigoris Velegkas
Yale University, USA

grigoris.velegkas@yale.edu

Mingfei Zhao
Yale University, USA

mingfei.zhao@yale.edu

November 6, 2020

Abstract

We consider the black-box reduction from multi-dimensional revenue maximization to virtual wel-
fare maximization. Cai et al. [12, 13, 14, 15] show a polynomial-time approximation-preserving re-
duction, however, the mechanism produced by their reduction is only approximately Bayesian incen-
tive compatible (ε-BIC). We provide two new polynomial time transformations that convert any ε-BIC
mechanism to an exactly BIC mechanism with only a negligible revenue loss.

• Our first transformation applies to any mechanism design setting with downward-closed outcome
space and only requires sample access to the agents’ type distributions.

• Our second transformation applies to the fully general outcome space, removing the downward-
closed assumption, but requires full access to the agents’ type distributions.

Both transformations only require query access to the original ε-BIC mechanism. Other ε-BIC to BIC
transformations for revenue exist in the literature [23, 38, 18] but all require exponential time to run in
both of the settings we consider. As an application of our transformations, we improve the reduction by
Cai et al. [12, 13, 14, 15] to generate an exactly BIC mechanism.

*Supported by a Sloan Foundation Research Fellowship and the NSF Award CCF-1942583 (CAREER) .

ar
X

iv
:1

91
1.

10
17

2v
3

 [
cs

.G
T

]
 5

 N
ov

 2
02

0

1 Introduction

Mechanism design is the study of optimization algorithms with the additional constraint of incentive com-
patibility. A central theme of algorithmic mechanism design is thus to understand how much this extra
constraint hinders our ability to optimize a certain objective efficiently. In the best scenario, one may hope
to establish an equivalence between a mechanism design problem and an algorithm design problem, man-
ifested via a black-box reduction that converts any algorithm to an incentive compatible mechanism. In
this paper, we study the black-box reduction of a central problem in mechanism design: multi-dimensional
revenue maximization.

The problem description is simple: an auctioneer is selling a collection of items to one or more strategic
bidders. We follow the standard Bayesian assumption, that is, each bidder’s type is drawn independently
from a distribution known to all other bidders and the auctioneer. The auctioneer’s goal is to design a
Bayesian incentive compatible (BIC) mechanism that maximizes the expected revenue.

In the special case of single-item auction, Myerson provides an elegant characterization of the optimal
mechanism. Indeed, Myerson’s solution can be viewed as a black-box reduction from revenue maximization
to the algorithmic problem of (virtual) welfare maximization [34]. However, whether the black-box reduc-
tion can be extended to multi-dimensional settings remained open after Myerson’s result. Recently, a line of
work by Cai et al. [12, 13, 14, 15] showed that there is a polynomial-time approximation-preserving black-
box reduction from multi-dimensional revenue maximization to the algorithmic question of (virtual) welfare
optimization. However, this result still has the following two caveats: (i) the revenue of the mechanism is
only guaranteed to be within an additive ε of the optimum; and (ii) the mechanism is only approximately
Bayesian incentive compatible. Thus, an immediate open problem following their result is whether these
two compromises are inevitable. In this paper, we show that approximately Bayesian incentive compatibility
is unnecessary through our first main result:
Result I: There is a polynomial-time approximation-preserving black-box reduction from multi-

dimensional revenue maximization to the algorithmic question of (virtual) welfare optimiza-
tion that generates an exactly Bayesian incentive compatible mechanism.

Result I is enabled by a new polynomial time ε-BIC to BIC transformation for revenue, which is
our second main result:

Result II: There is a polynomial-time ε-BIC to BIC transformation that converts any approximately
Bayesian incentive compatible mechanism to an exactly Bayesian incentive compatible
mechanism with a negligible revenue loss for any downward-closed environment with only
sample access to the agents’ type distributions.

The transformation is applicable to any downward-closed mechanism design setting.1 We believe the
transformation is of independent interest and would have numerous applications in mechanism design. In-
deed, our black-box reduction follows straightforwardly from applying the transformation to the mechanism
of Cai et al. [12, 13, 14, 15]. Furthermore, if we are given full access to the type distributions of the buyers,
we can extend our transformation to the fully general outcome space, removing the downward-closedness
assumption. Here is our third main result:

Result III: There exists a polynomial-time ε-BIC to BIC transformation with oracle access to any ap-
proximately Bayesian incentive compatible mechanism and full access to the agents’ distribu-
tions, outputs an exactly Bayesian incentive compatible mechanism for any general outcome
space with a negligible revenue loss.

1Roughly speaking, the setting is downward-closed if the agents have the choice to not participate in the mechanism. See
Section 2 for the formal definition.

1

Note that other ε-BIC to BIC transformations for revenue have been proposed in the literature [23, 38,
18], however, all of the existing transformations require solving a #P -hard problem repeatedly [28] and
therefore cannot be made computationally efficient.

1.1 Our Results and Techniques

We first fix some notations to facilitate our discussion of the results. We consider a general mechanism
design environment where there is a set of feasible outcomes denoted by O.There are n agents, and each
agent i has a type ti drawn from distribution Di independently. We use Ti to denote the support of Di, and
for every ti ∈ Ti, vi(ti, ·) is a valuation function that maps every outcome to a real number in [0,1]. A mech-
anismM consists of an allocation rule x(·) :×i∈[n] Ti 7→ ∆(O) and a payment rule p(·) :×i∈[n] Ti 7→ Rn.
We slightly abuse notation to define vi(ti, x(b)) ≡ Eo∼x(b)[vi(ti, o)]. If we have query access toM, then
on any query bid profile b = (b1, . . . , bn), we receive an outcome o ∼ x(b) and payments p1(b), . . . , pn(b).

The outcome space O is called downward-closed if each o ∈ O can be written as a vector o =
(o1, ..., on) where oi is the outcome for agent i. And for every o = (o1, ..., on) ∈ O, any o′ = (o′1, ..., o

′
n)

with o′i = oi or o′i =⊥ for every i is also in O. Here ⊥ is a null outcome available to each agent i, which
represents the option of not participating in the mechanism.

Equiped with the notations, we are ready to discuss our ε-BIC to BIC transformations.

Informal Theorem 1 (ε-BIC to BIC transformation on downward-closed outcome space). Given sample
access to a collection of distributions (Di)i∈[n] on a downward-closed outcome space, and query access to
an ε-BIC and individually rational (IR) mechanismM = (x, p) with respect to×i∈[n]Di. We can construct
another mechanism M′ that is exactly BIC and IR with respect to×i∈[n]Di, and its revenue is at most
O(n
√
ε) worse than the revenue of M. Moreover, for any bid profile b = (b1, . . . , bn), M′ computes an

outcome o ∈ O and payments p1(b), . . . , pn(b) in expected running time poly
(∑

i∈[n] |Ti|, 1/ε
)

and makes

in expectation at most poly
(∑

i∈[n] |Ti|, 1/ε
)

queries toM.

Informal Theorem 2 (ε-BIC to BIC transformation on general outcome space). Given full access to the
collection of distributions (Di)i∈[n] on a general outcome space such that |supp(Di)| ≤ m for every i,
and query access to an ε-BIC and individually rational (IR) mechanismM with respect to×i∈[n]Di. We
can construct a mechanismM′ that is exactly BIC and IR with respect to×i∈[n]Di. Moreover its revenue
is within an additive O(nmε) of the revenue of M. Furthermore, the running time of the constructed
mechanism is poly (n,m, 1/ε) and the mechanism makes at most poly (n,m, 1/ε) queries toM.

Previous transformations can produce an M′ with similar guarantees in the downward-closed setting
but require poly(

∏
i∈[n] |Ti|) time to run [23, 38, 18]. In the special case, where there exists symmetry in the

agents’ type distributions, the transformation can be improved to run in time poly(
∑

i∈[n] |Ti|), as the interim
allocation probabilities and payments of the mechanismM can be computed efficiently via a polynomial-
size LP.2 Our result achieves the poly(

∑
i∈[n] |Ti|) running time without the symmetry assumption.

1.1.1 Our Result for the Downward-Closed Outcome Space

We first discuss our result for the downward-closed outcome space. To illustrate our new ideas, we first
briefly review the constructions in the literature. In the heart of all the previous constructions lies the
problem called replica-surrogate matching.

2If the interim allocation probabilities and payments ofM are given, the edge weights in the Replica-Surrogate matching can
be computed efficiently. See the next paragraph for more details.

2

Replica-Surrogate Matching For each agent i, form a bipartite graph Gi. The left hand side nodes are
called replicas, which are types sampled i.i.d. from Di. In particular, the true type ti of agent i is one
of the replicas. On the right hand side, the nodes are called surrogates, which are also types sampled
from Di. The edge between a replica with type t(j) and a surrogate with type t(k) is assigned weight
wjk ≡ Et−i∼D−i [vi(t(j), x(t(k), t−i))− pi(t(k), t−i)]

3, which is the interim utility of agent i when her true
type is t(j) but reports t(k) toM. Compute the maximum weight matching on Gi. The true type ti selects a
surrogate using the matching to compete inM. Agent i competes inM using the type of the surrogate she
is matched to in the maximum weight matching.

The intuition is that since M is not BIC, the true type ti may prefer the outcome and payment from
reporting some different type. The matching is set up to allow the true type ti to pick a more favorable
type to compete in M for it. But why wouldn’t the agent misreport in the matching? After all, the edge
weights depend on the agent’s report. As it turns out, to guarantee incentive compatibility, one needs to find
a matching with a maximal-in-range algorithm. Namely, the matched surrogate is selected to maximize the
agent’s induced utility less some cost that only depends on the outcome. It is not hard to verify that the
maximum weight matching is indeed maximal-in-range, and therefore the agent has no incentive to lie.

But why does the maximum weight matching take exponential time to find? The problem is that we
are not given the edge weights. For each edge, we can only sample from a distribution whose mean is the
weight of the edge: Sample t−i from D−i and compute vi(t(j), x(t(k), t−i)) − pi(t

(k), t−i). Even if we
assume that we know the distributions (Di)i∈[n], it still takes poly(

∏
j 6=i |Tj |) time to compute the weight

of a single edge exactly, which is already an exponential on
∑

i∈[n] |Ti|. But why can’t we first estimate
the edge weights with samples and find the maximum matching using the estimated weights? The issue is
that no matter how many samples we take, the empirical mean will be off by some estimation error. The
maximal-in-range property is so fragile that even a tiny bit of estimation error can cause the algorithm to
violate the property, making the whole mechanism not incentive compatible. See Example 2 below for a
more detailed explanation.

Black-box Reduction for Welfare Maximization To overcome the difficulty, we turn to another impor-
tant problem in mechanism design, black-box reduction for welfare maximization, for inspiration. A line of
beautiful results [29, 8, 28, 24] initiated by Hartline and Lucier shows that the mechanism design problem
of welfare maximization in the Bayesian setting can be black-box reduced to the algorithmic problem of
welfare maximization. The replica-surrogate matching is again the central piece in the reduction. Indeed,
the idea of replica-surrogate matching was first proposed by Hartline et al. [27, 28], and later introduced by
Daskalakis and Weinberg [23] to the study of ε-BIC to BIC transformation for revenue. The main difference
of the two scenarios is the way the edge weights are defined. For welfare maximization, the edge weight
between a replica t(j) and a surrogate t(k) is vjk ≡ Et−i∼D−i [vi(t(j), x(t(k), t−i))], namely, the interim value
for agent i when her true type is t(j) but reports t(k) toM. We will refer to the one with interim utilities
as edge weights the U-replica-surrogate matching and the one with interim values as edge weights the V-
replica-surrogate matching. The main reason that we would like to distinguish the two settings is as follows:
in a V-replica-surrogate matching all edge weights are nonnegative, while in a U-replica-surrogate matching
the edge weights may be negative. The importance of the presence of negative edges will become clear
soon. Obviously, it also takes exponential time to compute the exact maximum weight V-replica-surrogate
matching due to the same reason discussed above.

A result by Dughmi et al. [24] shows how to circumvent this barrier for welfare maximization. Their
solution has the following two main components: (i) a polynomial time maximal-in-range algorithm to

3The true weight wjk ≡ Et−i∼D−i

[
vi
(
t(j), x

(
t(k), t−i

))
− (1− η) · pi

(
t(k), t−i

)]
is computed using a discounted price,

but we can ignore the difference for now.

3

solve the maximum entropy regularized perfect matching problem; (ii) the fast exponential Bernoulli race,
a new Bernoulli factory 4, that allows them to execute the algorithm in (i) exactly with only sample access
to distributions whose means are the edge weights. They use the algorithm to find a maximum entropy
regularized V-replica-surrogate matching, and argue that this matching has approximately maximum weight,
which allows them to conclude that their new mechanism loses at most a negligible fraction of the welfare.

Why is the mechanism by Dughmi et al. [24] unsuitable? The reason turns out to be subtle. As the
U-replica-surrogate matching contains negative edges and the algorithm by Dughmi et al. [24] always re-
turns a perfect matching, some agent types may receive negative utilities from the matching. To guarantee
individually rationality, the mechanism must compensate these types. However, due the incentive compati-
bility constraint, the mechanism must also compensate other agent types. One might think that the overall
compensation can be shown to be negligible. Unfortunately, in the following example, we show that the
overall compensation can in fact dramatically damage the revenue and may even drive the revenue to 0.

Example 1. Consider the following instance with a single agent and outcome spaceO = {⊥, o}. The agent
has two possible types H and L with probability 1 − σ and σ respectively, where σ ∈ (0, 1) is sufficiently
small. The agent’s valuation is: v(H, o) = 1, v(H,⊥) = v(L,⊥) = v(L, o) = 0. The given mechanismM
chooses outcome o and charges 1 if the agent reports H , and chooses outcome⊥ and gives the agent ε if the
agent reports L. Clearly,M is ε-BIC and IR. REV(M) = 1−σ−σε. Note that in the U-Replica-Surrogate
matching, the edge between replica with type L and surrogate with type H has negative weight −1.

Denote ` the number of surrogates sampled from the above distribution. Let M′ be the constructed
mechanism that always selects a perfect replica-surrogate matching. Denote p(·) the payment function of
M′. Then p(L) ≤ 0 since M′ is IR. Consider the following two scenarios when the agent has true type
H . In the first scenario she reports truthfully her type H and in the second scenario she reports L. With
probability β = (1 − σ)`, none of the surrogates has type L. In both scenarios the buyer must be matched
to a surrogate with type H in the perfect replica-surrogate matching and has value 1 for the result outcome
o. Thus the difference of the agent’s expected value between the two scenarios is at most 1− β. SinceM′ is
BIC, we must have p(H) ≤ p(L) + 1− β ≤ 1− β. Therefore REV(M′) ≤ (1− σ) · (1− β). For any fixed
ε and `, when σ → 0, the β → 1 and revenue loss goes to 1. Note that our mechanism guarantees revenue
loss at most c

√
ε for any type distribution, where c is an absolute constant.

Let us take a closer look at what happens in the example above. With high probability, the agent with low
type L is matched to a surrogate with high type H in the perfect matching and has negative utility. Thus to
satisfy individual rationality, the mechanism has to compensate her. To guarantee incentive compatibility, the
mechanism will also have to compensate the agent when her true type isH . However, the total compensation
is so large that it essentially drives the revenue of the constructed mechanism to 0. Our main challenge is to
enforce both individually rationality and incentive compatibility in the presence of negative edges without
sacrificing much of the revenue.

As Example 1 implies, to preserve revenue, it is crucial to avoid matching a replica with a negative
weight edge with high probability in the U-replica-surrogate matching. Again the exact weight can not
be computed efficiently. One may try to remove the negative edges using samples. However, removing
edges based on the empirical means from samples could easily violate the maximal-in-range property. See
Example 2.

Example 2. Let N be the number of samples that the algorithm uses to calculate the empirical expectation.
Choose σ > 0 such that σ

1−2σ <
1
N . Consider the following example with 1 node on each side. There are

4A Bernoulli factory is an algorithm that with sample access to a p-coin to simulate a f(p)-coin. In Section 2.1 we give a brief
introduction to Bernoulli factories. We also refer the readers to [30, 35] and the references therein for more details.

4

two instances. For the first instance, the random variableF (1) attached to this edge is 1 w.p. 2σ, and− σ
1−2σ

with probability 1− 2σ. The edge weight ω(1) = σ. For the second instance, F (2) is σ w.p. 1 and ω(2) = σ.
For the above example, both instances have the same edge weight and any maximal-in-range allocation

will always output the same matching. However in the first instance, with probability (1 − 2σ)N < 1
the empirical expectation is negative and the two nodes are not matched. While in the second instance
the algorithm will always match the two nodes. Thus the output matching is not maximal-in-range. It is
well-known that if the allocation is maximal-in-range, there must exist a payment rule such that the agent
is incentive-compatible. Thus the algorithm will violate the incentive-compatibility when applied to the
replica-surrogate matching.

Our Solution for the Downward-Closed Outcome Space. Our transformation on downward-closed en-
vironments is directly inspired by [24] but differs in several major ways. Our plan is to design an algorithm,
for general graphs with arbitrary weights, that satisfies the following two properties:

1. The algorithm produces a distribution of matchings whose expected weight is close to the maximum
weight matching.

2. For any LHS node, the expected weight of the edge matched to it is not too negative.

Note that for graphs with positive weights, the algorithm by Dughmi et al. [24] satisfies both properties.
When the edges are negative, the first property is not satisfied by their algorithm in general. Even if we
only consider U-replica-surrogate matching, their algorithm still violates the second property. Interestingly,
we provide a reduction from the case of arbitrary edge weights to the case with only positive edge weights.
Indeed, our reduction can be succinctly summarized by the following formula, if an edge has weight wjk,
set the new weight by applying the δ-softplus function to wjk5: ζδ(wjk) = δ · log (exp (wjk/δ) + 1), where
δ > 0 is a parameter of our algorithm. Note that for any value of wjk, ζδ(wjk) is always nonnegative!
Moreover, the maximum entropy regularized matching on weights (ζδ(wjk))j,k can be shown to be close to
the maximum weight matching on (wjk)j,k, and the second property also holds due to nice features of the
algorithm and the softplus function. So it seems that we only need to run the algorithm from [24] on the
new weights (ζδ(wjk))j,k. An astute reader may have already realized that being able to run the algorithm
on (wjk)j,k does not imply that one can run the algorithm on (ζδ(wjk))j,k, as we can only sample from
distributions whose means are (wjk)j,k but not (ζδ(wjk))j,k. One idea is to construct a Bernoulli factory
to simulate a ζδ(wjk)-coin using a wjk-coin. To the best of our knowledge, no such construction exists.
We take a different approach and make use of a crucial property of the algorithm from [24]. Namely, if
we run their algorithm with the same parameter δ, the algorithm only needs to sample from the softmax
function over the weights. More specifically, with weights (wjk)j,k, it suffices to have the ability to sample
an edge (j, k) with probability exactly exp(wjk/δ)∑

k′ exp(wjk′/δ)
. Despite the fact that we cannot directly sample from

distributions with means (ζδ(wjk))j,k, we can indeed sample edge (j, k) with exactly the right probability, as

exp (ζδ(wjk)/δ)∑
k′ exp

(
ζδ(wjk′)/δ

) =
exp (wjk/δ) + 1∑
k′
(
exp(wjk′/δ) + 1

) ,
which can be sampled efficiently using the fast exponential Bernoulli race given only sample access to
distributions with means equal to the original edge weights (wjk)j,k.

Our second contribution is to show that an approximately maximum U-replica-surrogate matching suf-
fices to guarantee only a small loss in revenue. Previous results [23, 38, 18] only prove the statement for the

5The function log (exp (x) + 1) is known as the soft plus function.

5

exactly maximum matching. We provide a more delicate analysis that allows us to extend the statement to
approximately maximum matchings. Finally, as the agent may receive negative utility from certain surro-
gates, we sometimes need to subsidize the agent to ensure individual rationality. Due to the second property
of our algorithm, we can argue that the total subsidy is small compared to the revenue. We emphasize that
the U-replica-surrogate matching found in our mechanism may not be perfect. Thus the assumptionO being
downward-closed is necessary, in order to allow the agent whose true type is unmatched in the matching to
receive a ⊥ outcome. See Mechanism 3 in Section 5 for more details.

1.1.2 Our Result for the General Outcome Space

Our result for the general outcome space is based on the regularized replica-surrogate fractional assignment
mechanism by Hartline et al. [28]. They use this mechanism to provide a black-box reduction for welfare
maximization, but this mechanism only applies to discrete type space and requires full access to all agents’
type distributions. We refer the readers to Section 7.1 for details of their mechanism.

The main barrier for applying their approach to transform an ε-BIC mechanism to a BIC mechanism
is that their mechanism does not provide any guarantees on the revenue. More specifically, the prices of
their mechanism are determined by a set of optimal dual variables of their problem. Although any set of
optimal dual variables can guarantee the mechanism to be incentive compatible and individually rational,
which is sufficient for welfare maximization, some choices could result in substantial revenue loss, making
them unsuitable to preserve revenue. In fact, Example 4 illustrates that for some optimal dual variables, the
revenue loss due to negative prices can be very high. Our main contribution is to show an efficient algorithm
to find a set of optimal dual variables such that the induced prices only cause negligible loss in the revenue.

1.2 Application to Multi-dimensional Revenue Maximization

We next apply the ε-BIC to BIC transformation to obtain our black-box reduction for revenue maximization.
We first introduce the problem formally.

Multi-Dimensional Revenue Maximization (MRM): Given as input n type distributions D1, . . . ,Dn
and a set of feasible outcomes O, output a BIC and IR mechanism M who chooses outcomes from O
with probability 1 and whose expected revenue is optimal relative to any other, possibly randomized, BIC,
and IR mechanism with respect to D =×i∈[n]Di.

To state our black-box reduction, we introduce the virtual welfare optimization problem.

Virtual Welfare Optimization (VWO) [15]: Given as input n functions Ci(·) : Ti 7→ R and a set of
feasible outcomesO, output an outcome o ∈ argmaxx∈O

∑
i

∑
ti∈Ti Ci(ti) ·vi(ti, x). Ci(·) is considered

as the weight function that depends on the agent’s real type. We refer to the sum
∑

ti∈Ti Ci(ti) · vi(ti, x)
as agent i’s virtual value for outcome x.

