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Abstract

We study the sample complexity of learning revenue-optimal multi-item auctions. We obtain the first
set of positive results that go beyond the standard but unrealistic setting of item-independence. In partic-
ular, we consider settings where bidders’ valuations are drawn from correlated distributions that can be
captured by Markov Random Fields or Bayesian Networks – two of the most prominent graphical mod-
els. We establish parametrized sample complexity bounds for learning an up-to-ε optimal mechanism in
both models, which scale polynomially in the size of the model, i.e. the number of items and bidders, and
only exponential in the natural complexity measure of the model, namely either the largest in-degree (for
Bayesian Networks) or the size of the largest hyper-edge (for Markov Random Fields).

We obtain our learnability results through a novel and modular framework that involves first proving
a robustness theorem. We show that, given only “approximate distributions” for bidder valuations, we
can learn a mechanism whose revenue is nearly optimal simultaneously for all “true distributions” that
are close to the ones we were given in Prokhorov distance. Thus, to learn a good mechanism, it suffices to
learn approximate distributions. When item values are independent, learning in Prokhorov distance is im-
mediate, hence our framework directly implies the main result of Gonczarowski and Weinberg [35]. When
item values are sampled from more general graphical models, we combine our robustness theorem with
novel sample complexity results for learning Markov Random Fields or Bayesian Networks in Prokhorov
distance, which may be of independent interest. Finally, in the single-item case, our robustness result can
be strengthened to hold under an even weaker distribution distance, the Lévy distance.
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1 Introduction

A central problem in Economics and Computer Science is the design of revenue-optimal auctions. The
problem involves a seller who wants to sell one or more items to one or more strategic bidders. As bidders’
valuation functions are private, no meaningful revenue guarantee can be achieved without any information
about these functions. To remove this impossibility, it is standard to make a Bayesian assumption, whereby a
joint distribution from which bidders’ valuations are drawn is assumed common knowledge, and the goal
is to design an auction that maximizes expected revenue with respect to this distribution.

In the single-item setting, a celebrated result by Myerson characterizes the optimal auction when bidder
values are independent [47]. The quest for optimal multi-item auctions has been quite more challenging.
It has been recognized that revenue-optimal multi-item auctions can be really complex and may exhibit
counter-intuitive properties [38, 39, 8, 21, 22]. As such, it is doubtful that there is a clean characterization
similar to Myerson’s for the optimal multi-item auction. On the other hand, there has been significant
recent progress in efficient computation of revenue-optimal auctions [17, 18, 2, 9, 3, 11, 12, 15, 13, 4, 7, 23].
This progress has enabled the identification of simple auctions (mostly variants of sequential posted pricing
mechanisms) that achieve constant factor approximations to the optimum revenue [5, 54, 14, 19, 16], under
item-independence assumptions.1

Making Bayesian assumptions in the study of revenue-optimal auctions is both crucial and fruitful.
However, to apply the theory to practice, we would need to know the underlying distributions. Where
does such knowledge come from? A common answer is that we estimate the distributions through market
research or observation of bidder behavior in previously run auctions. Unavoidably, errors will creep in
to the estimation, and a priori it seems possible that the performance of our mechanisms may be fragile to
such errors. This has motivated a quest for optimal or approximately optimal mechanisms under imperfect
knowledge of the underlying distributions.

This problem has received lots of attention from Theory of Computation recently. The focus has been
on whether optimal or approximately optimal mechanisms are learnable given sample access to the true
distributions. In single-item settings, where Myerson’s characterization result applies, it is possible to learn
up-to-ε optimal auctions [31, 20, 44, 40, 46, 27, 50, 34].2 A recent paper by Guo et al. [36] provides upper
and lower bounds on the sample complexity, which are tight up to logarithmic factors, thereby rendering a
nearly complete picture for the single-item case.