Informal Theorem 3. When the outcome space is downward-closed, given sample access to distribution
×n

i=1Di and oracle access to an α-approximation Algorithm G for VWO, we can construct an exactly BIC
and IR mechanismM = (x, p) with respect to×i∈[n]Di, that has expected revenue α · OPT − O (n

√
ε),

where OPT is the optimal revenue over all BIC and IR mechanisms with respect to×i∈[n]Di. The running

time is poly
(∑

i∈[n] |Ti|,
1
ε , b, rtG

(
poly

(∑
i∈[n] |Ti|,

1
ε , b
)))

, where rtG(·) is the running time of G, and
b is an upper bound on the bit complexity of vi(ti, o) for any agent i, any type ti, and any outcome o.

Note that a similar result holds for a general outcome space, given that we have full access to distribution
×n

i=1Di. The modified running time and revenue loss can be found in Section 7.

6

1.3 Further Related Work

Multi-dimensional revenue maximization has recently received lots of attention from computer scientists.
Significant progress has been on the computational front [19, 20, 1, 11, 2, 12, 13, 17, 15, 3, 9, 22, 31]. On the
structural front, a family of simple mechanisms, i.e., variants of sequential posted price and two-part tariff
mechanisms, have been shown to achieve constant factor approximations of the optimal revenue in quite
general settings [5, 39, 38, 16, 21, 18]. ε-BIC to BIC transformation for revenue has been an instrumental
tool in obtaining both the computational and structural results [23, 38, 18, 31].

There has also been significant interest in understanding the sample complexity for learning an almost
revenue-optimal auction in multi-item settings. Last year, Gonczarowski and Weinberg [26] show that
one can learn an almost revenue-optimal ε-BIC mechanism using poly(n,m, 1/ε) samples under the item-
independence assumption, where n is the number of bidders andm is the number of items. Brustle et al. [10]
generalize the result to settings where the item values are drawn from correlated but structured distributions
that can be modeled by either Markov random fields or Bayesian Networks. The mechanism they produce
is still ε-BIC. Our transformation can certainly convert these mechanisms from [26, 10] into exactly BIC
mechanisms, and the transformation requires poly

(∑
i∈[n] |Ti|, 1/ε

)
many samples. Unfortunately, each

|Ti| is already exponential in m in their settings. The dependence on |Ti| is unavoidable for us, as our goal
is to provide a transformation that is applicable to a general mechanism design setting. Nonetheless, the
techniques we develop in this paper may be combined with special structure of the distribution to provide
more sample-efficient ε-BIC to BIC transformations.

Recently, Gergatsouli et al. [25] proved that for the case where we have a single buyer with an additive
valuation over m independent items and the set of outcomes is downward-closed, an exponential (in m)
query complexity is necessary for any black-box reduction for welfare maximization. It will certainly be
interesting to see whether a similar lower bound on the sample complexity exists.

1.4 Organization of the Paper

In Section 2, we provide the notations we use throughout the paper. In Section 3, we mention the tools
from the literature that are important for our constructions. In Section 4, we provide our new algorithm
that solves the entropy regularized matching problem for graphs with arbitrary edge weights assuming the
outcome space is downward-closed. In particular, we show the arbitrary edge weight case can be reduced
to the nonnegative edge weight case. In Section 5, we describe our ε-BIC to BIC transformation when the
outcome space is downward-closed. In Section 6, we show how to use our ε-BIC to BIC transformation
to improve the black-box reduction for multi-dimensional revenue maximization. In Section 7 we state
our result for the general outcome space. Note that in Sections 4 through 6 we focus on downward-closed
outcome spaces, whereas in Section 7 we shift our attention to general outcome spaces.

2 Preliminaries

We specify a general mechanism design setting by the tuple (n,V,D, v,O). There are n agents participating
in the mechanism. Denote O the set of all possible outcomes. We consider two types of outcome space.

1. Downward-Closed Outcome Space: Each o ∈ O can be written as a vector o = (o1, ..., on) where oi
is the outcome for agent i. We also assume that a null outcome⊥ is available to each agent i. One can
think of ⊥ as the option of not participating in the mechanism. Throughout the paper, when we say
the outcome space O is downward-closed, then for every o = (o1, ..., on) ∈ O, any o′ = (o′1, ..., o

′
n)

with o′i = oi or o′i =⊥ for every i is also in O. An example of the downward-closed outcome space

7

is the combinatorial auction, where the outcome set contains all possible ways to allocate items to
agents, and the null outcome represents allocating nothing to the agent. One setting that does not have
a downward-closed outcome space is building a public project.

2. General Outcome Space: O is an arbitrary set. This is the most general outcome space, and it can
capture settings such as building a public project.

Each agent i has a type ti from type space Vi, which is drawn independently from some distribution Di.
We use Ti ⊆ Vi or supp(Di) to denote the support of Di. We use D to denote×i∈[n]Di. In the paper we
consider discrete type spaces, we assume that every |Ti| ≤ T for some finite T . Note that our results for the
downward-closed outcome space can easily be extended to the continuous case using similar techniques as
in [24], while our results for general outcome space requires the type space to be discrete. For every ti ∈ Vi,
vi(ti, ·) is a valuation function that maps every outcome to a real number in [0, 1]. In a downward-closed
outcome space, for all agent i and type ti, vi(ti, o) = 0 if oi =⊥. Every agent is risk-neutral and has
quasi-linear utility.

For any mechanismM, denote REV(M,D) = Et∼D
[∑

i∈[n] pi(t)
]

the expected revenue ofM. We
use REV(M) for short when the agents’ distributions and valuation functions are clear. We use the standard
definitions of BIC, ε-BIC, IR, and ε-IR:

Bayesian Incentive Compatible (BIC):

E
t−i∼D−i

[vi (ti, x (ti, t−i))− pi (ti, t−i)] ≥ E
t−i∼D−i

[
vi
(
ti, x

(
t′i, t−i

))
− pi

(
t′i, t−i

)]
, ∀i ∈ [n], ti, t

′
i ∈ Ti.

Individual Rational (IR):

E
t−i∼D−i

[vi (ti, x (ti, t−i))− pi (ti, t−i)] ≥ 0, ∀i ∈ [n], ti ∈ Ti.

ε-BIC:

E
t−i∼D−i

[vi (ti, x (ti, t−i))− pi (ti, t−i)] ≥ E
t−i∼D−i

[
vi
(
ti, x

(
t′i, t−i

))
− pi

(
t′i, t−i

)]
−ε, ∀i ∈ [n], ti, t

′
i ∈ Ti.

ε-IR:
E

t−i∼D−i
[vi (ti, x (ti, t−i))− pi (ti, t−i)] ≥ −ε, ∀i ∈ [n], ti ∈ Ti.

Coupling between Type Distributions: In order to measure the difference between the two distributions,
we will introduce the following definition. Fix every agent i. A coupling ci(·, ·) of distribution D′i and Di
is a joint distribution on the probability space T ′i × Ti such that the marginal of ci coincide with D′i and Di.
In the paper we slightly abuse the notation, denoting ci(b) a random variable that is distributed according
to the conditional distribution of type ti over Ti when t′i = b. According to the definition of the coupling,
when t′i ∼ D′i, ci(t′i) ∼ Di.

We say vi is non-increasing w.r.t. the coupling ci if for all ti ∈ T ′i , outcome o ∈ O, and every realized
type ci(ti), vi(ti, o) ≥ vi(ci(ti), o). Intuitively, the coupling always maps a “higher” type to a “lower” type.
Such coupling is common, for example in a combinatorial auction, rounding agent i’s value for each bundle
of items down to the closest multiples of δ can be viewed as such a coupling.

8

Wasserstein Distance: For any ti, t′i ∈ Vi, let disti(ti, t′i) = maxo∈O |vi(ti, o) − vi(t
′
i, o)|. The `∞-

Wasserstein Distance between distribution Di and D′i w.r.t. disti is defined as the smallest expected distance
among all couplings. Formally,

dw(Di,D′i) = min
ci(·,·)

∫
disti(ti, t′i)dci(ti, t

′
i)

Finally, we use log(·) to denote the natural logarithm and ∆` to denote the set of all distributions over ` el-
ements.

Definition 1 (Gibbs Distribution). For any integer `, define the Gibbs distribution z ∈ ∆` over ` states with
temperature β as zi = exp(Ei/β)∑

i′∈[`] exp(Ei′/β) for all i ∈ [`], where Ei is the energy of element i.

Definition 2 (Maximal-in-Range Algorithms). An algorithm is maximal-in-range, if for every j ∈ [d`], there
exists a cost function c(·), which may depend on ω−j , such that the allocation zj ∈ argmaxz′∈F

∑
j,k z

′
jk ·

ωjk − c(z′) for any ωj , where F is a set of all feasible allocations.

2.1 A Brief Introduction to Bernoulli Factories

Suppose we are given a coin with bias µ, can we construct another coin with bias f(µ) using the original
coin? If the answer is yes, then how many flips do we need from the original coin to simulate the new coin?
A framework that tackles this problem is called Bernoulli Factories. We refer the reader to [33] for a survey
on this topic.

Definition 3 (Keane and O’Brien [30]). Given some function f : (0, 1) 7→ (0, 1) and black-box access
to independent samples of a Bernoulli random variable with bias p, the Bernoulli factory problem is to
generate a sample from a Bernoulli distribution with bias f(p).

A useful generalization of the previous model is the following6: given sample access to distributions
D1,D2, . . . ,Dm with expectations µ1, µ2, . . . , µm ∈ (0, 1), and a function f : (0, 1)m → ∆(X), where X
is a set of feasible outcomes and ∆(X) is a set of probability distributions over these outcomes, how can we
want generate a sample from f(µ1, . . . , µm)?

Below we state an important result from [24], which we use in this paper. It proposes an algorithm
called Fast Exponential Bernoulli Race withX = [m]. For every λ > 0, it produce a sample from the Gibbs
distribution with temperature 1

λ and energy µi for each outcome i, given only sample access to distributions
D1,D2, . . . ,Dm.

Theorem 1. [24] Given any parameter λ > 0 and sample access to distributions F1,F2, . . . ,Fm with
expectations µ1, µ2, ...µm ∈ (0, 1), there exists an algorithm that can sample from a Gibbs distribution in
∆m, where

zi =
exp(λµi)∑

j∈[m] exp(λµj)
,

using O(λ4m2 log(λm)) samples in expectation.

The fast exponential Bernoulli race [24] is a randomized algorithm that allows us to sample from the
Gibbs distribution. We use the following result in the rest of our paper.

6The model is called Expectations from Samples in [24].

9

Lemma 1. [Fast Exponential Bernoulli Race] For any integer m, any δ > 0, and any (αk)k∈[m] ∈ [0, h]m,
given sample access to distributions F1, . . . ,Fm with expectations w1, . . . , wm ∈ [−1, 1], a sample from
the following Gibbs distribution in ∆m:

zk =
exp((wk − αk)/δ)∑
j∈[m] exp((wj − αj)/δ)

,

can be drawn with
(

4+h
δ

)4
m2 log

(
(4+h)m

δ

)
samples from (Fk)k∈[m] in expectation.

Proof of Lemma 1: First, notice that (zk)k∈[m] can also be represented as the Gibbs distribution with tem-
perature δ

h+4 and energy Ωk = ωk−αk+h+2
h+4 , k ∈ [m]. Note that since −1 ≤ wk ≤ 1 and αk ≤ h, then

0 < wk−αk+h+2
h+4 < 1. Thus, by Theorem 1 with λ = h+4

δ , we can generate a sample according to (zk)k∈[m]

with
(

4+h
δ

)4
m2 log

(
(4+h)m

δ

)
samples in expectation. 2

3 Tools from the Literature

3.1 Replica-Surrogate Matching

Now we provide a detailed description of the replica-surrogate matching mechanism used in [23, 38, 18].
For each agent i, the mechanism generates a number of replicas and surrogates from Di, and maps the
agent’s type ti to one of the surrogates via a maximum weight replica-surrogate matching, and charges the
agent the corresponding VCG payment. Then let the matched surrogate participate in the mechanism for
the agent. Formally, suppose we are given query access to a mechanismM = (x, p), we construct a new
mechanismM′ using the following two-phase procedure:

Phase 1: Surrogate Selection For each agent i,

1. Given her reported type ti ∈ Di, create `−1 replicas sampled i.i.d. fromDi and ` surrogates sampled
i.i.d. from Di. The value of ` is specified in Lemma 3.

2. Construct a weighted bipartite graph between replicas (and agent i’s true type ti) and surrogates. The
weight between the j-th replica r(j) and the k-th surrogate s(k) is the interim value of agent i when
her true type is r(j) but reported s(k) toM less the interim payment for reporting s(k) multiplied by
(1− η):

Wi(r
(j), s(k)) = E

t−i∼D−i

[
vi(r

(j), x(s(k), t−i))
]
− (1− η) · E

t−i∼D−i

[
pi(s

(k), t−i)
]
. (1)

3. Treat Wi(r
(j), s(k)) as the value of replica r(j) for being matched to surrogate s(k). Run the VCG

mechanism among the replicas, that is, compute the maximum weight matching w.r.t. edge weight
Wi(·, ·) and the corresponding VCG payments. If a replica (or type ti) is unmatched in the maximum
matching, match it to a random unmatched surrogate.

Phase 2: Surrogate Competition Let si be the surrogate matched with the agent i’s true type ti. Run
mechanismM under input s = (s1, . . . , sn). Let o = (o1, . . . , on) be a the outcome generated by x(s). If
agent i is matched in the maximum matching, her outcome is oi and her expected payment is (1− η) · pi(s)
plus the VCG payment for winning surrogate si in the first phase; Otherwise the agent gets the null outcome
⊥ and pays 0.

In Figure 1 we illustrate the replica-surrogate scheme.

10

Agent i

Agent j

si

sj

tj

ti

M
M′

O = (o1, o2, . . . , on)

Figure 1: With • we denote the replicas and with � the surrogates

Lemma 2. [27, 8, 23, 38, 18]M′ is BIC and IR.

Proof. We prove this in two parts, similarly to [18]. First we argue that the distribution of the surrogate
si that represents the agent, when the agent reports truthfully, is Di. Since we have a perfect matching,
an equivalent way of thinking about the process is to draw ` replicas, produce the perfect matching (the
VCG matching plus the uniform matching between the unmatched replicas and surrogates) and then pick
one replica uniformly at random to be the agent. These two processes produce the same joint distribution
between replicas, surrogates and the agents i. So we can just argue about the second process of sampling.
Since the agent is chosen uniformly at random between the replicas in the second process, the surrogate si
that represents the agent, will also be chosen uniformly at random between all the surrogates. Thus, the
distribution of si is Di.

We need to argue that for every agent i reporting truthfully is a best response, if every other agent is
truthful. In the VCG mechanism, agent i faces a competition with the replicas to win a surrogate. If agent i
has type ti, then her value for winning a surrogate with type si in the VCG mechanism is exactly the edge
weight

Wi(ti, si) = E
t−i∼D−i

[vi(ti, x(si, t−i))]− (1− η) · E
t−i∼D−i

[pi(si, t−i)] .

Clearly, if agent i reports truthfully, the weights on all incident edges between her and all the surrogates will
be exactly her value for winning those surrogates. Since agent i is in a VCG mechanism to compete for a
surrogate, reporting the true edge weights is a dominant strategy for her, therefore reporting truthfully is also
a best response for her assuming the other agents are truthful. It is critical that the other agents are reporting
truthfully, otherwise agent i’s value for winning a surrogate with type si may be different from the weight
on the corresponding edge.

Moreover, when ` is sufficiently large, the revenue ofM′ is close to the revenue ofM.

Lemma 3. [23, 38, 18] If M is an ε-BIC and IR mechanism w.r.t. D, then for any η ∈ (0, 1) and any
` > T

ε2
, REV(M′,D) ≥ (1− η)REV(M,D)−Θ(nε)/η.

Lemma 3 also follows from a special case of Lemma 23 when ∆ = 0 and d = 1. The main take-
away of this Lemma is that the above mechanismM′ indeed satisfies the requirement of an ε-BIC to BIC
transformation. However, as we discussed in Section 1.1, the mechanism runs in exponential time.

11

3.2 Online Entropy Regularized Matching

Now we describe the online entropy regularized matching algorithm developed by Dughmi et al. [24]. The
original application is to find approximately maximum replica-surrogate matching in welfare maximization,
but the algorithm is general and can be applied to any d-to-1 bipartite matching with positive edge weights.

d-to-1 Matching For every integer `, d, consider the complete bipartite graph between d` left hand side
nodes (called LHS-nodes) and ` right hand side nodes (called RHS-nodes). Let ωjk be the edge weight
between LHS-node j and RHS-node k for j ∈ [d`], k ∈ [`]. For ease of notation, let ωj = (ωjk)k∈[`], ω =
(ωj)j∈[d`], and ω−j = (ωj′)j′ 6=j . A matching is called a d-to-1 matching if every LHS-node is matched to at
most one RHS-node, and every RHS-node is matched to at most d LHS-nodes. A d-to-1 matching is called
perfect if every LHS-node is matched to one RHS-node, and every RHS-node is matched to exactly d LHS-
nodes.

In this section, we focus on the case where all edge weights ω are nonnegative, and we refer to this case
as the nonnegative weight d-to-1 matching. In Section 4, we generalize the results to arbitrary weights.

The optimal d-to-1 matching is simply a maximum weight bipartite matching problem. The challenge is
that the weights are not given. For every edge (j, k), we only have sample access to a distributionFjk whose
expectation is ωjk. To the best of our knowledge, none of the algorithms for finding a maximum weight
bipartite matching can be implemented exactly with such sample access to the edge weights. Moreover, as
we require the replica-surrogate matching mechanism to be incentive compatible, the algorithm should be
maximal-in-range. Therefore, finding the maximum weight matching using the empirical means is also not
an option, as it violates the maximal-in-range property (see the discussion in Section 1.1).

Dughmi et al. [24] provide a polynomial time maximal-in-range algorithm (Algorithm 1) to compute an
approximately maximum weight perfect d-to-1 matching. The key idea is to find a “soft maximum weight
matching” instead of the maximum weight matching by adding an entropy function as a regularizer to the
total weight. We summarize the guarantees of Algorithm 1 in Theorem 2. We refer the readers to [24]
for intuition behind Algorithm 1. However, to understand this paper, readers can simply treat Theorem 2
as a black box that guarantees that Algorithm 1 is maximal-in-range, and finds approximately maximum
expected weight d-to-1 matching, with only sample access to the distributions.

Definition 4. Given parameter δ > 0, the (offline) entropy regularized matching program (P) is:

max
∑

j,k zjk · ωjk − δ
∑

j,k zjk log(zjk)

subject to
∑

j zjk ≤ d, ∀k ∈ [`]∑
k zjk = 1, ∀j ∈ [d`]

zjk ∈ [0, 1], ∀j ∈ [d`], ∀k ∈ [`].

(2)

Lagrangify the constraints
∑

j zjk ≤ d,∀k ∈ [`]. The Lagrangian dual of (P) is:

L(z, α) =
∑

j,k zjkωjk − δ
∑

j,k zjk log(zjk)−
∑

k αk(d−
∑

j zjk).

The following lemma follows from the first-order condition: for any dual variables α, the optimal solu-
tion for the Lagrangian is given by a collection of Gibbs distribution z∗ = (z∗j)j∈[d`].

Lemma 4. [24] For every dual variables α ∈ [0, h]`, the optimal solution z∗ maximizing the Lagrangian

L(z, α) subject to constraints
∑

k z
∗
jk = 1,∀j ∈ [d`] is: z∗jk =

exp
(
ωjk−αk

δ

)
∑
k′∈[`] exp

(
ωjk′−αk′

δ

) , ∀j ∈ [d`], k ∈ [`].

If for every edge (j, k), we are given sample access to a distribution Fjk whose mean is ωjk ∈ [0, 1], we
can use the fast exponential Bernoulli race [24] to sample from the Gibbs distribution z∗j for all j ∈ [d`].

12

In particular, each sample from distribution z∗j = (z∗j1, . . . , z
∗
j`) only requires in expectation poly(h, `, 1/δ)

many samples from (Fjk)k (Lemma 1).

If the optimal dual variables α∗ are known, by complementary slackness, the corresponding z∗ in Lemma 4
is the optimal solution of (P). The gap between the expected weight of z∗ and the maximum weight is at
most the value of the maximum entropy δ ·d` log `, so we can simply use the matching sampled according to
the distribution z∗. However, as the optimal dual is unknown, the wrong dual variables α may cause a loss
of
∑

k αk(d−
∑

j zjk), which may be too large when z is not computed based on the optimal dual variables.
To resolve this difficulty, Dughmi et al. [24] introduce the second key idea – Online Entropy Regularized
Matching algorithm (Algorithm 1). The online algorithm gradually learns a set of dual variables close to the
optimum α∗. When the algorithm terminates, it is guaranteed to find a close to optimal solution to program
(P). From Lemma 5, the algorithm is also maximal-in-range for any choice of the parameters δ, η′, γ.

Lemma 5. [24] For every j, α(j) and parameter γ, the Gibbs distribution ẑj (specified in step 4) is maximal-
in-range, as

ẑj ∈ argmaxz′∈∆|K|

∑
k∈K

z′jkωjk − δ
∑
k∈K

z′jk log(z′jk)−
∑
k∈K

γα
(j)
k · z

′
jk

7.

Algorithm 1 Online Entropy Regularized Matching with Non-negative Edge Weights (with param-
eters δ, η′, γ)
Require: Sample access to the distribution Fjk whose expectation is ωjk, for every j ∈ [d`], k ∈ [`].

1: for j ∈ [d`] do
2: Let d(j−1)

k be the number of LHS-nodes matched to RHS-node k in the current matching and K =

{k : d
(j−1)
k < d}.

3: Set α(j) according to the Gibbs distribution with energy d(j−1)
k for RHS-node k ∈ K and temperature

1/η′, and α(j)
k = 0 for all k 6∈ K.

4: Match LHS-node j to a RHS-node k ∈ K according to the Gibbs distribution ẑj over RHS-nodes in
K, where the temperature is δ and the energy for matching to a RHS-node k ∈ K is (ωjk−γα

(j)
k). A

sample from ẑj can be generated via the fast exponential Bernoulli race with poly(γ, `, 1/δ) sample
from (Fjk)k in expectation (See Lemma 1 for details).

5: end for

Theorem 2. [24] When ωjk ∈ [0, 1] 8 for all j, k, Algorithm 1 satisfies the following properties:

1. For any choice of the parameters, it always returns a perfect d-to-1 matching.

2. For any choice of the parameters, the algorithm is maximal-in-range. The expected running time and
sample complexity of Algorithm 1 is poly(d, `, γ, 1/δ).

3. For every δ, η′ > 0, if d ≥ ` log `/η′2 and γ ∈
[

OPT(P)
d , O(1)·OPT(P)

d

]
, where OPT(P) is the optimum

of program (P), the expected value (over the randomness of the Algorithm 1) of
∑

j∈[d`],k∈[`] ẑjkωjk−
δ
∑

j,k ẑjk log(ẑjk) is at least (1−O(η′)) · OPT(P).

7Notice that α(j) only depends on the weights incident to the LHS-nodes 1 to j − 1.
8The theorem applies to any bounded edge weights ωjk ∈ [0,R]. For simplicity we normalize the edge weights to lie be-

tween [0, 1].

13

Moreover, for every ψ ∈ (0, 1), if we set δ = Θ(ψ
log `), η

′ = Θ(ψ), and d and γ satisfy the conditions
above, then the expected total weight of the matching output by the algorithm is at most O(d`ψ) less
than the maximum weight matching.

The only part of Algorithm 1 does not specified is how to choose a γ that is a constant factor approxi-
mation to OPT(P)

d . Dughmi et al. [24] show a polynomial time randomized algorithm that produces a γ that

falls into
[

OPT(P)
d , O(1)·OPT(P)

d

]
with high probability, which suffices to find a close to optimum V-replica-

surrogate matching. Please see Appendix A for details.

4 d-to-1 Matching with Arbitrary Edge Weights

To obtain an approximately revenue-preserving ε-BIC to BIC transformation, we need to find a near-optimal
U-surrogate-replica matching, where edge weights may be negative. Motivated by this application, we
provide a generalization of Theorem 2 to general d-to-1 matchings with arbitrary edge weights. We design
a new algorithm (Algorithm 2) with guarantees summarized in Theorem 3.

In Example 1 we point out the issue of directly applying Algorithm 1 to the general d-to-1 matching
problem. A tempting way to fix the issue may be to first remove all edges with negative weights then run
Algorithm 1. With only sample access to Fjk, one way to achieve this is to remove edges with negative
empirical means. In fact, with a sufficiently large number of samples, with high probability, all edges with
strictly positive weights will remain and all edges with strictly negative weights will be removed. However,
with non-zero probability, some edges will either be kept or removed incorrectly causing the algorithm to
violate the maximal-in-range property. See Example 2 for a concrete construction.

An alternative way is to relax the constraint
∑

k zjk = 1 to
∑

k zjk ≤ 1, so the algorithm no longer
needs to find a perfect matching. However, Lemma 4 fails to hold as the optimal solution is no longer a
Gibbs distribution and it is unclear how to sample efficiently from it with only sample access to Fjk.9 A
similar attempt is to add a slack variable y to (P), modifying the constraint

∑
k zjk = 1 to

∑
k zjk + y = 1.

It is equivalent to adding one dummy RHS-node, with weight 0 on every incident edge. Now for every dual
variable, the optimal solution for the Lagrangian follows from a Gibbs distribution. However, the program
differs from (P), in particular the new dummy RHS-node has no capacity constraint, and as a result there
is no dual variable that corresponds to this dummy node. It is not clear how to modify Algorithm 1 to
accommodate the new dummy node and to produce a close to maximum matching.

4.1 Reduction from Arbitrary Weights to Non-Negative Weights

In this section, we provide a reduction from the d-to-1 matching with arbitrary edge weight case to the
non-negative edge weight case.

Definition 5. For arbitrary edge weights (ωjk)jk and parameter δ > 0, define the δ-softplus function:

ζδ(ωjk) = δ · log(exp(ωjk/δ) + 1)

9The issue is that
∑
k z
∗
jk may be strictly less than 1 and has a complex expression. It is not clear whether we can sample

efficiently from z∗j with only sample access to (Fjk)jk. Moreover, even if we can sample from the distribution, the guarantees in
Theorem 2 may no longer hold.

14

Consider the entropy regularized matching program (P ′) w.r.t. weights (ζδ(ωjk))jk:

max G(z) =
∑

j,k zjk · ζδ(ωjk)− δ ·
∑

j,k zjk log(zjk)

subject to
∑

j zjk ≤ d, ∀k ∈ [`]∑
k zjk = 1, ∀j ∈ [d`]

zjk ∈ [0, 1], ∀j ∈ [d`],∀k ∈ [`].

(3)

Note that ζδ(x) > 0 for any x, so the program (P ′) is exactly a d-to-1 matching with positive edge
weights. We prove that the optimum of (P ′) is close to the weight of the maximum weight d-to-1 matching
(See Lemma 6 and the proof of Theorem 3).

Thus in the rest of this section we will consider approximating the optimum of (P ′). Let ẑ be the solution
produced by Algorithm 1 on (P ′). Program (P ′) is the same as (P) if we substitute the weight ωjk for each
LHS-node r(j) and RHS-node s(k) with ζδ(ωjk). Recall that our main goal is to avoid being matched with
negative edges too often. Now for every RHS-node, we construct a dummy 0-RHS-node with weight 0
for all edges incident to it. Let the meta-RHS-node consists of the real RHS-node and the corresponding
0-RHS-node. The weight between the LHS-node j and the meta-RHS-node k is defined as ζδ(ωjk). We will
explain later why the weights are chosen in this way.

Think of the procedure that first executes Algorithm 1 to find a matching between LHS-nodes and meta-
RHS-nodes. As a second step, when a LHS-node j is matched to some meta-RHS-node k, we further decide
how to match it to the real RHS-node or the 0-RHS-node, according to the following “softmax” program
between weight ωjk and 0 (see Figure 2 for an illustration):10

max xjkωjk − δ · xjk log(xjk)− δ · yjk log(yjk)

subject to xjk + yjk = 1

xjk, yjk ∈ [0, 1].

(4)

Let (x∗jk, y
∗
jk) be the optimal solution. One can easily verify that the optimum of the softmax program

is equal to ζδ(ωjk). The two-step procedure finds a d-to-1 matching in the original graph (by removing all
edges matched to 0-RHS-nodes). Moreover, when the LHS-node j is matched to the meta-RHS-node k,
its expected weight x∗jkωjk is at most O(δ) less than ζδ(ωjk). Thus by Theorem 2, the two-step procedure
that executes Algorithm 1 w.r.t. (P ′) indeed finds an approximately-optimal d-to-1 matching w.r.t. weights
ζδ(ωjk) and no LHS-node is matched to an edge with too negative weight.

The main issue with the above two-step procedure is that, to execute Algorithm 1 w.r.t. (P ′), we will
have to sample from a distribution with mean ζδ(ωjk) with only sample access to the distribution Fjk whose
mean is ωjk. To the best of our knowledge, no algorithm exists to sample exactly from such a distribution.

We present our algorithm (Algorithm 2) that solves this issue. The key conceptual idea is to merge the
two steps into one. It directly matches LHS-nodes to either real RHS-nodes or 0-RHS-nodes. The reason
that this is possible is because the distribution from the combined procedure is again a Gibbs distribution,
which allows us to use the fast exponential Bernoulli race to sample directly from it (Observation 2).

We prove a coupling between executing Algorithm 2 over weights (ωjk)jk and executing Algorithm 1
over weights (ζδ(ωjk))jk, with the same parameters δ, η′, γ. Note that both executions are online procedures.
Thus the distribution of matching the current LHS-node depends on the previous matching. We carefully
prove that the dual variables α(j) and the remaining capacities (d

(j)
k)k are the same for every round j. Our

result is summarized in Theorem 3.
10Note that it’s also the entropy regularized matching program between a single LHS-node j and two RHS-nodes (real RHS-node

k and 0-RHS-node k).

15

j
ωjk

k

d-to-1 matching

j
ζδ (ωjk)

k
0-RHS-node

meta-RHS-node

d-to-1 matching with meta-RHS-nodes

Figure 2: With • we denote the LHS-nodes, with � RHS-nodes, with � we denote the 0-RHS-nodes and
with a big rectangle that encloses a � and a � we denote the meta-RHS-nodes.

Theorem 3. When ωjk ∈ [−1, 1] 11 for all j, k, Algorithm 2 satisfies the following properties:

1. For any choice of the parameters, dropping all the edges incident to any 0-RHS-nodes in the matching,
the algorithm produces a feasible d-to-1 matching (not necessarily perfect).

2. For any choice of the parameters, the algorithm is maximal-in-range. The expected running time and
sample complexity is poly(d, `, 1/δ, γ).

3. For every δ, η′ > 0, if d ≥ ` log `/η′2 and γ ∈
[

OPT(P ′)
d , O(1)·OPT(P ′)

d

]
, where OPT(P ′) is the

optimum of program (P ′), then the expected value (over the randomness of the Algorithm 2) of∑
j∈[d`],k∈[`] x̂jkωjk − δ

∑
j,k x̂jk log(x̂jk)− δ

∑
j,k ŷjk log(ŷjk) is at least (1−O(η′)) · OPT(P ′).

Moreover, for every ψ ∈ (0, 1), if we set δ = Θ(ψ
log `), η

′ = Θ(ψ), and d and γ satisfy the conditions
above, then the expected value of

∑
j∈[d`],k∈[`] x̂jkωjk, the expected total weight of the matching

output by the algorithm (dropping all the edges incident to any 0-RHS-nodes in the matching), has
weight at most O(d`ψ) less than the maximum weight matching.

4. For every LHS-node j, the expected weight of the edge that matches j is never too much smaller than
0. Formally, for every δ and every j ∈ [d`],

∑
k∈[`] x̂jkωjk ≥ −δ · log(2`).

Remark 1. Property (4) is relevant only when the edge weights may be negative. As discussed in the
introduction, this is a crucial property to preserve the revenue in the transformation. Directly applying
Algorithm 1 from [24] is insufficient to guarantee this property as shown in Example 1.

To prove Theorem 3, we consider the following auxiliary problem.

Definition 6. For any parameter δ > 0, we define the following auxiliary convex program (P ′′):

max F (x, y) =
∑

j,k xjkωjk − δ ·
∑

j,k(xjk log(xjk) + yjk log(yjk))

s.t.
∑

j(xjk + yjk) ≤ d, ∀k ∈ [`]∑
k(xjk + yjk) = 1, ∀j ∈ [d`]

xjk, yjk ∈ [0, 1], ∀j, k

Let (x̂jk, ŷjk)jk be the solution produced by Algorithm 2.
11Again the theorem applies to any bounded edge weights in [−R,R]. For simplicity we normalize the edge weights to lie in

[−1, 1].

16

Algorithm 2 Online Entropy Regularized Matching with Arbitrary Edge Weights (with parameters
δ, η′, γ)
Require: Sample access to Fjk whose mean is ωjk, for every j, k.

1: For each RHS-node k, add a 0-RHS-node to the bipartite graph with edge weight 0 to every LHS-node.
We refer to the k-th original RHS-node the k-th normal-RHS-node.

2: for j ∈ [d`] do
3: Let d(j−1)

k be the number of LHS-nodes matched to either the k-th normal-RHS-node or the k-th
0-RHS-node in the current matching and K = {k : d

(j−1)
k < d}.

4: Set α(j) according to the Gibbs distribution over RHS-nodes in K, where the energy for any RHS-
node k ∈ K is d(j−1)

k and the temperature is 1/η′. Set α(j)
k = 0 for all k 6∈ K.

5: Match LHS-node j to a normal RHS-node (or a 0-RHS-node) k ∈ K according to the Gibbs dis-
tribution over the 2|K| RHS-nodes in K, where the temperature is δ and the energy for match-
ing to a normal-RHS-node k is (ωjk − γα

(j)
k) and the energy for matching to a 0-RHS-node

k ∈ K is (−γα(j)
k). More specifically, match to the normal-RHS-node k with probability

x̂jk =
exp((ωjk−γα

(j)
k)/δ)∑

k′∈K(exp((ωjk′−γα
(j)

k′)/δ)+exp((−γα(j)

k′)/δ))
and match to the 0-RHS-node k with probability

ŷjk =
exp((−γα(j)

k)/δ)∑
k′∈K(exp((ωjk′−γα

(j)

k′)/δ)+exp((−γα(j)

k′)/δ))
. We can generate a sample from (x̂j , ŷj) via the fast

exponential Bernoulli race with poly(γ, `, 1/δ) sample from (Fjk)k in expectation (See Lemma 1).
6: end for

Observation 1. For every j, α(j) and parameter γ, match j according to the Gibbs distribution (x̂j , ŷj) to
the available 2|K| RHS-nodes in K,

x̂jk =
exp

(
(ωjk − γα

(j)
k)/δ

)
∑

k∈K

(
exp((ωjk − γα

(j)
k)/δ) + exp(−γα(j)

k /δ)
) , ŷjk =

exp
(

(−γα(j)
k)/δ

)
∑

k∈K

(
exp((ωjk − γα

(j)
k)/δ) + exp(−γα(j)

k /δ)
)

maximizes ∑
k∈K

xjkωjk − δ
∑
k∈K

xjk log(xjk)− δ
∑
k∈K

yjk log(yjk)−
∑
k∈K

γα
(j)
k · (xjk + yjk),

subject to the constraint
∑

k(xjk + yjk) = 1.

Observation 2. For every dual variablesα ∈ [0, h]` the optimal solution x∗,y∗ maximizing the Lagrangian
L((x,y), α) of program (P ′′) subject to the constraints

∑
k(xjk + yjk) = 1,∀j ∈ [d`] is

x∗jk =
exp(

ωjk−αk
δ)∑

k′

(
exp(

ωjk′−αk′
δ) + exp(

−αk′
δ)
) , ∀j ∈ [d`], ∀k ∈ [`]

y∗jk =
exp(−αkδ)∑

k′

(
exp(

ωjk′−αk′
δ) + exp(

−αk′
δ)
) , ∀j ∈ [d`], ∀k ∈ [`]

Hence

x∗jk
y∗jk

= exp(ωjk/δ), ∀j, k

17

We prove in Lemma 6 that the optimum of (P ′′) is exactly the same as the optimum of (P ′).

Lemma 6. For all j ∈ [d`] and k ∈ [`], if xjkyjk = exp(ωjk/δ), xjk + yjk = zjk, then

zjk · ζδ(ωjk)− δ · zjk log(zjk) = xjk · ωjk − δ · xjk log(xjk)− δ · yjk log(yjk). (5)

This implies that the optimal objective values of (P ′) and (P ′′) are equal.

Proof of Lemma 6:
For every j, k, recall ζδ(ωjk) = δ · log(exp(ωjk/δ) + 1). Observe that zjk = (1 + exp(ωjk/δ))yjk. We

have

LHS = zjk ·ζδ(ωjk)−δ ·zjk log(zjk) = zjk ·δ · log(
exp(ωjk/δ) + 1

zjk
) = −(exp(ωjk/δ)+1)yjk ·δ log(yjk)

RHS = −δ · yjk log(yjk) + xjk · (ωjk − δ log(xjk))

= −δ · yjk log(yjk) + exp(ωjk/δ)yjk · (ωjk − δ log(exp(ωjk/δ))− δ log yjk)

= −δ · yjk log(yjk) · (1 + exp(ωjk/δ))

Hence, Equation (5) holds. Since the optimal values x∗jk, y
∗
jk satisfy the requirements by Observation 2,

we have that the optimum of (P ′) is at least as large as the optimum of (P ′′). On the other hand, let z∗ be

the optimal solution of (P ′), we can choose x∗jk and y∗jk so that x∗jk + y∗jk = z∗jk and
x∗jk
y∗jk

= exp(ωjk/δ).

Clearly, (x∗jk, y
∗
jk)jk is a feasible solution to (P ′′), therefore the optimum of (P ′) is at most as large as the

optimum of (P ′′). Combining. the two claims, we prove that (P ′) and (P ′′) have the same optimal objective
values. 2

Lemma 7. With parameter δ ≥ 0, let (x∗, y∗) be the optimal solution of (P ′′). The optimum of (P ′′),∑
j,k x

∗
jkωjk − δ ·

∑
j,k(x

∗
jk log(x∗jk) + y∗jk log(y∗jk)), is no smaller than the weight of the maximum weight

matching.

Proof. Let x′ be the maximum weight matching. It is not hard to see that we can construct a 0− 1 vector y′

so that (x′, y′) is a feasible solution of (P ′′). As both x′ and y′ only take values in 0 or 1, the entropy term
−
∑

j,k x
′
jk log(x′jk)−

∑
j,k y

′
jk log(y′jk) = 0. Hence, the optimum of (P ′′) is at least as large as the weight

of the maximum weight matching
∑

jk x
′
jkωjk.

Proof of Theorem 3: As the algorithm always produces a matching that respects the constraints of (P ′′),
the first property clearly holds. As the set of available RHS-nodes K and the dual variables α(j) only
depend on the first j − 1 LHS-nodes but not the LHS-node j, the maximal-in-range property follows from
Observation 1. The algorithm runs in d` rounds, step 3 and 4 both take O(`) time. Step 5 takes expected
time poly(γ, `, 1/δ) and poly(γ, `, 1/δ)-many samples from distributions (Fjk)k to complete. Hence, the
running time and sample complexity as stated in the second property.

If we execute Algorithm 1 on a d-to-1 matching with weights (ζδ(ωjk))jk and Algorithm 2 over weights
(ωjk)jk with the same parameters δ, η′, γ, we can couple the two executions so that the dual variables α(j)

and the remaining capacities (d
(j)
k)k are the same for every j. We introduce the new notation K(j) which

is exactly the set of available RHS-nodes K in step 2 of both algorithm in round j. Note that K(j) is
deterministically determined by (d

(j−1)
k)k. If α(j) andK(j) are the same in both algorithms for every j, then

x̂jk + ŷjk = ẑjk for every j ∈ [d`] and k ∈ K(j). To verify this, simply observe that

ẑjk = exp(
ζδ(ωjk)− γα

(j)
k

δ
) = (exp(

ωjk
δ

)+1)·exp(
−γα(j)

k

δ
) = exp(

ωjk − γα
(j)
k

δ
)+exp(

−γα(j)
k

δ
) = x̂jk+ŷjk.

18

How does the coupling work? We construct it by induction. In the base case where j = 1, clearly
everything is the same in both algorithms. Suppose the dual variables α(1), . . . , α(j) and the remaining
capacities (d

(1)
k)k, . . . , (d

(j)
k)k are all the same for the first j rounds, we argue that we can couple the two

executions in round j + 1 so that α(j+1) and (d
(j+1)
k)k remain the same in both algorithms. First, the set

K(j+1) is the same, which implies that the dual variables α(j+1) are also the same. Next, Algorithm 1
samples a RHS-node k according to distribution ẑj+1 and Algorithm 2 samples a RHS-node according to
distribution (x̂j+1, ŷj+1). Note that x̂(j+1)k + ŷ(j+1)k = ẑ(j+1)k, so wherever Algorithm 1 matches the
LHS-node j+ 1 to a RHS-node k we match the LHS-node j+ 1 to the normal RHS-node k with probability
x̂(j+1)k

ẑ(j+1)k
and to the 0-RHS-node with probability

ŷ(j+1)k

ẑ(j+1)k
. Clearly, this coupling makes sure the new remaining

capacities (d
(j+1)
k)k also remain the same. Combining the coupling with Lemma 6, we conclude that

G(ẑ) =
∑
j,k

ẑjk ·ζδ(ωjk)−δ·
∑
j,k

ẑjk log(ẑjk) =
∑
j,k

x̂jkωjk−δ·
∑
j,k

(x̂jk log(x̂jk)+ŷjk log(ŷjk)) = F (x̂, ŷ).

By Theorem 2, the expected value ofG(ẑ) is a (1−O(η′)) multiplicative approximation to OPT(P ′), if
we choose the parameters according to the third property of the statement. Therefore, the expected value of
F (x̂, ŷ) is a (1−O(η′)) multiplicative approximation to OPT(P ′). Since the optimum of (P ′′), OPT(P ′′),
is the same as OPT(P ′) (Lemma 6), the expected value of F (x̂, ŷ) is also a (1 − O(η′)) multiplicative
approximation to OPT(P ′′). Now, invoke Lemma 7, we know that the expected value of F (x̂, ŷ) is at
least a (1−O(η′)) multiplicative approximation to the weight of the maximum weight matching, which we
denote as OPT. Note that the entropy term −δ ·

(∑
j,k x̂jk log(x̂jk) +

∑
j,k ŷjk log(ŷjk)

)
is non-negative

and at most δd` log(2`), hence the expected weight of the matching produced by Algorithm 2, the expected
value of

∑
j,k x̂jkωjk, is at least (1−O(η′)) · OPT − δd` log(2`).

If we choose δ = Θ(ψ
log `), η′ = Θ(ψ), then δd` log(2`) = Θ(d`ψ) and O(η′) · OPT = O(d`ψ) as

OPT ≤ d`. Thus, the expected weight of the matching produced by Algorithm 2 is within an additive
error of Θ(d`ψ) from the weight of the maximum weight matching. This completes our proof for the third
property.

Now we are going to prove the final bullet of the theorem. We denote the entropy of (x, y) as:

H(x, y) = −

(∑
k

xk log(xk) +
∑
k

yk log(yk)

)

By Observation 1,

(x̂j , ŷj) = argmax(xj ,yj)

∑
k

xjk · ωjk + δ ·H(xj , yj)−
∑
k

γα
(j)
k · (xjk + yjk)

Therefore the objective of solution (0, x̂j + ŷj) is a lower bound on the objective of solution (x̂j , ŷj):

∑
k

x̂jk · ωjk + δ ·H(x̂j , ŷj)−
∑
k

γα
(j)
k · (x̂jk + ŷjk)

≥ δ ·H(0, x̂j + ŷj)−
∑
k

γα
(j)
k · (x̂jk + ŷjk)

Since H(0, x̂j + ŷj) ≥ 0, we can conclude that:

19

∑
k

x̂jk · ωjk ≥ −δ ·H(x̂j , ŷj) ≥ −δ log(2`)

2

5 ε-BIC to BIC Transformation

In this section, we present our ε-BIC to BIC transformation. In Theorem 4, we prove a more general
statement where the given mechanism M is ε-BIC with respect to D =×i∈[n]Di, while we construct
an exactly BIC mechanism M′ with respect to a different distribution D′ =×i∈[n]D

′
i. If D = D′, the

problem is the ε-BIC to BIC transformation problem. We show that the revenue of M′ under D′ de-
creases gracefully with respect to the Wasserstein Distance of the two distributions. For every i, we de-
note dw(Di,D′i) the `∞-Wasserstein Distance of distributions Di, D′i. We slightly abuse notation and let
dw(D,D′) =

∑n
i=1 dw(Di,D′i).