In multi-item settings, largely due to the lack of simple characterizations of optimal mechanisms, results
have been sparser. Recent work [46, 33, 10, 53] has shown how to learn simple mechanisms which attain a
constant factor of the optimum revenue using polynomially many samples in the number of bidders and
items. Last year, a surprising result by Gonczarowski and Weinberg [35] shows that the sample complexity
of learning an up-to-ε optimal mechanism is also polynomial.3 However, all these results rely on the item-
independence assumption mentioned earlier, which limits their applicability. A main goal of our work is the
following:

Goal I: Push the boundary of learning (approximately) optimal multi-item auctions to the important
setting of item dependence.

Unfortunately, it is impossible to learn approximately optimal auctions from polynomially many sam-
ples under general item dependence. Indeed, an exponential sample complexity lower bound has been
established by Dughmi et al. [30] for even a single unit-demand buyer. Arguably, however, in auction
settings, as well as virtually any high-dimensional setting, the distributions that arise are not arbitrary.
Arbitrary high-dimensional distributions cannot be represented efficiently, and are known to require expo-
nentially many samples to learn or even perform the most basic statistical tests on them; see e.g. [24] for a
discussion. Accordingly a large focus of Statistics and Machine Learning has been on identifying structural
properties of high-dimensional distributions, which enable succinct representation, efficient learning, and

1Intuitively, item independence means that each bidder’s value for each item is independently distributed, and this definition has
been suitably generalized to set value functions such as submodular or subadditive functions [51].

2The term “up-to-ε optimal” introduced in [35] means an additive ε · H approximation for distributions supported on [0, H]. Under
tail assumption on the distribution, it is also possible to obtain (1− ε)-multiplicative approximations.

3In particular, they learn a mechanism that is O(ε)-truthful and has up-to-ε optimal revenue.
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efficient statistical inference. In line with this literature, we propose learning multi-item auctions under the
assumption that item values are jointly sampled from a high-dimensional distribution with structure.

There are several widely-studied probabilistic frameworks which allow modeling structure in a high-
dimensional distribution. In this work we consider two of the most prominent ones: Markov Random Fields
(MRFs) and Bayesian Networks, a.k.a. Bayesnets, which are the two most common types of graphical models.
Both MRFs and Bayesnets have been studied in Machine Learning and Statistics for decades. Both models
can be used to express arbitrary high-dimensional distributions. The advantage of both models is that they
are associated with natural complexity parameters which allow tuning the degree of dependence in the
distributions they model, from product measures all the way up to arbitrary distributions. The pertinent
question is how we might exploit the structure of the distribution, as captured by the natural complexity
parameter of an MRF or a Bayesnet, to efficiently learn a good mechanism. At a high level, there are two
components to the problem of learning approximately optimal auctions. One is inference from samples, i.e. ex-
tracting information about the distribution using samples. The other is mechanism design, i.e. constructing a
good mechanism using the information extracted. A main goal of our work is:

Goal II: Provide a modular approach for learning multi-item auctions which decouples the Inference
and Mechanism Design components, so that one may leverage all techniques from Machine
Learning and Statistics to tackle the first and, independently, leverage all techniques from
Mechanism Design to address the second.

Unfortunately, the Statistical and Mechanism design components are complexly intertwined in prior
work on learning multi-item auctions. Specifically, [45, 10, 53, 35] are PAC-learning approaches, which
require a fine balance between (i) selecting a class of mechanisms that is rich enough to contain an approx-
imately optimal one for a class of distributions; and (ii) having small enough statistical complexity so that
the performance of all mechanisms in the class on a small sample is representative of their performance
with respect to the whole distribution, and so that a small sample suffices to select a good mechanism in
the class. See the related work section for a detailed discussion of these works and their natural limitations.
Our goal in this work is to avoid a joint consideration of (i) and (ii). Rather we want to obtain a learning
framework that separates Mechanism Design from Statistical Inference, based on the following:

(i)’ find an algorithm M, which given a distribution F in some family of distributions F , computes an
(approximately) optimal mechanismM(F) when bidders’ valuations are drawn from F;

(ii)’ find an algorithm L, which given sample access to a distribution F from the family of distributions F
learns a distribution L(F) that is close to F in some distribution distance d.