Our mechanism works in the following way. After some agent reports her type, we sample d`− 1 i.i.d.
replicas, ` i.i.d. “real” surrogates and add ` 0-surrogates, for some appropriately chosen parameters d, `.
The true type is inserted into a random position in the replicas. We define the weight between a replica r(j)

and a “real” surrogate s(i) to be (almost) the expected utility of type r(j) if she reported s(i) to the original
mechanismM. The weights between replicas and 0-surrogates are 0. Then, we run Algorithm 2 in order
to get a d-to-1 matching between the replicas and the surrogates. To ensure that this matching is truthful,
we impose appropriately selected payments to the agent. This is the first phase ofM′. Now, suppose that
the true agent is matched to surrogate s(k). In the second phase of the mechanism, we let s(k) participate in
M along with the matched surrogates of the other agents. If s(k) is a 0-surrogate, then the agent gets the
outcome ⊥ and pays nothing. Otherwise, she gets the outcome that the surrogate gets and pays the same
price discounted by a factor of (1 − η). We remark that a downward-closed outcome space O is necessary
here to allow a ⊥ outcome.

A formal description of our mechanism is shown in Mechanism 3. In step 3, the parameter γ is estimated
using an approach similar to Dughmi et al. [24]. See Lemma 17 in Appendix A for more details.

How do we compute the payment of Phase 1? Note that if any agent i′ ∈ [n] reports truthfully, then the
surrogate si′ who participates for agent i′ in Phase 2 12 is exactly drawn from distribution Di′ . Therefore, if
all the other agents report truthfully, agent i’s value for winning a normal surrogate s is exactlyWi(ti, s) and
0 otherwise. In other words, Mechanism 3 is equivalent to a competition among replicas to win surrogates,
and the edge weight between a replicas and a surrogate is exactly the replica’s value for the surrogate. To
show that Mechanism 3 is BIC, it suffices to prove that the payment of Phase 1 incentivizes the replicas to
submit their true edge weights. As Algorithm 2 is maximal-in-range, such payment rule indeed exists.

If the true type is the j-th replica, and the reported type ti induces edge weights (ωjk)k∈[`], charge the
agent

δ
∑
k∈K

xjk log(xjk) + δ
∑
k∈K

yjk log(yjk) +
∑
k∈K

γα
(j)
k · (xjk + yjk), (6)

where xjk =
exp
(

(ωjk−γα
(j)
k)/δ

)
∑
k∈K

(
exp((ωjk−γα

(j)
k)/δ)+exp(−γα(j)

k /δ)
) , yjk =

exp
(

(−γα(j)
k)/δ

)
∑
k∈K

(
exp((ωjk−γα

(j)
k)/δ)+exp(−γα(j)

k /δ)
) , and

α(j) is the set of dual variables in the j-th iteration of Algorithm 2. Observation 1 implies that the payment
rule is BIC. However, direct implementation of the payment requires knowing the edge weights which we

12Agent i′ may be matched to a 0-surrogate, then si′ is the type of the corresponding normal surrogate.

20

Mechanism 3 ε-BIC to BIC Transformation (MechanismM′)
Require: Query access to an IR mechanismM = (x, p) w.r.t. D =×i∈[n]Di; sample access to the type

distribution Di and D′i for every i ∈ [n]; Parameters η, η′, δ, `, and d ≥ 32 log(8η′−1)

δ2` log2(`)
.

Phase 1: Surrogate Selection
1: for i ∈ [n] do
2: Sample ` surrogates i.i.d. from Di. We use s to denote all surrogates.
3: Estimate γ with parameters η′ and δ using the algorithm in Lemma 17.
4: Agent i reports her type ti. Create d`−1 replicas sampled i.i.d. fromD′i and insert ti into the replicas

at a uniformly random position. We use r to denote all the d` replicas.
5: For each normal surrogate k, also create a 0-surrogate with a special type � . Create a bipartite graph

Gi between the d` replicas and 2` surrogates. Define the weight between the j-th replica r(j) (ti is
also a replica) and the k-th normal surrogate s(k) using

Wi(r
(j), s(k)) = E

t−i∼D−i

[
vi(r

(j), x(s(k), t−i))
]
− (1− η) · E

t−i∼D−i

[
pi(s

(k), t−i)
]
.

A 0-surrogate has edge weight 0 to every replica, that is Wi(r
(j), �) = 0 for all j.

6: Run Algorithm 2 on Gi with parameters δ, η′, and γ. For any edge between a replica r(j) and a
surrogate s(k), we can sample the edge weight by first sampling t−i from D−i, then query M on
input (s(k), t−i), and compute vi(r(j), x(s(k), t−i))− (1− η) · pi(s(k), t−i).

7: Suppose the reported type ti of agent i is matched to the k-th normal surrogate or the k-th 0-surrogate.
Let si be the type of the k-th normal surrogate.

8: Sample λ from U [0, 1] and charge the agent qi(ti, λ), which is her payment for Phase 1. qi(ti, λ) is
computed via a modified implicit payment (Defintion 7).

9: end for
Phase 2: Surrogate Competition

10: Run mechanismM on input s = (s1, ..., sn). Let o = (o1, . . . , on) be a random outcome sampled from
x(s). If agent i is matched to a normal surrogate in Phase 1, her outcome is oi and her payment for
Phase 2 is (1− η) · pi(s); otherwise the agent gets the outcome ⊥ and pays 0 for Phase 2.

only have sample access to. We use a procedure called the implicit payment computation [4, 29, 6, 7, 24] to
circumvent this difficulty.

Definition 7 (Implicit Payment Computation). For any fixed parameters δ,η, η′ and γ, let (ωjk)jk be the
edge weights on a [d`]× [2`] size bipartite graph, we use Aj(ω) to denote (x̂j1, . . . , x̂j`, ŷj1,
. . . , ŷj`), the allocation of the j-th LHS-node/replica to the surrogates computed by Algorithm 2 on the
bipartite graph. Now, fix r and s, we use ui(ti, (x, y)) to denote

∑
k∈[`] xk ·Wi(ti, s

(k)). Suppose agent
i’s reported type ti is in position π, that is, r(π) = ti. To compute price qi(ti, λ), let surrogate s′ be the
surrogate sampled from Aπ(W) by Algorithm 2 in step 6, where W is the collection of edge weights in
graph Gi as defined in step 5 of Mechanism 3, and we sample a surrogate s′′ from Aπ (λWπ,W−π), where
Wπ contains all weights of the edges incident to the π-th replica, and λWπ is simply multiplying each weight
in Wπ by λ. Then we sample t−i from D−i, the price qi(ti, λ) is

weighti(ti, s
′, t−i))− weighti(ti, s′′, t−i)−

√
δ(log(2`) + 1),

where weighti(ti, s, t−i) = vi(ti, x(s, t−i))−(1−η) ·pi(s, t−i) if s 6= �, otherwise weighti(ti, s, t−i) = 0.

21

In expectation over s′, s′′ and t−i,

E [qi(ti, λ)] = ui (ti,Aπ(W))− ui (ti,Aπ (λWπ,W−π))−
√
δ(log(2`) + 1),

if we also take expectation over λ,

E
λ∼U [0,1]

[qi(ti, λ)] = ui (ti,Aπ(W))−
∫ 1

0
ui (ti,Aπ (λWπ,W−π)) dλ−

√
δ(log(2`) + 1). 13

With Definition 7, our mechanism is fully specified. We proceed to prove that the mechanism is BIC and
IR. Our transformation is quite robust. Even if the original mechanismM is not ε-BIC or the γ estimated
in step 3 is not a constant factor approximation of OPT(ω(r))

d , the mechanism is still BIC and IR. The proof
for truthfulness is similar to the one in Dughmi et al. [24]. However, as our edge weights may be negative,
it is more challenging to establish the individually rationality compared to Dughmi et al. [24]. To make
sure the mechanism is IR, we sometimes need to use negative payments to subsidize the agents, and at the
same time guarantee that the total subsidy is negligible compared to the overall revenue. Note that this
is also different from the previous ε-BIC to BIC transformations [23, 38, 18], as they essentially use the
VCG mechanism to match surrogates to replicas, their mechanisms are clearly individually rational and use
non-negative payments. The proof of Lemma 8 is postponed to Appendix B.

Lemma 8. For any choice of the parameters `, d, η, η′, δ and any IR mechanismM,M′ is a BIC and IR
mechanism w.r.t. D′. In particular, we do not require M to be ε-BIC. Moreover, each agent i’s expected
Phase 1 payment E [qi(ti, λ)] is at least −

√
δ(log(2`) + 1). Finally, on any input bid b = (b1, . . . , bn),

M′ computes the outcome in expected running time poly(d, `, 1/η′, 1/δ) and makes in expectation at most
poly(d, `, 1/η′, 1/δ) queries toM.

We are now ready to present our main result for this section (Theorem 4). To prove the theorem, it
suffices to lower bound the revenue ofM′ from the second phase due to Lemma 8. In the previous trans-
formations [23, 38, 18], the mechanism computes an exact maximum weight replica-surrogate matching,
which allows them to bound the revenue from the second phase directly. Our mechanism only computes
an approximately maximum weight replica-surrogate matching. As a result, we need to use a more delicate
analysis to lower bound the revenue from Phase 2. We refer the readers to Appendix B.1 for more details
about bounding the revenue loss and the complete proof of Theorem 4.

Theorem 4. Let O be a downward-closed outcome space. Given sample access to distributions D =

×i∈[n]Di and D′ =×i∈[n]D
′
i, and query access to an ε-BIC and IR mechanismM w.r.t. distribution D.

We can construct an exactly BIC and IR mechanismM′ w.r.t. distribution D′, such that

REV(M′,D′) ≥ REV(M,D)−O(n
√
ε)−O

(√
n · dw(D,D′)

)
. (7)

On any input bid b = (b1, . . . , bn), M′ computes the outcome and payments in expected running time
poly(n, T ′, 1/ε) and makes in expectation at most poly (n, T ′, 1/ε) queries toM, where T ′i is the support
of D′i and T ′ = maxi∈[n] |T ′i |.

Furthermore, for any coupling ci(·) between Di and D′i such that vi is non-increasing w.r.t. ci(·) 14 , the
error bound can be improved as follows:

13The difference between Eλ∼U [0,1][qi(ti, λ)] and Equation (6) is indeed a fixed constant, hence our mechanism is BIC.
14Roughly speaking, vi is non-increasing w.r.t. a coupling ci if the coupling always couples a “higher” type to a “lower” type.

Namely, for all ti, outcome o ∈ O, if the coupling produces type ti and ci(ti), then vi(ti, o) ≥ vi(ci(ti), o).

22

REV(M′,D′) ≥ REV(M,D)−n
√
ε−O

(
nη +

nε

η

)
−
∑

i∈[n] Et∼D′
[
Eci(ti) [vi (ti, x

′(t))− vi (ci(ti), x
′(t))]

]
η

,

(8)
where x′(·) is the allocation rule ofM′ and η can be chosen to be an arbitrary constant in (0, 1).

Inequality (7) is our main result, and provides a strong guarantee in very general settings. Even though
the difference between Inequality (8) and (7) seems small, we like to point out that the difference can be
substantial sometimes and there were indeed cases where one needed a sharper version similar to Inequal-
ity (8). In particular, one common application of bounds similar to Inequality (8) is when the coupling
simply rounds values down. For example, the main results in [18, 31] heavily rely on inequalities similar to
Inequality (8), and these results may not be possible if only an Inequality (7) type bounds are used.

When D = D′, dw(D,D′) = 0, the following corollary states the ε-BIC to BIC transformation.

Corollary 1. If D = D′, REV(M′,D) ≥ REV(M,D)−O (n
√
ε).

Another useful corollary is when we chooseM to be the optimal BIC, IR mechanism forD, we conclude
that the optimal revenue under D′ is not far away from the optimal revenue under D.

Corollary 2. If dw(Di,D′i) ≤ κ for all i ∈ [n], let OPT(D) and OPT(D′) be the optimal revenue achievable
by any BIC and IR mechanism w.r.t. D and D′ respectively. Then |OPT(D)− OPT(D′)| ≤ O(n ·

√
κ).

6 Black-box Reduction for Multi-Dimensional Revenue Maximization

In this section, we apply Theorem 4 to the multi-dimensional revenue maximization problem. Cai et al. [15]
provide a reduction from MRM to VWO. More formally:

Theorem 5 (Rephrased from Theorem 2 of Cai et al. [15]). Let O be a general outcome space. Given the
bidders’ type distributions D =×iDi. Let b be an upper bound on the bit complexity of vi(ti, o) and Pr(ti)
for any agent i, any type ti, and any outcome o, and OPT be the optimal revenue achievable by any BIC and
IR mechanisms. We further assume that types are normalized, that is, for each agent i, type ti and outcome
o, vi(ti, o) ∈ [0, 1].

Given oracle access to an α-approximation algorithm G for VWO with running time rtG(x), where x is
the bit complexity of the input, there is an algorithm that terminates in poly

(
n, T, 1

ε , b, rtG
(
poly

(
n, T, 1

ε , b
)))

time, and outputs a mechanism with expected revenue αOPT − ε that is ε-BIC with probability at least
1 − exp(−n/ε). Recall that T = maxi∈[n] |Ti|. On any input bid, the mechanism computes the outcome
and payments in expected running time poly

(
n, T, 1

ε , b, rtG
(
poly

(
n, T, 1

ε , b
)))

.

We can apply Theorem 4 to the final mechanism produced by Theorem 5 and obtain an exactly BIC
mechanism with almost the same revenue.

Theorem 6. LetO be a downward-closed outcome space. Given the bidders’ type distributionsD =×iDi.
Let b be an upper bound on the bit complexity of vi(ti, o) and Pr(ti) for any agent i, any type ti, and any
outcome o, and OPT be the optimal revenue achievable by any BIC and IR mechanisms. We further assume
that types are normalized, that is, for each agent i, type ti and outcome o, vi(ti, o) ∈ [0, 1].

Given oracle access to an α-approximation algorithm G for VWO with running time rtG(x), where x is
the bit complexity of the input, there is an algorithm that terminates in poly

(
n, T, 1

ε , b, rtG
(
poly

(
n, T, 1

ε , b
)))

time, and outputs an exactly BIC and IR mechanism with expected revenue

REV(M,D) ≥ α ·OPT −O
(
n
√
ε
)
,

23

where T = maxi∈[n] |Ti|. On any input bid,M computes the outcome and payments in expected running
time poly

(
n, T, 1

ε , b, rtG
(
poly

(
n, T, 1

ε , b
)))

.

Proof of Theorem 6: When the mechanism computed by Theorem 5 is ε-BIC, our transformation converts
it into a BIC mechanism with at most O(n

√
ε) less revenue. The important property of our transformation

as stated in Lemma 8 is that even if the initial mechanism is not ε-BIC, our transformation still produces
an exactly BIC mechanism. In this case, we can still treat the given mechanism as 1-BIC and IR, and use
the corresponding revenue guarantees provided by Theorem 4. Since the probability that the mechanism
computed by Theorem 5 is not ε-BIC is exponentially small, we can absorb the loss from this exponentially
small event in the error term O(n

√
ε). The time complexity follows from Theorem 4 and 5. 2

Since our Theorem 4 allows us to construct a close to optimal mechanismM′ w.r.t. the type distribution
D′i, if D′ is not too far away from the distribution D thatM is designed , we can approximate the optimal
revenue even when we only have sample access to the bidders’ type distributions. A byproduct of this result
is that the running time of our algorithm no longer depends on the bit complexity of the probability that a
particular type shows up.

Theorem 7. Let O be a downward-closed outcome space. Given sample access to bidders’ type distribu-
tions D =×iDi. Let b be an upper bound on the bit complexity of vi(ti, o) and Pr(ti) for any agent i, any
type ti, and any outcome o, and OPT be the optimal revenue achievable by any BIC and IR mechanism. We
further assume that types are normalized, that is, for each agent i, type ti and outcome o, vi(ti, o) ∈ [0, 1].

Given oracle access to an α-approximation algorithm G for VWO with running time rtG(x), where x is
the bit complexity of the input, there is an algorithm that terminates in poly

(
n, T, 1

ε , b, rtG
(
poly

(
n, T, 1

ε , b
)))

time, and outputs an exactly BIC and IR mechanism with expected revenue

REV(M,D) ≥ α ·OPT −O
(
n
√
ε
)
,

where T = maxi∈[n] |Ti|. On any input bid,M computes the outcome and payments in expected running
time poly

(
n, T, 1

ε , b, rtG
(
poly

(
n, T, 1

ε , b
)))

.

Proof of Theorem 7: We can create an empirical distribution D̃i for each bidder i, such that dTV (Di, D̃i) ≤
ε′, ∀i, with probability at least 1− θ using O(

∑n
i
|Ti|2
ε′2 ln

∑n
j=1 |Tj |
θ) samples.

We first consider the case where dTV (Di, D̃i) ≤ ε′,∀i. Then, dw(Di, D̃i) ≤ dTV (Di, D̃i) ≤ ε′, as the
highest value for any outcome is at most 1. Apply Theorem 5 on D̃ =×n

i=1 D̃i and let M̃ be the produced
mechanism, ÕPT be the optimal revenue achievable by any BIC and IR mechanism w.r.t. D̃. Clearly,
Theorem 5 guarantees that REV(M̃, D̃) ≥ α · ÕPT − ε. According to Corollary 2,

|OPT − ÕPT| ≤ O
(
n
√
ε′
)
.

We set θ = ε and ε′ = ε, we apply Theorem 4 to M̃, that is, the replicas are sampled from D and the
surrogates are sampled from D̃. LetM be the constructed mechanism, and Theorem 4 guarantees that

REV(M,D) ≥ REV(M̃, D̃)−O
(
n
√
ε
)
≥ α · ÕPT −O

(
n
√
ε
)
≥ α · OPT −O

(
n
√
ε
)
,

if M̃ is a ε-BIC and IR mechanism. Otherwise, we know that M̃ is a 1-BIC and IR mechanism, and this
happens with exponentially small probability according to Theorem 5, so we can absorb the loss from this
case in O (n

√
ε). To sum up, if dTV (Di, D̃i) ≤ ε′, ∀i, then REV(M,D) ≥ α · OPT −O (n

√
ε).

24

With probability ε we may get unlucky and dTV (Di, D̃i) may be larger than ε for some i. In that case
we still constructM in the same way, and we can apply Theorem 4 by upper bounding dw(D, D̃) by n and
treating M̃ as a 1-BIC and IR mechanism, which shows REV(M,D) ≥ −O(n).

Therefore, in expectation of the randomness of the samples used to estimate D̃,

REV(M,D) ≥ (1− ε) ·
(
α · OPT −O

(
n
√
ε
))
−O(nε) = α · OPT −O(n

√
ε),

as OPT ≤ n. Note that even though mechanismM depends on D̃ and M̃, it is always BIC and IR w.r.t. D.
The time complexity follows from Theorem 4 and 5. 2

7 General Outcome Space: Regularized Replica-Surrogate Fractional As-
signment

In this section we consider general outcome space O, removing the assumption that O is downward-closed.
We first demonstrate in Example 3 that only having sample access to the agents’ type distributions is not
sufficient to transform an ε-BIC mechanism to exactly BIC, with a small revenue loss.

Example 3. Consider the following ε-BIC to BIC transformation instance for a single buyer. Let

T = {tH , t(l,1), . . . , t(l,m), t(s,1), . . . , t(s,m)} ∈ N,

be the set of the buyer’s types,D = {D(i,j)}i,j∈[m], whereD(i,j) is the distribution with support {tH , t(l,i), t(s,j)}
and point-mass probability:

Pr
t′∼D(i,j)

[t′ = t] =

1− 2σ if t = tH

σ if t = t(l,i)

σ if t = t(s,j)

The output space is O = {oH , o(l,1), . . . , o(l,m), o(s,1), . . . , o(s,m)} such that:

v(tH , o) =

{
1 if o = oH

0 o.w.

v(t(l,i), o) =

{
ε if o = o(s,j′), for any j′ ∈ [m]

0 o.w.

v(t(s,j), o) =

{
ε if o = o(l,i′), for any i′ ∈ [m]

0 o.w.

For each distributionD(i,j) ∈ D we consider the mechanismM(i,j): if the buyer reports tH , the mecha-
nism outputs oH and charges the buyer 1, if the buyer reports t(l,i), the mechanism outputs o(l,i) and charges
the buyer 0, if the buyer reports t(s,j), the mechanism outputs o(s,j) and charges the buyer 0. If the buyer
reports anything else, the mechanism outputs oH and charges the buyer 1. MechanismM(i,j) is ε-BIC and
IR for distribution D(i,j). The revenue ofM is 1− 2σ.

The mechanism designer has oracle access to set T and faces the following problem: There is an ar-
bitrary distribution from the whole space D, which is unknown to the designer. The buyer’s valuation
distribution is realized to be some D(i,j) ∈ D, the designer is given sample access to D(i,j), oracle access to

25

M(i,j)
15 and she needs to output a truly BIC and IR mechanismM′ w.r.t. the buyer’s realized distribution

that approximately preserves the revenue. Note that |T | = 2m + 1. Therefore the size of each t ∈ T is at
most O(log(m)).

In Lemma 9, we prove that with proper choice of σ, any BIC and IR mechanism with poly(log(m))
samples from the type distribution D(i,j) and queries fromM(i,j) has revenue far less thanM(i,j).

Lemma 9. For any δ > 0 choose σ < δ
2N and m ≥ 2N

δ . For any i, j, letM′ be any BIC, IR mechanism
w.r.t. D(i,j), which only uses N = poly(log(m)) samples from D(i,j) and queries fromM(i,j) (notice that
log(m) is the size of the input). Then REV(M′) < 2δ + 3δ · ε. As δ goes to 0, REV(M′) goes to 0 while
REV(M) = 1− 2σ ≥ 1− δ

N goes to 1.

Proof. DenoteM′(t) the output of mechanismM′ if the agent reports type t and p(t) the expected payment
if the agent reports t. Notice that the outcome of M(i,j) can only be oH , o(l,i), or o(s,j). Thus the output
of mechanism M′ is also one of these three outcomes. Let M′(t) for inputs t(l,i), t(s,j) be the following
distributions

M′(t(l,i)) =

oH with probability 1− p− q
o(l,i) with probability p
o(s,j) with probability q

M′(t(s,j)) =

oH with probability 1− p′ − q′

o(s,j) with probability p′

o(l,i) with probability q′

Then by BIC constraint we have that:

q · ε− p(t(l,i)) ≥ p′ · ε− p(t(s,j)) By BIC constraint if agent’s true type is t(l,i) but reports t(s,j).

q′ · ε− p(t(s,j)) ≥ p · ε− p(t(l,i)) By BIC constraint if agent’s true type is t(s,j) but reports t(l,i).

By the previous inequalities we can infer that:

q − p′ ≥
p(t(l,i))− p(t(s,j))

ε
≥ p− q′

Notice that either p ≤ q′ or p′ ≤ q. The claim holds because if p(t(l,i))− p(t(s,j)) is non-negative, then
q ≥ p′ and if p(t(l,i))− p(t(s,j)) is negative we have that p ≤ q′. Without loss of generality assume p′ ≤ q.

Now we are going to bound q. Note that since the mechanism designer does not have access to the
outcome space, the only way to find outcome o(s,j) is to use t(s,j) as input to the mechanismM. To do that,
the designer must sample t(s,j) either directly from the type space T or the realized distribution D(i,j)

16.
With at mostN samples from the buyer’s distributionD(i,j), with probability at least (1−σ)N ≥ 1−Nσ,

none of the sampled types is t(s,j). By assumption, σ ≤ δ
2N which implies that with probability at least 1− δ

2
we are not be able to sample type t(s,j), therefore we cannot find output o(s,j) by this method.

Moreover, notice that the output ofM is oH for all types {ts,j′}j 6=j′∈[m]. Thus by querying mechanism
M with at most N types ts,j′ chosen uniformly at random from {t(s,j)}j∈[m], with probability at least

15In other words the mechanism designer does not know the outcome space O. It can only put a input type into the mechanism
and outputs the returned outcome.

16Note that if the designer does not sample uniformly at random from the set {t(s,j)}j∈[m], since the distribution over D is
unknown, the adversary can make it more difficult for her to sample the right type by picking a different distribution

26

(1 − 1/m)N ≥ 1− N
m , none of the returned outcomes is o(s,j). By assumption m ≥ 2N

δ implies that with
probability at least 1− δ

2 none of the returned outcomes is o(s,j).
Hence, for any δ > 0, by taking Union Bound over the two events described above, we cannot identify

output o(s,j) with probability at least 1− δ. This implies p′ ≤ δ. Similarly we can prove that q′ ≤ δ.
By IR constraints for type t(s,j), we have q′ · ε− p(t(s,j)) ≥ 0. Thus −p(t(s,j)) ≥ −q′ · ε. By u(tH) we

denote the utility of type tH in mechanismM′ when she reports tH . Consider the BIC constraint for type
tH when she reports type t(s,j). We have

u(tH) ≥ (1− p′ − q′)− p(t(s,j)) ≥ 1− p′ − q′ − q′ · ε ≥ 1− 2δ − δ · ε

Thus p(tH) ≤ 2δ + δ · ε. Notice that both p(t(s,j)) and p(t(l,i)) are at most ε since the agent’s value
under these two types are at most ε. Thus REV(M′) ≤ 2δ + 3δ · ε.

Throughout this section, we will assume that we have full access to the agents’ type distributions: As-
sume every agent’s type distribution is discrete with finite support. We denote the support of the distribution
of the k-th agent as {t(i)k }i∈[mk] and the probability that the k-th agent has type t(i)k as F ki . When there is no
confusion about the agent that we are referring to, we may drop the superscript k in F ki . The constructed
mechanism knows t(i)k and the exact value F ki for every i ∈ [mk].

We first present the result in the ideal model, where the edge weights are known exactly. Then we show
that if we only estimate the edge weights approximately, we can use an approach similar to [28] to still
guarantee the mechanism is BIC and IR.

7.1 Regularized Replica-Surrogate Fractional Assignment

We now present the Regularized Replica–Surrogate Fractional Assignment (RRSF) introduced by [28].
There are two main differences between RRSF and the replica-surrogate matching: (i) the replicas and
surrogates in RRSF are no longer samples from the agent’s type distribution; for each type of the agent,
there is exactly one replica and one surrogate of that type in RRSF; (ii) RRSF finds the optimal fractional
assignment rather than a maximum weight matching.

Definition 8 (Definition 4.6 of [28]). Let φ(x) = 1
2γ||x||

2
2. For agent k ∈ [n] and i, j ∈ [mk], let W k

ij

be any value in [−1, 1]. We may drop the superscript when agent k is fixed and clear from context. Con-
sider the following convex program (P 3) with coefficients {Wi,j}i,j∈[mk], where the decision variables are
{qi,j}i,j∈[mk].

max
∑

i,j∈[mk] Fi (Wi,jqi,j − φ(qi))

subject to
∑

j qi,j = 1, ∀i ∈ [mk]∑
i Fiqi,j = Fj , ∀j ∈ [mk]

qi,j ≥ 0, ∀i, j ∈ [mk]

(9)

Let q∗k = {q∗i,j}i,j∈[mk] be an optimal solution to the primal problem and λ∗k = {λ∗i,j}i,j∈[mk],µ
∗
k =

{µ∗i }i∈[mk],π
∗
k = {π∗j }j∈[mk] be any Lagrange multipliers satisfying the KKT condition

1. Fi
(
Wi,j −

∂φ(q∗i)
∂q∗i,j

)
= λ∗i,j + µ∗i + Fiπ

∗
j , ∀i, j

2. λ∗i,j ≤ 0, ∀i, j

3. λ∗i,jq
∗
i,j = 0, ∀i, j

27

7.2 Ideal Model

RRSF Mechanism with parameters
(
q∗ = {q∗k}k∈[n],µ

∗ = {µ∗k}k∈[n],π
∗ = {π∗k}k∈[n]

)
: every agent

k reports her type tk = t
(i)
k . Let sk be a random surrogate type such that Pr[sk = t

(j)
k] = q∗i,j for every

j ∈ [mk].
The RRSF mechanismM′ runs mechanismM under the random input s = (s1, . . . , sn). The outcome

forM′ is the random outcome o generated from x(s) and agent k’s expected payment is pk(s) plus some
extra payment p̂k, where p̂k(tk) =

∑
j π
∗
j q
∗
i,j +φ(q∗i)−φ(0) + min`

µ∗`
F`

. We callM′ the RRSF mechanism
with respect to W = {W k

i,j}k∈[n],i,j∈[mk] if for every k, the parameters (q∗k,µ
∗
k,π
∗
k) are obtained by the

convex program (P 3) with coefficients {W k
i,j}i,j∈[mk].

Similar to [28], in our proof each W k
i,j will be chosen to be the expected utility of agent k for the

outcome of the mechanismM = (x, p) when her type is t(i)k and she is matched to the surrogate of type
t
(j)
k . Formally,

W k
i,j = E

t−k∼D−k

[
vk(t

(i)
k , x(t

(j)
k , t−k))

]
− E
t−k∼D−k

[
pk(t

(j)
k , t−k)

]
They proved that the RRSF mechanism with respect to the W defined above is BIC and IR.

Theorem 8 ([28]). Given any mechanismM. For every agent k and i, j ∈ [mk], let

W k
i,j = E

t−k∼D−k

[
vk(t

(i)
k , x(t

(j)
k , t−k))

]
− E
t−k∼D−k

[
pk(t

(j)
k , t−k)

]
Then RRSF mechanismM′ defined in Definition 8 is BIC and IR.

As Hartline et al. [28] only care about the welfare of M′, Theorem 8 suffices. We care about the
revenue ofM′, so we need to argue that runningM′ does not cause the designer to lose a large fraction of
the revenue. REV(M′) contains two parts: (i) the expected revenue from payments {pk(·)}k∈[n], which is
exactly the same as REV(M); (ii) the expected payments from {p̂k(·)}k∈[n]. To prove that REV(M′) is not
too much smaller than REV(M), we need to prove that the expected payments from {p̂k(·)}k∈[n] are not too
negative. We prove this claim with the following sequence of lemmas.

We will prove a more general result for any RRSF mechanism with respect to W that satisfies: W k
i,i ≥

max{W k
i,j − ε′,−ε′′}, ∀k ∈ [n], i, j ∈ [mk], for some ε′, ε′′ ≥ 0. Note that when W is chosen as in

Theorem 8 andM is ε-BIC and IR, we will have ε′ = ε and ε′′ = 0. The more general result is useful in
the proof of the non-ideal model in Section 7.3.

We first prove a structural result about the optimal solution of the convex program (P 3).

Lemma 10. Fix any agent k. Suppose for all i, j ∈ [mk], W k
i,i ≥ max{W k

i,j − ε′,−ε′′} holds for some
ε′, ε′′ ≥ 0. Let {q∗i,j}i,j∈[mk] be an optimal solution of the convex program (P 3). Then, it holds that

q∗i,j > 0 =⇒ Wi,j ≥Wi,i −mε′ −
√

2mγ, ∀i, j ∈ [mk].

Proof. For any type t(i)k ∈ supp(Dk) such that q∗i,i = 1 the statement holds.

Now assume there are some types t(i
∗)

k 6= t
(j∗)
k such that qi∗,j∗ > 0. A sequence of types S = {t(ai)k }

b
i=1

of length b, where t(ai)k ∈ supp(Dk), is called a flow sequence if for each 1 ≤ i ≤ b − 1 it holds that
qai,ai+1 > 0. Let Vj∗ be the set of types (including t(j

∗)
k) such that there exists some flow sequence that

starts with type t(j
∗)

k that reaches them. We are going to prove that t(i
∗)

k ∈ Vj∗ .

28

Note that for each t(r)k ∈ Vj∗ , if qr,` > 0 then t(`)k ∈ Vj∗ . Thus the set Uj∗ = {t(`)k : ∃t(r)k ∈ Vj∗ ∧ qr,` >
0} ⊆ Vj∗ . Since q∗ is feasible, we have∑

t
(r)
k ∈Vj∗

Fr =
∑

t
(r)
k ∈Vj∗

∑
`∈[mk]

Frqr,l =
∑

t
(r)
k ∈Vj∗

∑
`:qr,`>0

Frqr,l =
∑

t
(`)
k ∈Uj∗

∑
t
(r)
k ∈Vj∗

Frqr,`.

On the other hand,∑
t
(`)
k ∈Uj∗

∑
t
(r)
k ∈Vj∗

Frqr,` ≤
∑

t
(`)
k ∈Vj∗

∑
t
(r)
k ∈Vj∗

Frqr,` ≤
∑

t
(`)
k ∈Vj∗

∑
r∈[mk]

Frqr,` =
∑

t
(`)
k ∈Vj∗

F`.

Therefore, we must have Uj∗ = Vj∗ and for every t(`)k ∈ Vj∗ , t
(r)
k 6∈ Vj∗ , qr,l = 0. Since qi∗,j∗ > 0, we

have t(i
∗)

k ∈ Vj∗ . Let Si∗,j∗ = {ta1k , . . . , t
ab
k } such that a1 = j∗ and ab = i∗ be the shortest flow sequence

from t
(j∗)
k to t(i

∗)
k . Then each type appears in Si∗,j∗ at most once. Let f∗ = mink∈[b] Fakq

∗
ak,ak+1

≥ 0 (here
ab+1 = a1). We consider the following new solution q̂:

q̂i,j =

q∗i,j − f∗/Fi, when there exists ` s.t. a` = i and a`+1 = j

q∗i,i + f∗/Fi when i = j and there exists ` s.t. a` = i

q∗i,j o.w.

We will verify that q̂ is a feasible solution to RRSF. For the first set of constraints: for every a`, notice
that (i) q̂a`,a` = q∗a`,a` + f∗/Fa` and (ii) there exists a unique j0 such that q̂a`,j0 = q∗a`,j0 − f∗/Fa` . Thus∑

j q̂i,j =
∑

j q
∗
i,j = 1. For the second set of constraints: for every j = a`+1 for some ` ∈ [b], notice that

there exists a unique i0 = a` such that q̂i0,j = q∗i0,j − f∗/Fi0 , we have

∑
i

Fiq̂i,j =
∑
i

Fiq
∗
i,j − Fi0 ·

f∗
Fi0

+ Fj ·
f∗
Fj

=
∑
i

Fiq
∗
i,j = Fj

For the third set of constraints: for every pair (i, j), either q̂i,j ≥ q∗i,j ≥ 0 (the second and third case), or
q̂i,j = q∗i,j −

f∗
Fi
≥ 0 as f∗ ≤ Fiq∗i,j .

Therefore q̂ is a feasible solution to RRSF. Moreover since q∗ is the optimal feasible solution, its objec-
tive should be at least the objective value of q̂. Observe that for every i ∈ [mk] and every edge (i, j) with
j 6= i the value q̂i,j is not equal to q∗i,j only when there is some ` with a` = i, a`+1 = j. The value of this
edge drops by f∗/Fi, whereas the value of qi,i increases by f∗/Fi. Denote V (q∗), V (q̂) the value of the
objectives for these two feasible solutions respectively. In the flow sequence S = Si∗,j∗ , for every i = a`
for some ` ∈ [b], denote i′ = a`+1. We have

29

0 ≤V (q∗)− V (q̂)

=
∑
i

Fi(
∑
j

Wi,j(q
∗
i,j − q̂i,j) + (φ(q̂i)− φ(q∗i))

=
∑

i:t
(i)
k ∈Si∗,j∗

Fi

(
Wi,i′

f∗
Fi
−Wi,i

f∗
Fi

+ (φ(q̂i)− φ(q∗i))

)
(q̂i = q∗i , if t

(i)
k /∈ Si∗,j∗)

=f∗
∑

i:t
(i)
k ∈Si∗,j∗

(
Wi,i′ −Wi,i +

Fi
f∗

(φ(q̂i)− φ(q∗i))

)

≤f∗
∑

i:t
(i)
k ∈Si∗,j∗

(
Wi,i′ −Wi,i +

Fi
f∗
∇φ(q̂i)

T (q̂i − q∗i)
)

(φ(·) is convex)

≤f∗
∑

i:t
(i)
k ∈Si∗,j∗

(
Wi,i′ −Wi,i +

Fi
f∗
||∇φ(q̂i)||2||q∗i − q̂i||2

)
(Cauchy-Schwarz Inequality)

=f∗
∑

i:t
(i)
k ∈Si∗,j∗

(
Wi,i′ −Wi,i +

√
2||∇φ(q̂i)||2

)
(||q∗i − q̂i||22 = 2 ·

(
f∗
Fi

)2

)

=f∗
∑

i:t
(i)
k ∈Si∗,j∗

(
Wi,i′ −Wi,i +

√
2γ||q̂i||2

)
(the definition of φ(·))

≤f∗
∑

i:t
(i)
k ∈Si∗,j∗

(
Wi,i′ −Wi,i +

√
2γ
)

(q̂i is a distribution).

Since f∗ ≥ 0 we have ∑
i:t

(i)
k ∈Si∗,j∗

(
Wi,i′ −Wi,i +

√
2γ
)
≥ 0.

Thus

Wi∗,j∗ ≥Wi∗,i∗ −
√

2γ −
∑

i:t
(i)
k ∈Si∗,j∗−

{
t
(i∗)
k

}
(
Wi,i′ −Wi,i +

√
2γ
)

≥Wi∗,i∗ −
√

2γ −
∑

i:t
(i)
k ∈Si∗,j∗−

{
t
(i∗)
k

}
(
ε′ +
√

2γ
)

(Wi,i ≥Wi,i′ − ε′ by assumption)

≥Wi∗,i∗ −mε′ −
√

2mγ

Equipped with Lemma 10, we proceed to show that the convex program (P 3) has a set of optimal
Lagrange multipliers that will make the total expected payments from {p̂k}k∈[n] not too negative. First, we
construct a new convex program (P 4) that “removes” all the very negative edge weights from (P 3), that

30

is, change every edge (i, j)’s weight to max{Wi,j ,−m(ε′ + 2γ) − ε′′} (see Definition 9). Then, we argue
that convex program (P 3) and (P 4) are essentially equivalent. Namely, any optimal solution of (P 4) is also
an optimal solution for (P 3), and there is a straightforward mapping that transforms any optimal Lagrange
multipliers of (P 4) to a set of optimal Lagrange multipliers for (P 3) (see Lemma 11). Finally, we show that
if we compute p̂k(·) using any set of the optimal Lagrange multipliers derived from convex program (P 4),
then p̂k(·) is not too negative (see Lemma 12) The main reason is that using the KKT condition, we can
relate p̂k(·) to the edge weights, and the edge weights in (P 4) are not too small.

Definition 9. Fix an agent k and ε′ ≥ ε′′ ≥ 0. For every i, j, define

Ŵi,j =

{
Wi,j if Wi,j ≥ −m(ε′ + 2γ)− ε′′

−m(ε′ + 2γ)− ε′′ if Wi,j < −m(ε′ + 2γ)− ε′′

We solve the following convex program (P 4) where the decision variables are {qi,j}i,j∈[mk].

max
∑

i,j Fi

(
Ŵi,jqi,j − φ(qi)

)
subject to

∑
j qi,j = 1, ∀i∑
i Fiqi,j = Fj , ∀j

qi,j ≥ 0, ∀i, j

(10)

Let q̂∗ be an optimal solution of (P 4) and λ̂
∗
, µ̂∗, π̂∗ be any Lagrange multipliers satisfying the KKT

conditions:

1. Fi
(
Ŵi,j −

∂φ(q̂∗i)
∂q∗i,j

)
= λ̂∗i,j + µ̂∗i + Fiπ̂

∗
j , ∀i, j

2. λ̂∗i,j ≤ 0, ∀i, j

3. λ̂∗i,j q̂
∗
i,j = 0, ∀i, j

Lemma 11. Fix any agent k. Suppose for all i, j ∈ [mk], W k
i,i ≥ max{W k

i,j − ε′,−ε′′} holds for some
ε′ ≥ ε′′ ≥ 0. Let q̂∗ = {q̂∗i,j}i,j∈[mk] be any optimal solution of the convex program (P 4). Then q̂∗ is
also an optimal solution of the convex program (P 3). Moreover let λ̂∗, µ̂∗, π̂∗ be any Lagrange multipliers
satisfying the KKT conditions w.r.t. the convex program (P 4). Then there exists λ∗ = {λ∗i,j}i,j∈[mk] such
that (λ∗,µ∗ = µ̂∗, π∗ = π̂∗) satisfies the KKT conditions w.r.t. the convex program (P 3).

Proof. We first prove that q̂∗ is also an optimal solution of the convex program (P 3). Clearly q̂∗ is a
feasible solution of the convex program (P 3). To argue q̂∗ is an optimal solution, we first prove that Ŵi,i ≥
Ŵi,j − ε′,∀i, j ∈ [mk]. For every i, Since Wi,i ≥ −ε′′, Ŵi,i = Wi,i ≥ −ε′′. If Wi,j ≥ −m(ε′ + 2γ)− ε′′,
then Ŵi,j = Wi,j and we have Ŵi,i ≥ Ŵi,j − ε′ since Wi,i ≥ Wi,j − ε′. On the other hand, suppose
Wi,j < −m(ε′ + 2γ)− ε′′. Then Ŵi,j = −m(ε′ + 2γ)− ε′′ ≤ 0. Ŵi,i − Ŵi,j ≥Wi,i ≥ −ε′′ ≥ −ε′.

We apply Lemma 10 to convex program (P 4). For any i, j such that q̂∗i,j > 0, Ŵi,j ≥ Ŵi,i −m(ε′ +√
2γ) ≥ −m(ε′+

√
2γ)−ε′′. Thus it must hold that Ŵi,j = Wi,j and the solution q̂∗ has the same objective

value in (P 3) and (P 4). Moreover since Ŵi,j ≥ Wi,j for every i, j, the optimal objective value of (P 3) is
no larger than the optimal objective value of (P 4). Thus q̂∗ is an optimal solution of the convex program
(P 3).

31

For the second part of the statement, consider the following dual variables {λ∗i,j}i,j∈[mk]:

λ∗i,j =

{
λ̂∗i,j if Wi,j ≥ −m(ε′ + 2γ)− ε′′

λ̂∗i,j + Fi(Wi,j +m(ε′ + 2γ) + ε′′) o.w.

We now verify that (λ∗,µ∗ = µ̂∗,π∗ = π̂∗) satisfies the KKT conditions w.r.t. the convex program
(P 3). When Ŵi,j ≥ −m(ε′ + 2γ)− ε′′ we have that λ∗i,j = λ̂∗i,j and Ŵi,i = Wi,i. This implies that:

1. Fi
(
Ŵi,j −

∂φ(q̂∗i)
∂q̂∗i,j

)
= λ̂∗i,j + µ̂∗i + Fiπ̂

∗
j ⇔ Fi

(
Wi,j −

∂φ(q̂∗i)
∂q̂∗i,j

)
= λ∗i,j + µ̂∗i + Fiπ̂

∗
j

2. λ̂∗i,j ≤ 0

3. λ̂∗i,j q̂
∗
i,j = 0

Now consider i, j such that Wi,j < −m(ε′ + 2γ) − ε′′. In this case Ŵi,j = −m(ε′ + 2γ) − ε′′. By
Lemma 10, if q̂∗i,j > 0, then Ŵi,j ≥ Ŵi,i −m(ε′ +

√
2γ) ≥ −m(ε′ +

√
2γ)− ε′′. This contradicts with the

fact that Wi,j < −m(ε′ + 2γ)− ε′′, so q̂∗i,j = 0. We have

1.

Fi

(
Ŵi,j −

∂φ(q̂∗i)

∂q̂∗i,j

)
= λ̂∗i,j + µ̂∗i + Fiπ̂

∗
j

⇔Fi

(
−m(ε′ + 2γ)− ε′′ − ∂φ(q̂∗i)

∂q̂∗i,j

)
= λ∗i,j − Fi(Wi,j +m(ε′ + 2γ) + ε′′) + µ̂∗i + Fiπ̂

∗
j

⇔Fi

(
Wi,j −

∂φ(q̂∗i)

∂q̂∗i,j

)
= λ∗i,j + µ̂∗i + Fiπ̂

∗
j

2. λ̂∗i,j ≤ 0

3. λ̂∗i,j q̂
∗
i,j = 0

Thus (λ∗,µ∗ = µ̂∗,π∗ = π̂∗) satisfies the KKT conditions w.r.t. the convex program (P 3).

As illustrated in the following example an arbitrary set of optimal dual variables that satisfy the KKT
conditions can cause a big revenue loss.

Example 4. We consider the following instance. There is one agent with two possible types tL and tH
such that the agent has type tH with probability FtH = 1 − p and tL with probability FtL = p for some
sufficiently small p > 0. The outcome space O = {oL, oH}. v(tL, oL) = v(tH , oH) = 1 and v(tL, oH) =
v(tH , oL) = 0. The mechanismM is defined as follows: it returns outcome oH with input tH and returns
outcome oL with input tL. The payment of the mechanism is always 1

2 . It’s a BIC mechanism and it holds
that WtL,tL = WtH ,tH = 1/2 and WtL,tH = WtH ,tL = −1/2.

We are going to prove through KKT conditions that for this instance, the following q∗ is the optimal
solution for Convex Program (P 3): q∗tL,tL = q∗tH ,tH = 1 and q∗tH ,tL = q∗tH ,tL = 0. Consider the following
set of dual variables: µ∗tL = p(−1 + γ), µ∗tH = 0, π∗tL = 3/2 − 2γ, π∗tH = 1/2 − γ and λ∗(tH , tL) =
(1− p)(−2 + 2γ), λ∗(tH , tH) = λ∗(tL, tL) = λ∗(tL, tH) = 0.

32

Note that γ < 1, and
∂φ(q̂∗tL

)

∂q∗tL,tL
=

∂φ(q̂∗tH
)

∂q∗tH,tH
= γ,

∂φ(q̂∗tL
)

∂q∗tL,tH
=

∂φ(q̂∗tH
)

∂q∗tH,tL
= 0. One can verify that the dual

variables (µ∗, π∗, λ∗) satisfy the KKT conditions with respect to q∗, which implies that q∗ is an optimal
solution for (P 3).

Note that min{µ∗tL/FtL , µ
∗
tH
/FtH} = −1 + γ. According to the payment rule, the payment charged to

the first agent if she has type tL is 3/2− 2γ + γ − 0 + (−1 + γ) = 1/2 and the payment charged if she has
type tH is 1/2− γ + γ − 0 + (−1 + γ) = −1/2 + γ.

Therefore the expected revenue of the RRSF mechanism with parameter (µ∗, π∗, λ∗) is p ·1/2+(1−p) ·
(−1/2 + γ) = −1/2 + γ + p(1− γ). When both p and γ go to 0, the expected revenue of the mechanism is
close to −1/2, which is far from the revenue ofM.

Lemma 12. Given any mechanismM. Suppose for every agent k and every i, j ∈ [mk],W k
i,i ≥ max{W k

i,j−
ε′,−ε′′} holds for some ε′ ≥ ε′′ ≥ 0. Let q̂∗ = {q̂∗i,j}i,j∈[mk] be any optimal solution of the convex program
(P 4) and λ̂∗, µ̂∗, π̂∗ be any Lagrange multipliers satisfying the KKT conditions w.r.t. the convex program
(P 4). Let (λ∗,µ∗ = µ̂∗,π∗ = π̂∗) be the Lagrange multipliers stated in Lemma 11, which satisfy the
KKT conditions w.r.t. the convex program (P 3). Consider the RRSF mechanism M′ in Definition 8 with
optimal solution q∗ = q̂∗ and Lagrange multipliers (λ∗,µ∗ = µ̂∗,π∗ = π̂∗). Then for each agent k and
i ∈ [mk], p̂k(t

(i)
k) =

∑
j π
∗
j q
∗
i,j + φ(q∗i)− φ(0) + min`

µ∗`
F`
≥ −m(ε′ + 2γ)− ε′′ − γ. This implies that

REV(M′) ≥ REV(M)− n
(
m(ε′ + 2γ) + ε′′ + γ

)
.

Proof. Assume `∗ = argmin`
µ̂∗`
F`

. Note that
∑

j q̂
∗
i,j = 1. If agent k reports type t(i)k then :

p̂k(t
(i)
k) =

∑
j

π∗j q
∗
i,j + φ(q∗i)− φ(0) + min

`

µ∗`
F`

=
∑
j

π̂∗j q̂
∗
i,j + φ(q̂∗i)− φ(0) +

∑
j

µ̂∗`∗

F`∗
q̂∗i,j

=
∑
j

q̂∗i,j

(
µ̂∗`∗

F`∗
+ π̂∗j

)
+ φ(q̂∗i)− φ(0)

≥
∑
j

q̂∗i,j

(
µ̂∗`∗

F`∗
+ π̂∗j

)
By the KKT condition w.r.t to the convex program (P 4) we have that:

∑
j

q̂∗i,j

(
µ̂`∗

F`∗
+ π̂∗j

)
=
∑
j

q̂∗i,j

(
−
λ̂∗`∗,j
F`∗

+ Ŵ`∗,j −
∂φ(q̂∗`∗)

∂q̂∗`∗,j

)

≥
∑
j

q̂∗i,j

(
Ŵ`∗,j −

∂φ(q̂∗`∗)

∂q̂∗`∗,j

)
(λ̂∗`∗,j ≤ 0)

≥
∑
j

q̂∗i,j

(
−m(ε′ + 2γ)− ε′′ −

∂φ(q̂∗`∗)

∂q̂∗`∗,j

)
(Definition 9)

≥−m(ε′ + 2γ)− ε′′ − γ (the definition of φ(·) and q̂∗i,j ∈ [0, 1])

33

Finally, note that in M′, the expected revenue from payments {pk(·)}k∈[n] is exactly the same as
REV(M). Thus we have

REV(M′) ≥ REV(M)− n
(
m(ε′ + 2γ) + ε′′ + γ

)
.

We summarize the result for the ideal model in the following theorem, by choosing W as in Theorem 8.

Theorem 9. Let M be an ε-BIC and IR mechanism. Fix any γ > 0. Fix any agent k. For every i, j ∈
[mk], define W k

i,j as in Theorem 8. Let q∗k = {q∗i,j}i,j∈[mk] be the optimal solution of the convex program
(P 4) (described in Definition 9) and µ∗k = {µ̂∗i }i∈[mk], π∗k = {π̂∗j }j∈[mk] be the corresponding optimal
Lagrange multipliers. Let mechanismM′ be the RRSF mechanism with parameters q∗ = {q∗k}k∈[n],µ

∗ =
{µ∗k}k∈[n],π

∗ = {π∗k}k∈[n] as described in Definition 8. ThenM′ is BIC, IR, and

REV(M′) ≥ REV(M)− n (m(ε+ 2γ) + γ) .

Proof. According to Lemma 11, q∗k is also an optimal solution for the convex program (P 3) and µ∗k and π∗k
are optimal Lagrange multipliers for (P 3) as well. Hence,M′ is BIC and IR by Theorem 8.

SinceM is ε-BIC and IR, we have W k
i,i ≥ max{W k

i,j − ε, 0}, for every k ∈ [n] and i, j ∈ [mk]. By ap-
plying Lemma 12 with ε′ = ε and ε′′ = 0, we have that the revenue ofM′ can be at most n (m(ε+ 2γ) + γ)
smaller than the revenue ofM.

At the end of Section 7.2, we prove a lemma about RRSF mechanism using the KKT condition of the
convex program (P 3). It’s useful in the proof of Lemma 14.

Lemma 13. LetM be any RRSF mechanism with respect to W = {W k
i,j}k∈[n],i,j∈[mk]. It has parameter

(q∗,µ∗,π∗). Then for each agent k and i ∈ [mk],
∑

j∈[mk] q
∗
i,jW

k
i,j − p̂k(t

(i)
k) ≥ 0.

Proof. Fix any agent k. Note that (q∗k,µ
∗
k,π
∗
k) satisfies the KKT conditions of (P 3). By the definition of

p̂k(t
(i)
k), for every i ∈ [mk], we have

∑
j∈[mk]

q∗i,jW
k
i,j − p̂k(t

(i)
k) =

∑
j

q∗i,j(W
k
i,j − π∗j) + φ(0)− φ(q∗i)−min

`

µ∗`
F`

≥
∑
j

q∗i,j(W
k
i,j − π∗j −

µ∗i
Fi

) + φ(0)− φ(q∗i) (
∑
j

q∗i,j = 1)

=
∑
j

q∗i,j(
λ∗i,j
Fi

+
∂φ(q∗i)

∂q∗i,j
) + φ(0)− φ(q∗i) (KKT condition 1)

=
∑
j

q∗i,j
∂φ(q∗i)

∂q∗i,j
+ φ(0)− φ(q∗i) (KKT condition 3)

=∇φ(q∗i)
T · q∗i + φ(0)− φ(q∗i) ≥ 0 (φ(·) is convex)

34

7.3 Non-Ideal Model

In the previous section we showed that, in the ideal model, the RRSF mechanism M′ has only a small
revenue loss, if the original mechanism M is ε-BIC and IR. However, with only sample access to the
distributions of the edge weights, these weights can not be computed exactly. In this section, we show that
a BIC and IR mechanism with small revenue loss can be constructed, using estimates for the edge weights.
The approach is similar to [28]. For any fixed agent k, letWk

i,j be the utility of agent k on an execution of

the mechanismM = (x, p) when she reports t(j)k and her true type is t(i)k . More formally,

Wi,j = vk(t
(i)
k , x(t

(j)
k , t−k))− pk(t

(j)
k , t−k) (11)

Note thatWi,j is a random variable over t−k ∼ D−k and the randomness ofM, whose expectation is Wi,j

as defined in Definition 8.

Definition 10 (Definition 4.9 from [28]). The Regularized Estimated Replica–Surrogate Fractional Assign-
ment (RERSF) with parameter L, is defined as follows:

1. Fix any agent k. For every pair of types t(i)k , t
(j)
k ∈ supp(Dk), we define W̃ k

i,j as the empirical mean
with L samples of Wi,j . A sample of Wi,j is obtained by drawing a sample t−k ∼ D−k, running
mechanismM with input (t

(j)
k , t−k), and computing the utility in Equation (11) based on the output

outcome and payment. Let Ok be the set of output outcomes fromM among all samples and pairs
(i, j). In total there are mk · L number of outcomes.

2. Run the RRSF mechanismM′ in Definition 8 with respect to W̃ = {W̃ k
i,j}k∈[n],i,j∈[mk].

The following lemma shows that if all agents report truthfully, the RERSF mechanism has a small
revenue loss compared toM.

Lemma 14. For any η ∈ (0, 1), suppose L ≥ 2
η2

ln
(

2nm2

η

)
. Then the revenue of RERSF, when all agents

report truthfully, is at least REV(M) − nm(ε + 6γ + 5η). Moreover, the expected utility for each agent
when she reports truthfully is at least −3η.

Proof. Note thatWk
i,j ∈ [−1, 1]. By the Hoeffding bound, whenL ≥ 2

η2
ln
(

2nm2

η

)
, Pr

[
|W̃ k

i,j −W k
i,j | > η

]
≤

η
nm2 . By taking the union bound over all agents, replicas, and surrogates, we have that with probability at

least 1 − η, |W̃ k
i,j −W k

i,j | ≤ η holds for all agent k and types t(i)k , t
(j)
k ∈ supp(Dk). We refer to the event

that the above inequalities hold as a “good” event.
For the first statement, consider the case when a “good” event happens. SinceM is ε-BIC and IR, we

have W k
i,i ≥W k

i,j − ε and W k
i,i ≥ 0, for every k ∈ [n] and i, j ∈ [mk]. Thus

W̃ k
i,i ≥ W̃ k

i,j − ε− |W̃ k
i,i −W k

i,i| − |W̃ k
i,j −W k

i,j | ≥ W̃ k
i,j − ε− 2η

Moreover, W̃ k
i,i ≥ W k

i,i − |W̃ k
i,i −W k

i,i| ≥ W k
i,i − η. By applying Lemma 12 with ε′ = ε + 2η and

ε′′ = η, we have that the expected revenue of RERSF is at most n (m(ε+ 2γ + 2η) + γ + η) smaller than
the revenue ofM. When a “good” event does not happen, we can apply Lemma 12 with the trivial guarantee
ε′ = ε′′ = 1. The revenue loss is at most n (m(1 + 2γ) + 1 + γ) ≤ nm(2+3γ). Thus the expected revenue
loss is at most

n (m(ε+ 2γ + 2η) + γ + η) + nm(2 + 3γ) · η ≤ nm(ε+ 6γ + 5η)

35

We now prove the second statement. For every agent k, let t(i)k be her true type. For every j ∈ [mk],
let q∗i,j be the probability that she is represented by type t(j)k in the RRSF mechanism (step 2 of the RERSF

mechanism). Then her expected utility by reporting truthfully is
∑

jW
k
i,j ·q∗i,j−p̂k(t

(i)
k), where p̂k is the extra

payment in the RRSF mechanism with respect to W̃. By Lemma 13, we have
∑

j W̃
k
i,j · q∗i,j − p̂k(t

(i)
k) ≥ 0.

We have∑
j

W k
i,j · q∗i,j − p̂k(t

(i)
k) ≥

∑
j

W̃ k
i,j · q∗i,j − p̂k(t

(i)
k)−

∑
j

qi,j∗ |W̃ k
i,j −W k

i,j | ≥ −
∑
j

qi,j∗ |W̃ k
i,j −W k

i,j |

If a “good” event happens, −
∑

j qi,j∗ |W̃ k
i,j −W k

i,j | ≥ −η. If a “good” event does not happen, we can

apply the trivial guarantee |W̃ k
i,j −W k

i,j | ≤ 2 (sinceWk
i,j ∈ [−1, 1]) to get −

∑
j qi,j∗ |W̃ k

i,j −W k
i,j | ≥ −2.

Hence the expected utility for agent k when she reports truthfully is at least (−η) · 1 + (−2) · η = −3η.

Note that for every agent k with type t(i)k , her expected utility when represented by a surrogate with type
t
(i)
k , is W k

ij instead of W̃ k
i,j . Thus the RERSF mechanism is not BIC. However, with the number of samples

L sufficiently large, one can show that the mechanism is ε′-BIC for some small ε′ > 0. To formally prove
this claim, we first introduce the distinguishability of two types.

Definition 11 (Definition 3.3 from [28]). Let vk(·, ·) be the valuation function of agent k. We define
the swap-disutility for the types t(i)k , t

(j)
k ∈ supp(Dk) and outcomes o, o′ ∈ O to be d(t

(i)
k , t

(j)
k , o, o′) =

v(t
(i)
k , o)− v(t

(i)
k , o

′) + v(t
(j)
k , o′)− v(t

(j)
k , o′). The distinguishability of types t(i)k , t

(j)
k is defined as

d(t
(i)
k , t

(j)
k) = max

o,o′∈O
d(t

(i)
k , t

(j)
k , o, o′)

The pair o, o′ ∈ O that achieves the maximum is called the distinguishing outcome pair for t(i)k , t
(j)
k . We call

t
(i)
k , t

(j)
k distinguishable w.r.t. an outcome set O if they have non-zero distinguishability for some outcome

in that set. For every pair of types t(i)k , t
(j)
k ∈ supp(Dk), define the sampled outcome distinguishability

d̃(t
(i)
k , t

(j)
k) to be the distinguishability of types t(i)k , t

(j)
k with respect to the output outcome set Ok.

Lemma 15 (Lemma 4.7 from [28]). For any γ > 0, ζ ∈ (0, 1/2), consider the RERSF mechanism with
parameter L > 1

2ζ
−2 ln(2m/ζ). Then any agent k with type t(i)k ∈ supp(Dk) that participates in the

mechanism can gain at most 2ζm
γ E[d̃(t

(i)
k , t

(j)
k)] utility by reporting type t(j)k ∈ supp(Dk), where d̃(·, ·) is

the sampled outcome distinguishability of t(i)k , t
(j)
k . The expectation is taken over the randomness of Ok.

In order to make our mechanism BIC, we will combine the above RERSF mechanism with a strictly IC
mechanism defined below. In a strictly IC mechanism, for every agent, the utility by reporting her true type
is strictly larger the utility by reporting any other types, by some positive value.

Definition 12 ([28]). (Strict IC mechanism) Fix any agent k. The strictly IC mechanism for agent k, denoted
by SICk, consists of the following steps:

1. Chooses uniformly at random a pair of distinguishable types t(i)k , t
(j)
k ∈ supp(Dk). Let (o, o′) be the

distinguishing outcome pair for (t
(i)
k , t

(j)
k), where o, o′ ∈ Ok.

2. Let v = vk(t
(i)
k , o) − vk(t

(i)
k , o

′) and v′ = vk(t
(j)
k , o) − vk(t

(j)
k , o′) and define the price p = v+v′

2 .
Without loss of generality, assume p ≥ 0, otherwise we can swap o and o′.

36

3. The mechanism lets agent k select between the following two options: 1) The mechanism outputs an
outcome o with payment p for agent k; 2) The mechanism outputs an outcome o′ with payment 0 for
agent k.

Lemma 16 (Lemma 4.4 from [28]). The SICk mechanism for agent k is strictly IC: The utility of agent

k by reporting her true type t(i)k is at least E[d̃(t
(i)
k ,t

(j)
k)]

2M larger than the utility by reporting another type

t
(j)
k . Here M is the number of distinguishable pairs of types in supp(Dk), d̃(·, ·) is the sampled outcome

distinguishability of (t
(i)
k , t

(j)
k) w.r.t. Ok, and the expectation is taken over the randomness of Ok.

Now we are ready to construct our mechanism for the non-ideal model.

Definition 13. For any δ > 0, define mechanism M′ as follows. The mechanism has parameter γ, η, L
(from the RERSF mechanism) and δ, C > 0. With probability 1 − δ, it runs the RERSF mechanism (with
parameter γ, η, L); With probability δ, it picks an agent k uniformly at random and runs SICk for agent k.
The payment for agent k is defined in Definition 12. Other agents pays 0. At last, the mechanism subsidizes
every agent C.

We wrap everything up in Theorem 10. We prove that with a proper choice of each parameter, mecha-
nismM′ in Definition 13 is BIC and IR. Also the revenue loss ofM′ is small.

Theorem 10. There exist choices for the parameters γ = ε, δ = ε, η = ε, C = 4ε and L = poly(n,m, 1
ε)

such that the mechanismM′ in Definition 13 is BIC, IR and REV(M′) ≥ REV(M)−O(nmε). Mechanism
M′ has expected running time poly (n,m, 1/ε, b) and makes in expectation at most poly (n,m, 1/ε) queries toM.
Here b is an upper bound on the bit complexity of vk(t

(i)
k , o), F

k
i , o for every k ∈ [n], i ∈ [mk], o ∈ O.

Proof. Let ζ = ε2

4nm3 and L =

⌈
max

(
2
ε2

ln
(

2nm2

ε

)
, 8m6n2

ε4
ln
(

8m4n
ε2

))⌉
. We first show that the mech-

anism is BIC. Fix any agent k ∈ [n] and her type t(i)k ∈ supp(Dk). We are going to bound the difference
between the utility of reporting truthfully and the utility of reporting type t(j)k ∈ supp(Dk), for any j 6= i.
Note that L > 1

2ζ
−2 ln(2m/ζ). By Lemma 15, whenM′ executes the RERSF mechanism (with probability

1− δ), the difference is at least −2ζm
γ E[d̃(t

(i)
k , t

(j)
k)]. By Lemma 16, whenM′ executes SICk (with prob-

ability δ/n), the difference is at least E[d̃(t
(i)
k ,t

(j)
k)]

2m2 , since the number of distinguishable pairs of types w.r.t.
Ok is at most m2. WhenM′ executes SIC` for some ` 6= k, the difference is 0 as agent k’s reported type
won’t affect the output outcome and her payment. Thus the difference between the expected utility when
truthfully reporting and misreporting is at least

−2ζm

γ
E[d̃(t

(i)
k , t

(j)
k)] · (1− δ) +

E[d̃(t
(i)
k , t

(j)
k)]

2m2
· δ
n

The above value is non-negative when δ = γ = ε and ζ = ε2

4nm3 . Thus the mechanism is BIC.

Furthermore, since L ≥ 2
η2

ln
(

2nm2

η

)
, by Lemma 14, the expected utility of agent k, given the fact that

M′ executes the RERSF mechanism, is at least C − 3ε. WhenM′ executes SICk, the utility for agent k
is at least −1 + C. This is because by Definition 12, the payemnt of the strict IC mechanism is at least -1
and the agent’s value for the outcome is non-negative. WhenM′ executes SIC` for some ` 6= k, agent k’s
utility is at least C, since her value for the outcome is non-negative. Thus agent k’s overall expected utility
by reporting her true type t(i)k is at least

37

(C − 3ε) · (1− δ) + (−1 + C) · δ
n

+ C · δ(n− 1)

n
≥ 0

The above inequality holds when δ = ε and C = 4ε. ThusM′ is IR. To bound the revenue loss, note
that the payment in mechanism SICk is always non-negative. By Lemma 14, we have

REV(M′) ≥ (1− δ) · (REV(M)− nm(ε+ 6γ + 5η)) ≥ REV(M)− n(12m+ 1)ε

The last inequality follows from the fact that REV(M) ≤ n.
Finally we discuss the running time ofM′ and number of queries toM. For a given input, in step 1 of

the RERSF mechanism (see Definition 10), the mechanism makes L queries toM for every k ∈ [n] and
i, j ∈ [mk]. In step 2 of RERSF, it makes one query to obtain the output outcome for a given input. The
strictly IC mechanism does not make queries toM. Overall,M′ makes at most O(mL) = poly(n,m, 1/ε)
queries toM.

For the running time ofM′, first consider the RERSF mechanism. By [32], the convex program (P 3)
and its dual problem can be solved in poly(n,m,L, b) time. Thus all the parameters in the RRSF is de-
termind in poly(n,m,L, b) time. One can easily verify that other procedures of RERSF runs in time
poly(n,m,L, b). Thus RERSF runs in poly(n,m, 1/ε, b) time.

Now consider the running time of the strictly IC mechanism SICk. Note that finding all the distin-
guishable types with respect to Ok takes time at most O(m4L2), by going over all pairs of types (t

(i)
k , t

(j)
k)

and pairs of outcomes (o, o′). Thus SICk runs in time poly(n,m, 1/ε). Altogether, M′ runs in time
poly(n,m, 1/ε, b).

Similar to Section 6, we can apply Theorem 10 to the multi-dimensional revenue maximization problem
and derive the following theorem. The proof of Theorem 11 is analogous to the proof of Theorem 6,
following from Theorem 10 and Theorem 5.

Theorem 11. LetO be a general outcome space. Given full access to agents’ type distributionsD =×iDi.
Let b be an upper bound on the bit complexity of vi(ti, o) and Pr(ti) for any agent i, any type ti, and any
outcome o, and OPT be the optimal revenue achievable by any BIC and IR mechanism. We further assume
that types are normalized, that is, for each agent i, type ti and outcome o, vi(ti, o) ∈ [0, 1].

Given oracle access to an α-approximation algorithm G for VWO with running time rtG(x), where x is
the bit complexity of the input, there is an algorithm that terminates in poly

(
n,m, 1

ε , b, rtG
(
poly

(
n,m, 1

ε , b
)))

time, and outputs an exactly BIC and IR mechanism with expected revenue

REV(M,D) ≥ α ·OPT −O (nmε) ,

where m = maxi∈[n] |supp(Di)|. On any input bid,M computes the outcome and payments in expected
running time poly

(
n,m, 1

ε , b, rtG
(
poly

(
n,m, 1

ε , b
)))

.

References

[1] Saeed Alaei. Bayesian Combinatorial Auctions: Expanding Single Buyer Mechanisms to Many Buy-
ers. In the 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2011.

[2] Saeed Alaei, Hu Fu, Nima Haghpanah, Jason Hartline, and Azarakhsh Malekian. Bayesian Optimal
Auctions via Multi- to Single-agent Reduction. In the 13th ACM Conference on Electronic Commerce
(EC), 2012.

38

[3] Saeed Alaei, Hu Fu, Nima Haghpanah, and Jason D. Hartline. The simple economics of approximately
optimal auctions. In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013,
26-29 October, 2013, Berkeley, CA, USA, pages 628–637. IEEE Computer Society, 2013.

[4] Aaron Archer, Christos Papadimitriou, Kunal Talwar, and Éva Tardos. An approximate truthful mech-
anism for combinatorial auctions with single parameter agents. Internet Mathematics, 1(2):129–150,
2004.

[5] Moshe Babaioff, Nicole Immorlica, Brendan Lucier, and S. Matthew Weinberg. A simple and approx-
imately optimal mechanism for an additive buyer. In 55th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 21–30, 2014.

[6] Moshe Babaioff, Robert Kleinberg, and Aleksandrs Slivkins. Multi-parameter mechanisms with im-
plicit payment computation. In Proceedings of the fourteenth ACM conference on Electronic com-
merce, pages 35–52. ACM, 2013.

[7] Moshe Babaioff, Robert D Kleinberg, and Aleksandrs Slivkins. Truthful mechanisms with implicit
payment computation. Journal of the ACM (JACM), 62(2):10, 2015.

[8] Xiaohui Bei and Zhiyi Huang. Bayesian Incentive Compatibility via Fractional Assignments. In the
Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2011.

[9] Anand Bhalgat, Sreenivas Gollapudi, and Kamesh Munagala. Optimal auctions via the multiplicative
weight method. In Michael J. Kearns, R. Preston McAfee, and Éva Tardos, editors, ACM Conference
on Electronic Commerce, EC ’13, Philadelphia, PA, USA, June 16-20, 2013, pages 73–90. ACM, 2013.

[10] Johaness Brustle, Yang Cai, and Constantinos Daskalakis. Multi-item mechanisms without item-
independence: Learnability via robustness. arXiv preprint arXiv:1911.02146, 2019.

[11] Yang Cai and Constantinos Daskalakis. Extreme-Value Theorems for Optimal Multidimensional Pric-
ing. In the 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2011.

[12] Yang Cai, Constantinos Daskalakis, and S. Matthew Weinberg. An Algorithmic Characterization
of Multi-Dimensional Mechanisms. In the 44th Annual ACM Symposium on Theory of Computing
(STOC), 2012.

[13] Yang Cai, Constantinos Daskalakis, and S. Matthew Weinberg. Optimal Multi-Dimensional Mecha-
nism Design: Reducing Revenue to Welfare Maximization. In the 53rd Annual IEEE Symposium on
Foundations of Computer Science (FOCS), 2012.

[14] Yang Cai, Constantinos Daskalakis, and S. Matthew Weinberg. Reducing Revenue to Welfare Max-
imization : Approximation Algorithms and other Generalizations. In the 24th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2013.

[15] Yang Cai, Constantinos Daskalakis, and S. Matthew Weinberg. Understanding Incentives: Mechanism
Design becomes Algorithm Design. In the 54th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), 2013.

[16] Yang Cai, Nikhil R. Devanur, and S. Matthew Weinberg. A duality based unified approach to bayesian
mechanism design. In the 48th Annual ACM Symposium on Theory of Computing (STOC), 2016.

39

[17] Yang Cai and Zhiyi Huang. Simple and Nearly Optimal Multi-Item Auctions. In the 24th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2013.

[18] Yang Cai and Mingfei Zhao. Simple mechanisms for subadditive buyers via duality. In the 49th Annual
ACM Symposium on Theory of Computing (STOC), 2017.

[19] Shuchi Chawla, Jason D. Hartline, and Robert D. Kleinberg. Algorithmic Pricing via Virtual Valua-
tions. In the 8th ACM Conference on Electronic Commerce (EC), 2007.

[20] Shuchi Chawla, Jason D. Hartline, David L. Malec, and Balasubramanian Sivan. Multi-Parameter
Mechanism Design and Sequential Posted Pricing. In the 42nd ACM Symposium on Theory of Com-
puting (STOC), 2010.

[21] Shuchi Chawla and J. Benjamin Miller. Mechanism design for subadditive agents via an ex-ante
relaxation. In Vincent Conitzer, Dirk Bergemann, and Yiling Chen, editors, Proceedings of the 2016
ACM Conference on Economics and Computation, EC ’16, Maastricht, The Netherlands, July 24-28,
2016, pages 579–596. ACM, 2016.

[22] Constantinos Daskalakis, Nikhil R. Devanur, and S. Matthew Weinberg. Revenue maximization and
ex-post budget constraints. In Roughgarden et al. [37], pages 433–447.

[23] Constantinos Daskalakis and S. Matthew Weinberg. Symmetries and Optimal Multi-Dimensional
Mechanism Design. In the 13th ACM Conference on Electronic Commerce (EC), 2012.

[24] Shaddin Dughmi, Jason D Hartline, Robert Kleinberg, and Rad Niazadeh. Bernoulli factories and
black-box reductions in mechanism design. In Proceedings of the 49th Annual ACM SIGACT Sympo-
sium on Theory of Computing, pages 158–169. ACM, 2017.

[25] Evangelia Gergatsouli, Brendan Lucier, and Christos Tzamos. The complexity of black-box mecha-
nism design with priors. In Anna Karlin, Nicole Immorlica, and Ramesh Johari, editors, Proceedings
of the 2019 ACM Conference on Economics and Computation, EC 2019, Phoenix, AZ, USA, June
24-28, 2019, pages 869–883. ACM, 2019.

[26] Yannai A Gonczarowski and S Matthew Weinberg. The sample complexity of up-to-ε multi-
dimensional revenue maximization. In 2018 IEEE 59th Annual Symposium on Foundations of Com-
puter Science (FOCS), pages 416–426. IEEE, 2018.

[27] Jason Hartline, Robert Kleinberg, and Azarakhsh Malekian. Bayesian incentive compatibility via
matchings. In the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2011.

[28] Jason D Hartline, Robert Kleinberg, and Azarakhsh Malekian. Bayesian incentive compatibility via
matchings. Games and Economic Behavior, 92:401–429, 2015.

[29] Jason D. Hartline and Brendan Lucier. Bayesian Algorithmic Mechanism Design. In the 42nd ACM
Symposium on Theory of Computing (STOC), 2010.

[30] MS Keane and George L O’Brien. A bernoulli factory. ACM Transactions on Modeling and Computer
Simulation (TOMACS), 4(2):213–219, 1994.

[31] Pravesh Kothari, Divyarthi Mohan, Ariel Schvartzman, Sahil Singla, and S Matthew Weinberg.
Approximation schemes for a buyer with independent items via symmetries. arXiv preprint
arXiv:1905.05231, 2019.

40

[32] M.K. Kozlov, S.P. Tarasov, and L.G. Khachiyan. The polynomial solvability of convex quadratic
programming. USSR Computational Mathematics and Mathematical Physics, 20(5):223 – 228, 1980.

[33] Krzysztof Latuszynski. The bernoulli factory, its extensions and applications. Proceedings of IWAP,
pages 1–5, 2010.

[34] Roger B. Myerson. Optimal Auction Design. Mathematics of Operations Research, 6(1):58–73, 1981.

[35] Şerban Nacu, Yuval Peres, et al. Fast simulation of new coins from old. The Annals of Applied
Probability, 15(1A):93–115, 2005.

[36] Jean-Charles Rochet. A necessary and sufficient condition for rationalizability in a quasi-linear context.
Journal of mathematical Economics, 16(2):191–200, 1987.

[37] Tim Roughgarden, Michal Feldman, and Michael Schwarz, editors. Proceedings of the Sixteenth ACM
Conference on Economics and Computation, EC ’15, Portland, OR, USA, June 15-19, 2015. ACM,
2015.

[38] Aviad Rubinstein and S. Matthew Weinberg. Simple mechanisms for a subadditive buyer and applica-
tions to revenue monotonicity. In Roughgarden et al. [37], pages 377–394.

[39] Andrew Chi-Chih Yao. An n-to-1 bidder reduction for multi-item auctions and its applications. In
SODA, 2015.

41

A Estimating γ: Approximating the Offline Optimum of the Regularized
Matching

In this section, we show how to estimate the parameter γ so that it is a constant factor approximation to
optimum of program (P ′′) (see Definition 6) on the replica-surrogate matching in Mechanism 3 with high
probability. Importantly, the estimate is completely independent from the agent’s reported type. Here is
the basic idea. We sample the edge weights between r′ and s, and use the empirical mean to compute the
optimal solution of program (P ′′). We show that with polynomially many samples, the optimum of (P ′′)
computed based on the empirical means is a constant approximation to the optimum of (P ′′) on the true
edge weights with probability almost 1.

Lemma 17. For any agent i, given parameters `, δ, η′, and d ≥ 32 log(8η′−1)

δ2` log2(`)
, fix s to be the ` surrogates,

first draw d` fresh samples from D′i, which we denote using r′. We use OPT(ω) to denote the optimum
of (P ′′) when the edge weight between the j-th replica/LHS-node and the k-th normal surrogate/normal
RHS-node is ωjk. There exists a randomized algorithm based only on r′ and s that computes a γ that lies

in
[

2·OPT(ω(r′))
d , 24·OPT(ω(r′))

d

]
with probability at least 1− η′/2, where ωjk(r′) = Wi(r

′(j), s(k)) as defined

in Mechanism 3. Moreover, γ is at most O (max{`, δ` log(`)}) and the algorithm has poly(d, `, 1/η′, 1/δ)
running time and makes poly(d, `, 1/η′, 1/δ) queries to mechanismM.

Furthermore, if r are d` i.i.d. samples from D′i, then OPT(ω(r′)) lies in
[

OPT(ω(r))
2 , 3·OPT(ω(r))

2

]
with

probability at least 1− η′/2 over the randomness of r and r′, where ωjk(r) = Wi(r
(j), s(k)). In this case, γ

also lies in
[

OPT(ω(r))
d , 36·OPT(ω(r))

d

]
with probability at least 1− η′.

Proof of Lemma 17: We prove our statement in two steps. In the first step, we show that if we take poly-
nomially many samples, we can obtain a sufficiently accurate estimate of ω(r′)jk for each edge (j, k). We
prove that the optimum of (P ′′) on the estimated weights is close to OPT(ω(r′)). We use Fjk to denote the
distribution of the random variable vi(r′(j), x(s(k), t−i)) − (1 − η) · pi(s(k), t−i), where t−i is distributed
according to D−i.

Lemma 18 (adapted from [24]). For each edge (j, k) between the j-th replica r′(j) and the k-th normal
surrogate s(k), if we take N ≥ 2 log(4`2dη′−1)

δ2 log2(`)
samples from Fjk, and use ω̂jk(r′) to denote the empirical

mean of these N samples, then with probability at least 1− η′

2 ,

OPT(ω(r′))

2
≤ OPT(ω̂(r′)) ≤ 2OPT(ω(r′)).

Proof. By the Chernoff bound, we know that Pr
[
|ωjk(r)− ω̂jk(r)| ≥ δ log(`)

2

]
≤ η′

2d`2
for each edge (j, k).

Since there are d`2 many edges, by the union bound, we have that with probability at least 1 − η′

2 for each
edge (j, k):

|ωjk(r)− ω̂jk(r)| ≤ δ log(`)

2

Let (x∗, y∗) be the optimal solution of the (P ′′) with edge weights (ωjk(r′))jk and (x∗∗, y∗∗) be the
optimal solution of the (P ′′) with edge weights (ω̂jk(r′))jk. Then

42

OPT(ω(r′)) =
∑
j,k

(
x∗jkωjk(r

′)− δ ·
(
x∗jk log(x∗jk) + y∗jk log(y∗jk)

))
≥
∑
j,k

(
x∗∗jkωjk(r

′)− δ ·
(
x∗∗jk log(x∗∗jk) + y∗∗jk log(y∗∗jk)

))
≥ OPT(ω̂(r′))− d`δ log(`)

2

≥ OPT(ω̂(r′))

2

The last inequality holds since a valid assignment is to set yjk = 1/` and xjk = 0 for each j, k, which
has objective value δd` log(`).

The other direction can be proved similarly.

Let A be the total weight of the maximum weight matching with edge weights (ω̂jk(r′))jk. It is
clear that A lies in [OPT(ω̂(r′))− δd` log(2`),OPT(ω̂(r′))]. Note that if we set yjk = 1/` and xjk =
0 for each j, k, the objective of (P ′′) has value δd` log(`). Hence, max{A, δd` log(`)} is guaranteed
to lie in

[
OPT(ω̂(r′))

3 ,OPT(ω̂(r′))
]
. If we choose γ to be 12·max{A,δd` log(`)}

d , γ is guaranteed to lie in[
4·OPT(ω̂(r′))

d , 12·OPT(ω̂(r′))
d

]
. Due to Lemma 18, γ lies in

[
2·OPT(ω(r′))

d , 24·OPT(ω(r′))
d

]
with probability at

least 1 − η′/2. As A can be computed in time poly(d, `, 1/η′, 1/δ), γ can also be computed in time
poly(d, `, 1/η′, 1/δ).

In the second step of the proof, we show that OPT(ω(r)) and OPT(ω(r′)) are close with high probabil-
ity. We first need the following Lemma to prove OPT(ω(r)) has bounded difference of 2.

Lemma 19. For any j ∈ [d`], any type r′(j) and replica profile r,∣∣∣OPT (ω(r))− OPT
(
ω
(
r′(j), r(−j)

))∣∣∣ ≤ 2,

where ωjk
(
r′(j), r(−j)

)
= Wi(r

′(j), s(k)) and ωj′k
(
r′(j), r(−j)

)
= ωj′k(r) for any j′ 6= j.

Proof. Let (x∗, y∗), (x∗∗, y∗∗) be the optimal solutions under replica profile r and
(
r′(j), r(−j)

)
for (P ′′)

respectively. Then

OPT(ω(r)) =
∑

j′∈[d`],k∈[`]

(
x∗j′kωj′k(r)− δ ·

(
x∗j′k log(x∗j′k) + y∗j′k log(y∗j′k)

))
≥

∑
j′∈[d`],k∈[`]

(
x∗∗j′kωj′k(r)− δ ·

(
x∗∗j′k log(x∗∗j′k) + y∗∗j′k log(y∗∗j′k)

))
≥

∑
j′ 6=j,k∈[`]

(
x∗∗j′kωj′k(r)− δ ·

(
x∗∗j′k log(x∗∗j′k) + y∗∗j′k log(y∗∗j′k)

))
+
∑
k∈[`]

(
x∗∗jk

(
ωjk(r

′(j), r(−j))− 2
)
− δ ·

(
x∗∗jk log(x∗∗jk) + y∗∗jk log(y∗∗jk)

))
= OPT(ω(r′(j), r(−j)))− 2

The last inequality is because both ωjk(r) and ω(r′(j), r(−j)) lie in [−1, 1]. The other direction follows
similarly.

43

Next, we apply McDiarmid’s inequality to the function OPT(ω(r)).

Lemma 20. When d ≥ 32 log(8η′−1)

δ2` log2(`)
, if both r and r′ are collections of d` i.i.d. samples from D′i, then with

probability at least 1− η′

2 ,

1

2
OPT(ω(r)) ≤ OPT(ω(r′)) ≤ 3

2
OPT(ω(r)).

The probability is over the randomness of both r and r′.

Proof. Due to Lemma 20, we can apply McDiarmid’s inequality on the function OPT(ω(r)), and we have

Pr
r

[∣∣∣OPT(ω(r))− E
r
[OPT(ω(r)]

∣∣∣ ≥ δd` log(`)

4

]
≤ η′

4

Similarly, we have

Pr
r′

[∣∣∣OPT(ω(r′))− E
r
[OPT(ω(r)]

∣∣∣ ≥ δd` log(`)

4

]
≤ η′

4

Hence, with probability at least 1− η′

2 ,

∣∣OPT(ω(r))− OPT(ω(r′))
∣∣ ≤ δd` log(`)

2

Since δd` log(`) is a lower bound on both OPT (ω(r′)) and OPT (ω(r)) (by setting yjk = 1/` and
xjk = 0 for each j, k) we have that with probability at least 1− η′

2 ,

1

2
OPT(ω(r)) ≤ OPT(ω(r′)) ≤ 3

2
OPT(ω(r)).

Lemma 17 follows from Lemma 18 and 20. 2

B Missing Details from Section 5

Proof of Lemma 8:

M′ is BIC: We prove the Bayesian Incentive Compatibility in two parts. The first part is similar to the
proof of Lemma 2. We argue that the distribution of the normal surrogate si that represents agent i in Phase
2, when the agent i reports truthfully, is Di. Note that for any matching Algorithm 2 produces, the k-th
normal surrogate and the k-th 0-surrogate together are matched to exactly d replicas for every k ∈ [`]. As
the d`− 1 replicas and the agent’s type are all drawn from the same distribution D′i, we can simply treat all
of them as replicas and uniformly choose one to be the agent reported type after Algorithm 2 terminates.
Therefore, the surrogate si that represents the agent, will also be chosen uniformly at random between all
the normal surrogates. Thus, the distribution of si is Di.

If all the other agents report truthfully, agent i’s value for winning a surrogate s is exactly Wi(ti, s) if
her true type is ti. In other words, under the assumption that all other agents report truthfully, Mechanism 3
for agent i is equivalent to a competition among replicas to win surrogates, and the edge weight between a

44

replica and a surrogate is exactly the replica’s value for winning the surrogate. To show that Mechanism 3
is BIC, it suffices to prove that at any position π,

ui(ti,Aπ(W (t′i)))− E
λ

[qi(t
′
i, λ)]

is maximized when the reported type t′i equals to the true type ti. Here W (t′i) is simply the collection of
the edge weights when r(π) = t′i, and the function ui(·) is defined in Definition 7. A result by Rochet [36]
implies that this is indeed the case. Interested readers can find a modern restatement of the result in Theorem
2.1 of [6] 17.

M′ is IR: The expected utility for agent i with type ti at position π is

ui(ti,Aπ(W))− E
λ

[qi(ti, λ)] =

∫ 1

0
ui (ti,Aπ (λWπ,W−π)) dλ+

√
δ(log 2`+ 1), (12)

whereW is the collection of weights inGi when agent i reports truthfully. We will first prove that for any
λ ∈ [0, 1], ui (ti,Aπ (λWπ,W−π)) is at least− δ log(2`)

λ . DenoteH(x, y) = −
∑

k(xk log(xk)+yk log(yk))
as the entropy for distribution (x, y).

Let (x′′π, y
′′
π) be Aπ(λWπ,W−π). By Observation 1,

(x′′π, y
′′
π) = argmax(xπ ,yπ)

∑
k

xπk · λWπk + δ ·H(xπ, yπ)−
∑
k

γα
(π)
k · (xπk + yπk)

By considering an alternative solution (0, x′′π + y′′π), we have∑
k

x′′πk · λWπk+δ ·H(x′′π, y
′′
π)−

∑
k

γα
(π)
k · (x

′′
πk + y′′πk)

≥ 0− δ ·
∑
k

(x′′πk + y′′πk) log(x′′πk + y′′πk)−
∑
k

γα
(π)
k · (x

′′
πk + y′′πk)

Since −
∑

k(x
′′
πk + y′′πk) log(x′′πk + y′′πk) ≥ 0,

ui (ti,Aπ (λWπ,W−π)) =
∑
k

x′′πk ·Wπk ≥ −
δ

λ
H(x′′π, y

′′
π) ≥ −δ log(2`)

λ
.

Another lower bound for ui (ti,Aπ (λWπ,W−π)) is −1, as the mechanism M is IR, by definition of the
edge weight Wπk ≥ −1 for all k ∈ [`]. Now, we are ready to lower bound the utility

RHS of Equation (12) ≥
∫ 1

√
δ

−δ log(2`)

λ
dλ+

∫ √δ
0
−1dλ+

√
δ(log 2`+ 1)

= −δ log(1/
√
δ) log(2`)−

√
δ +
√
δ(log(2`) + 1)

≥ −
√
δ log(2`) +

√
δ log(2`)

= 0

Next, we prove thatM′ does not lose too much revenue by subsidizing the agents in Phase 1.
17To apply Theorem 2.1 of [6] to our setting, one should think of each surrogate as an outcome, and the corresponding edge

weight as the value for the outcome. In other words, a replica’s type is the weights on the incident edges. As the matching is
computed by a maximal-in-range algorithm, we can allow the edge weights to be arbitrary numbers, and the induced allocation rule
will still be implementable in an incentive compatible way. As a result, we can apply Theorem 2.1 of [6] to our setting. Note that
the incentive compatible payment rule it gives is off by an absolute constant compared to our payment rule in Definition 7.

45

Eλ[qi(t
′
i, λ)] is at least −

√
δ(log(2`) + 1): It suffices to show that

ui (ti,Aπ (W)) ≥ ui (ti,Aπ (λWπ,W−π))

for any λ ∈ [0, 1). We still use (x′′π, y
′′
π) to denote Aπ(λWπ,W−π) and (x̂π, ŷπ) to denote Aπ (W).

By Observation 1, both allocations are maximal-in-range for the same dual variables α(π). Hence, the
following two inequalities are true.

∑
k

x̂πkWπk+δ ·H(x̂π, ŷπ)−
∑
k

γα
(π)
k ·(x

′
πk+y′πk) ≥

∑
k

x′′πkWπk+δ ·H(x′′π, y
′′
π)−

∑
k

γα
(π)
k ·(x

′′
πk+y′′πk)

∑
k

x′′πkλWπk+δ·H(x′′π, y
′′
π)−

∑
k

γα
(π)
k ·(x

′′
πk+y

′′
πk) ≥

∑
k

x̂πkλWπk+δ·H(x̂π, ŷπ)−
∑
k

γα
(π)
k ·(x̂πk+ŷπk)

Summing up the two inequalities together, we have∑
k

(x̂πk − x′′πk)Wπk(1− λ) ≥ 0.

Since λ ∈ [0, 1),

ui (ti,Aπ (W))− ui (ti,Aπ (λWπ,W−π)) =
∑
k

(x̂πk − x′′πk)Wπk ≥ 0.

Finally, we analyze the time and query complexity of the mechanism.

Time and Query Complexity: All steps except Step 3,6, and 8 clearly has poly(d, `) time and query
complexity. According to Lemma 17, Step 3 has poly(d, `, 1/η′, 1/δ) time and query complexity. Since
γ is guaranteed to be at most max{`, δ` log `}, Algorithm 2 in Step 6 has time and query complexity
poly(d, `, 1/δ) according to Theorem 3. From Definition 7, it is clear that Step 8 also has time and
query complexity at most poly(d, `, 1/δ). Hence, the mechanism M′ has time and query complexity
poly(d, `, 1/η′, 1/δ). 2

B.1 Bounding the Revenue Loss

Now we give the proof of Theorem 4. It suffices to lower bound the revenue ofM′ from the second phase
due to Lemma 8. To bound the revenue loss, we define some new notations.

New Notations: For every agent i, and the corresponding bipartite graph Gi, we define a new bipartite
graph Ĝi whose left hand side nodes are the replicas/LHS-nodes of Gi. For each normal surrogate/RHS-
node of Gi, we duplicate it d times to form the set of right hand side nodes of Ĝi. For the k-th surrogate
in Gi, the (a` + k)-th surrogate in Ĝi is one of its copies for all 0 ≤ a ≤ d − 1. We do not copy the
0-surrogates to Ĝi. The edge weights in Ĝi are still defined using Wi(·, ·). Clearly, every d-to-1 matching
in Gi corresponds to a 1-to-1 matching in Ĝi. If replica r is matched to a surrogate s in Gi, simply match
r to the first available copy of s in Ĝi. We use `′ to denote d`, and Ĝi has 2`′ nodes. When we say the
matching in Ĝi produced by Algorithm 2, we mean the matching in Ĝi that corresponds to the matching
produced by Algorithm 2 in Gi. We follow the convention to use r(j) to denote the type of the j-th replica

46

and s(k) to denote the type of the k-th surrogate in Ĝi. We further simplify the notation and use pi(ti) to
denote Et−i∼D−i [pi(ti, t−i)] for any type ti ∈ Ti.

Given the replica profile r and surrogate profile s, for any matching L(r, s) in Ĝi, we slightly abuse
notation to use Wi(L(r, s)) to denote

∑
(r,s)∈L(r,s)Wi(r, s). When the replica profile r and surrogate profile

s are clear from context, we simply use Wi(L) to denote the total weight of the matching L. Since the
analysis mainly concerns the set of surrogates that are matched in a matching, we use s ∈ L(r, s) to denote
that the surrogate s is matched in L(r, s). LetO(r, s) be the (randomized) matching obtained by Algorithm 2
on Ĝi, V (r, s) be the maximum weight matching in Ĝi.

We first provide a Lemma that relates the expected revenue ofM′ to the size of the matchings.

Lemma 21. Let REV-SECONDi(M′,D′) be the expected revenue ofM′ from agent i in Phase 2, REVi(M,D)
be the expected revenue ofM from agent i,

REV-SECONDi(M′,D′) ≥ (1− η) · Er,s

[∑
s(k)∈O(r,s) pi(s

(k))/`′
]
,

and
REVi(M,D) = Es

[∑
k∈[`′] pi(s

(k))/`′
]

Proof. For every agent i, only when the agent i is matched to a surrogate in O(r, s), she pays the surrogate
price. We can again first sample r and s, and run Algorithm 2 on the corresponding graph Ĝi to find the
matching O(r, s), then choose a replica uniformly at random to be agent i. Since each replica has exactly
probability 1/`′ to be agent i, each surrogate inO(r, s) is selected with probability 1/`′, the expected revenue
paid by agent i is exactly (1− η) · Er,s

[∑
s(k)∈O(r,s)

pi(s
(k))
`′

]
. The expected payment from agent i inM is

Eti∼Di [pi(ti)]. Since each s(k) is drawn from Di, this is exactly the same as Es

[∑
k∈[`′] pi(s

(k))/`′
]
.

In Lemma 22, we bound the gap between REV-SECONDi(M′,D′) and REVi(M,D). Indeed, we prove
a stronger result that holds for any matching K(r, s) that has close to maximum total weight.

Lemma 22. Recall that V (r, s) is the maximum weight matching in Ĝi. Let

E
r,s

[Wi (K (r, s))] = E
r,s

[Wi (V (r, s))]−∆.

We have

(1− η) E
r,s

 ∑
s(k)∈K(r,s)

pi(s
(k))/`′

 ≥ E
s

∑
k∈[`′]

pi(s
(k))/`′

−n[η +

√
|T ′i |
`

+
ε

η
+

∆

d`η

]
− 2

η
dw(Di,D′i).

To prove Theorem 4, one only needs to chooseK(r, s) to be the matchingO(r, s) produced Algorithm 2,
and combine the guarantees in Lemma 8 and 21.

Instead of proving Lemma 22, we prove the following strengthened version of the statement.

Lemma 23. Let Er,s [Wi (K (r, s))] = Er,s [Wi (V (r, s))]−∆. We have

(1− η) E
r,s

 ∑
s(k)∈K(r,s)

pi(s
(k))/`′

 ≥ E
s

∑
k∈[`′]

pi(s
(k))/`′

−(η +

√
|T ′i |
`

+
ε

η
+

∆

d`η

)
− 2

η
dw(Di,D′i).

47

Moreover, for any coupling ci(·) that vi is non-increasing w.r.t. ci(·), the last term can be improved to

− 1

η`′
E
r,s

 ∑
(r(j),s(k))∈K(r,s)

E
ci(r), t−i∼D−i

[
vi(r

(j), x(s(k), t−i))− vi(ci(r(j)), x(s(k), t−i))
] .18

Proof of Lemma 23: To prove the statement, we consider an arbitrary coupling ci(·, ·) of distribution D′i
and Di . For every replica r ∈ T ′i , ci(r) is a random type from Ti. For every realization of the types
ci(r) =

(
ci(r

(j))
)
j∈[`′]

, we consider the maximal matching that matches a replica r(j) with a surrogate

s(k) only if ci(r(j)) = s(k). We denote the matching as L(ci(r), s) and refer to it as the maximal coupled
same-type matching. In the next Lemma, we argue that in expectation of r, s and the realization of ci(r), the
expected size of L(ci(r), s) is close to `′.

Lemma 24. For any r, s, and realization of ci(r) =
(
ci(r

(j))
)
j∈[`′]

, let L(ci(r), s) be a maximal coupled
same-type matching, then

E
r,s,ci(r)

[|L(ci(r), s)|] ≥ `′ −
√
d |T ′i | · `′.

Proof. To prove the result, we first invoke the following Lemma.

Lemma 25 (Adapted from [27]). Let r′ be N replicas drawn i.i.d. from distribution D′i, and s′ be N
surrogates drawn i.i.d. from distribution Di. For any coupling ci(·) between D′i and Di, the expected
cardinality of a maximal matching that only matches a replica r and a surrogate s when ci(r) = s is at least
N −

√
|T ′i | ·N . The expectation is over the randomness of r′, s′, and the coupling ci(r′).

Although we have `′ replicas and `′ surrogates, we cannot directly apply Lemma 25, as the surrogates
are not i.i.d. samples from Di. Instead, we partition Ĝi into d subgraphs. The α-th subgraph contains
all replicas r(j) and surrogates s(k) with j and k lie in [α` + 1, (α + 1)`]. If we only consider the α-th
subgraph, due to our construction of Ĝi, the replicas are all sampled i.i.d. from D′i and the surrogates are
also sampled i.i.d. from Di. Therefore, Lemma 25 implies that a maximal coupled same-type matching in
the α-th subgraph has expected size at least ` −

√
|T ′i |`. Since there are d subgraphs, so the expected size

of a maximal coupled same-type matching is at least `′ −
√
d |T ′i | · `′.

Now, it suffices to argue that the total payment from surrogates that are in L(ci(r), s) but not inK(r, s) is
small. Indeed, when K(r, s) is the maximum weight matching, one can directly prove the claim. However,
K(r, s) only has approximately maximum weight, and it appears to be difficult to directly compare K(r, s)
with L(ci(r), s). Instead, we construct an auxiliary matching based on both K(r, s) and L(ci(r), s). For any
r, s and realization of types

(
ci(r

(j))
)
j∈[`′]

, we decompose the union of these two matchings into a set of
disjoint alternating paths and cycles. Every surrogate that appears in L(ci(r), s) but not in K(r, s) must be
an endpoint of some alternating path. These alternating paths have the following two forms:

(a). It starts with a surrogate in L(ci(r), s)\K(r, s) and ends with a surrogate in K(r, s)\L(ci(r), s) with
the form

(
s(1), r(1), s(2), r(2), ..., r(a), s(a+1)

)
.

(b). It starts with a surrogate in L(ci(r), s)\K(r, s) and ends with a replica with the form(
s(1), r(1), s(2), r(2), ..., s(a), r(a)

)
.

18For the rest of the proof, when we use the notation Eci(r)[·], we are taking the expectation over the randomness of the coupling.

The ci(r) =
(
ci(r

(j))
)
j∈[`′]

inside the expectation is the realized type after coupling.

48

We use P to denote the set of all alternating paths of form (a) and (b). We construct a new matching
K ′(ci(r), s) as follows: start with the matching K(r, s), for any alternating path P of form (a) and (b), swap
the edges in K(r, s) with the ones in L(ci(r), s), that is, replace all edges in P ∩ K(r, s) with edges in
P ∩ L(ci(r), s). Since all the alternating paths are disjoint, K ′(ci(r), s) is indeed a matching.

Corollary 3.

E
r,s,ci(r)

 ∑
s(k)∈K′(ci(r),s)

pi(s
(k))/`′

 ≥ E
s

∑
k∈[`′]

pi(s
(k))/`′

−√ |T ′i |
`
.

Proof. Fix r, s and types {ci(r(j))}j∈[`′]. For any alternating path P of form either (a) or (b), P ∩L(ci(r), s)
is the same as P ∩ K ′(ci(r), s). For other alternating paths, the matched surrogate in P ∩ L(ci(r), s) is a
subset of P ∩K(r, s). Thus the number of the matched surrogates in K ′(ci(r), s) is at least |L(ci(r), s)|. By
Lemma 24, Er,s,ci(r)[|{k : s(k) 6∈ K ′(ci(r), s)}|] ≤

√
d|T ′i | · `′. AsM is IR, pi(s) ≤ 1 for any surrogate

s ∈ Ti. Therefore,

E
r,s,ci(r)

 ∑
s(k)∈K′(ci(r),s)

pi(s
(k))/`′

 ≥ E
s

∑
k∈[`′]

pi(s
(k))/`′

−√ |T ′i |
`
.

Equipped with Corollary 3, we only need to compare K(r, s) with K ′(ci(r), s).

Lemma 26.

E
r,s

 ∑
s(k)∈K(r,s)

pi(s
(k))/`′

 ≥ E
r,s,ci(r)

 ∑
s(k)∈K′(ci(r),s)

pi(s
(k))/`′

− 1

η
(ε+

∆

`′
)− 2

η
dw(Di,D′i)

Moreover, for any coupling ci such that vi is non-increasing w.r.t. ci, the last term can be improved to
− 1
η Et∼D′ [vi(ti, x

′(t))− vi(ci(ti), x′(t))].

Proof. Fix any r, s and realization of ci(r). Observe that if we decompose the union of K(r, s) and
K ′(ci(r), s) into alternating path and cycles, we will end up with many length 2 cycles and all the alter-
nating paths in P . Hence, we only need to consider the paths in P .

Consider any k ∈ [a] if the path has form (a) (or k ∈ [a − 1] if the path has form (b)), note that
ci(r(k)) = s(k), as this is also an edge in the matching L(ci(r), s). SinceM is ε-BIC, we have

E
t−i∼D−i

[vi(ci(r(k)), x(s(k), t−i))]− pi(s(k)) ≥ E
t−i∼D−i

[vi(ci(r(k)), x(s(k+1), t−i))]− pi(s(k+1))− ε,

which is equivalent to

Wi(r(k), s(k))−Wi(r(k), s(k+1))

≥ −ε− η · (pi(s(k+1))− pi(s(k))) + ∆i,ci(r(k), s(k))−∆i,ci(r(k), s(k+1))
(13)

where ∆i,ci(r, s) = Et−i∼D−i [vi(r, x(s, t−i))− vi(ci(r), x(s, t−i))].
By summing up Inequality (13) for each k, we are able to relate the difference of the total weight between

K(r, s) and K ′(ci(r), s) with the total payment from surrogates in K(r, s) and K ′(ci(r), s).

49

• For any form (a) path,

a∑
k=1

(
Wi(r(k), s(k+1))−Wi(r(k), s(k))

)
≤a · ε+ η · (pi(s(a+1))− pi(s(1)))−

a∑
k=1

(
∆i,ci(r(k), s(k))−∆i,ci(r(k), s(k+1))

)
• For any form (b) path

a−1∑
k=1

(
Wi(r(k), s(k+1))−Wi(r(k), s(k))

)
−Wi(r(a), s(a))

≤(a− 1) · ε+ η ·
a−1∑
k=1

(
pi(s(k+1))− pi(s(k))

)
−Wi(r(a), s(a))−

a−1∑
k=1

(
∆i,ci(r(k), s(k))−∆i,ci(r(k), s(k+1))

)
≤(a− 1) · ε− η · pi(s(1))−

a∑
k=1

∆i,ci(r(k), s(k)) +

a−1∑
k=1

∆i,ci(r(k), s(k+1))

The last inequality is because η · pi(s(a)) −Wi(r(a), s(a)) ≤ −∆i,ci(r(a), s(a)), which is implied by
the fact thatM is IR.

To sum up, for any alternating path P ∈ P ,∑
(r(j),s(k))∈P∩K(r,s)

Wi(r
(j), s(k))−

∑
(r(j),s(k))∈P∩K′(ci(r),s)

Wi(r
(j), s(k))

≤ |P ∩K(r, s)| · ε+ η ·

 ∑
s(k)∈P∩K(r,s)

pi(s
(k))−

∑
s(k)∈P∩K′(ci(r),s)

pi(s
(k))

+ DIFF(P),

(14)

where DIFF(P) =
∑

(r(j),s(k))∈P∩K(r,s) ∆i,ci(r
(j), s(k))−

∑
(r(j),s(k))∈P∩K′(ci(r),s) ∆i,ci(r

(j), s(k)).
Since V (r, s) is the maximum weight matching, we have

∑
P∈P

 ∑
(r(j),s(k))∈P∩K(r,s)

Wi(r
(j), s(k))−

∑
(r(j),s(k))∈P∩K′(ci(r),s)

Wi(r
(j), s(k))

=Wi(K(r, s))−Wi(K

′(ci(r), s))
≥Wi(K(r, s))−Wi(V (r, s))

(15)

Note that if we are using the matching L(ci(r), s) instead of K ′(ci(r), s), we can no longer prove In-
equality (15). The reason is quite subtle. It is possible that L(ci(r), s) has much higher weight than K(r, s)
on paths in P , but much smaller weight on the rest alternating path and cycles. In that case, the first
equal sign will be replaced by a less equal sign, which makes the inequality meaningless. By comparing to
K ′(ci(r), s), we can avoid this issue.

50

Combining Inequality (14) and (15) , we have

Wi(K(r, s))−Wi(V (r, s))

≤
∑
P∈P

 ∑
(r(j),s(k))∈P∩K(r,s)

Wi(r
(j), s(k))−

∑
(r(j),s(k))∈P∩K′(ci(r),s)

Wi(r
(j), s(k))

≤
∑
P∈P

|P ∩K(r, s)| · ε+ η ·

 ∑
s(k)∈P∩K(r,s)

pi(s
(k))−

∑
s(k)∈P∩K′(ci(r),s)

pi(s
(k))

+ DIFF(P)

≤`′ · ε+ η ·

 ∑
s(k)∈K(r,s)

pi(s
(k))−

∑
s(k)∈K′(ci(r),s)

pi(s
(k))]

+
∑
P∈P

DIFF(P)

Finally, we take expectation over r, s, and ci(r).

E
r,s

 ∑
s(k)∈K(r,s)

pi(s
(k))

− E
r,s,ci(r)

 ∑
s(k)∈K′(ci(r),s)

pi(s
(k))

≥1

η

(
−`′ · ε+ E

r,s
[Wi (K (r, s))]− E

r,s
[Wi (V (r, s))]− E

r,s,ci(r)

[∑
P∈P

DIFF(P)

])

≥− 1

η
(`′ · ε+ ∆)− 1

η
E

r,s,ci(r)

[∑
P∈P

DIFF(P)

]

For every type r, s, and realized type ci(r), ∆i,ci(r, s) = Et−i∼D−i [vi(r, x(s, t−i))−vi(ci(r), x(s, t−i))] ∈
[−disti(r, ci(r)), disti(r, ci(r))] (recall that disti(r, ci(r)) = maxo∈O |vi(r, o)− vi(ci(r), o)|). Thus

∑
P∈P

DIFF(P) ≤ 2
`′∑
j=1

disti(r(j), ci(r
(j))),

and

E
r,s,ci(r)

[∑
P∈P

DIFF(P)

]
≤ 2`′dw(Di,D′i).

Therefore,

E
r,s

 ∑
s(k)∈K(r,s)

pi(s
(k))/`′

 ≥ E
r,s,ci(r)

 ∑
s(k)∈K′(ci(r),s)

pi(s
(k))/`′

− 1

η
(ε+

∆

`′
)− 2

η
dw(Di,D′i).

If vi is non-increasing w.r.t. ci, then ∆i,ci(·, ·) is a non-negative function. Then

∑
P∈P

DIFF(P) ≤
∑
P∈P

∑
(r(j),s(k))∈P∩K(r,s)

∆i,ci(r
(j), s(k)) ≤

∑
(r(j),s(k))∈K(r,s)

∆i,ci(r
(j), s(k)),

and

51

E
r,s,ci(r)

[∑
P∈P

DIFF(P)

]
≤ E

r,s

 ∑
(r(j),s(k))∈K(r,s)

E
ci(r), t−i∼D−i

[
vi(r

(j), x(s(k), t−i))− vi(ci(r(j)), x(s(k), t−i))
] .

Finally, we are ready to prove Lemma 23. Note that for every s(k), pi(s(k)) ≤ 1 sinceM is -IR. We
have

(1− η) · E
r,s

 ∑
s(k)∈K(r,s)

pi(s
(k))/`′

 ≥ E
r,s

 ∑
s(k)∈K(r,s)

pi(s
(k))/`′

− η.
The lemma follows from Lemma 26 and Corollary 3. 2

Proof of Theorem 4: First, by Lemma 21, we can lower bound the revenue ofM′ under D′ from agent i in
Phase 2 REV-SECONDi(M′,D′) by (1 − η)Er,s

[∑
s(k)∈O(r,s) pi(s

(k))/`′
]
, where O(r, s) is the matching

produced by Algorithm 2 on Ĝi. Lemma 21 also provides an equivalent expression for the revenue ofM
under D from agent i: REVi(M,D) = Es

[∑
k∈[`′] pi(s

(k))/`′
]
.

We choose the parameters according to Theorem 3, that is, for any ψ ∈ (0, 1), we set δ = Θ(ψ
log `),

η′ = Θ(ψ) and d ≥ ` log `
η′2 . Theorem 3 implies that Er,s [Wi (O (r, s))] = Er,s [Wi (V (r, s))]−O(d`ψ), that

is in expectation O (r, s) has close to maximum weight. We will specify the choice of the other parameters
`, η, and ψ later. By Lemma 23, we know that

REV-SECONDi(M′,D′) ≥ REVi(M,D)−

(
η +

√
|T ′i |
`

+
ε

η
+
O(ψ)

η

)
− 2dw(Di,D′i)

η
(16)

Combining Inequality (16) with Lemma 8, we can obatain the following lower bound on REV(M′,D′).

REV(M′,D′) ≥ REV(M,D)−
∑
i∈[n]

(
η +

√
T ′

`
+
ε

η
+
O(ψ)

η

)
− 2dw(D,D′)

η
−n
√
δ(log(2`)+1) (17)

Now we set ` = T ′

ε , ψ = ε2

log ` , and we can choose η to be O
(√

ε+ dw(D,D′)
n

)
so that

REV(M′,D′) ≥ REV(M,D)−O

(
n

(
√
ε+

√
ε+

dw(D,D′)
n

))
−Θ(nε)

≥ REV(M,D)−O(n
√
ε)−O

(√
n · dw(D,D′)

)
Plugging in our choice of the parameters to Lemma 8, we can conclude that both the computational and

query complexity ofM′ is poly(n, T ′, 1/ε).
If ci(·) that vi is non-increasing w.r.t. ci(·), we can replace the last term −2dw(Di,D′i)

η in Inequality (16)
by

− 1

η`′
E
r,s

 ∑
(r(j),s(k))∈O(r,s)

E
ci(r), t−i∼D−i

[
vi(r

(j), x(s(k), t−i))− vi(ci(r(j)), x(s(k), t−i))
] .

52

Note that this quantity is the same as

−1

η
E

t∼D′

[
E

ci(ti)

[
vi
(
ti, x

′(t)
)
− vi

(
ci(ti), x

′(t)
)]]

.

Hence, for any η ∈ (0, 1), we can improve the result to

REV(M′,D′) ≥ REV(M,D)−n
√
ε−O

(
nη +

nε

η

)
−
∑

i∈[n] Et∼D′
[
Eci(ti) [vi (ti, x

′(t))− vi (ci(ti), x
′(t))]

]
η

.

2

53

	1 Introduction
	1.1 Our Results and Techniques
	1.1.1 Our Result for the Downward-Closed Outcome Space
	1.1.2 Our Result for the General Outcome Space

	1.2 Application to Multi-dimensional Revenue Maximization
	1.3 Further Related Work
	1.4 Organization of the Paper

	2 Preliminaries
	2.1 A Brief Introduction to Bernoulli Factories

	3 Tools from the Literature
	3.1 Replica-Surrogate Matching
	3.2 Online Entropy Regularized Matching

	4 d-to-1 Matching with Arbitrary Edge Weights
	4.1 Reduction from Arbitrary Weights to Non-Negative Weights

	5 -BIC to BIC Transformation
	6 Black-box Reduction for Multi-Dimensional Revenue Maximization
	7 General Outcome Space: Regularized Replica-Surrogate Fractional Assignment
	7.1 Regularized Replica-Surrogate Fractional Assignment
	7.2 Ideal Model
	7.3 Non-Ideal Model

	A Estimating : Approximating the Offline Optimum of the Regularized Matching
	B Missing Details from Section 5
	B.1 Bounding the Revenue Loss