Achieving (i)’ and (ii)’ is of course not enough, unless we also guarantee the following:

(iii)’ given an (approximately) optimal mechanism M for some F there is a way to transform M to some M′

that is approximately optimal for any distribution F′ that is close to F under distribution distance d.

Given (i)’–(iii)’, the learnability of (approximately) optimal mechanisms for a family of distributions F
can be established as follows: (a) Given sample access to some distribution F ∈ F we use L to learn
some distribution F′ that is close to F under d; (b) we then useM to compute an (approximately) optimal
mechanism M′ for F′; and (c) finally, we use (iii)’ to argue that M′ can be converted to a mechanism M that is
(approximately) optimal for F because M is (approximately) optimal for any distribution that is close to F′.

Clearly, (iii)’ is important for decoupling (i)’—i.e. computing (approximately) optimal mechanisms for
a family of distributions F , and (ii)’—i.e. learning distributions in F . At the same time, it is important in
its own right:

Goal III: Develop robust mechanism design tools, allowing to transform a mechanism M designed for
some distribution F into a mechanism Mrobust which attains similar performance simultane-
ously for all distributions that are close to F in some distribution distance of interest.

The reason Goal III is interesting in its own right is that oftentimes we actually have no sample access to the
underlying distribution over valuations. It is possible that we estimate that distribution through market
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research or econometric analysis in related settings, so we only know some approximate distribution. In
other settings, we may have sample access to the true distribution but there might be errors in measuring
or recording those samples. In both cases, we would know some approximate distribution F that is close
to the true distribution under some distribution distance, and we would want to use F to identify a good
mechanism for the unknown distribution that is close to F. Clearly, outputting a mechanism M that attains
good performance under F might be a terrible idea as this mechanism might very well overfit the details of
F. So we need to “robustify” M. A similar goal was pursued in the work of Bergemann and Schlag [6], for
single-item and single-bidder settings, and in the work of Cai and Daskalakis [10], for robustifying a specific
class of mechanisms under item-independence. Our goal here is to provide a very general robustification
result.

1.1 Our Results

We discuss our contributions in the setting of additive bidders, whose values for the items are not neces-
sarily independent. Our results hold for quite more general valuations, including constrained additive and
any family of Lipschitz valuations (Definition 2), but we do not discuss these here to avoid overloading our
notation. We will denote by n the number of bidders, and by m the number of items. We will also assume
that the bidders’ values for the items lie in some bounded interval [0, H].

Our Robustness Results (cf. Goal III above). The setting we consider is the following. We are given a
collection of model distributions D = {Di}i∈[n], one for each bidder i = 1, . . . , n. We do not know the true

distributions D̂ = {D̂i}i sampling the valuations of the bidders, and the only information we have about

each D̂i is that d(Di, D̂i) < ε, under some distribution distance d(·, ·)—we will discuss distances shortly.
Our goal is to design a mechanism that performs well under any possible collection of true distributions

{D̂i}i that are close to their corresponding distributions {Di}i under d. We show that there are robustifica-

tion algorithms, which transform a mechanism M into a robust mechanism M̂ that attains similar revenue

to that of M under D, except that M̂’s revenue guarantee holds simultaneously for any collection D̂ that is
close to D. Applying our robustification algorithm to the optimum mechanism for D allows us to obtain
the results reported in the first three columns of Table 1. DSIC and BIC refer to the standard properties of
Dominant Strategy and Bayesian Incentive Compatibility of mechanisms, IR refers to the standard notion of
Individual Rationality, and η-BIC is the standard notion of approximate Bayesien Incentive Compatibility.
For completeness these notions are reviewed in Appendix B.

Some remarks are in order. First, in multi-item settings, it is unavoidable that our robustified mechanism
is only approximately BIC, as we do not know the true distributions. In single-item settings, the optimal

mechanism is DSIC, and we can indeed robustify it into a mechanism M̂ that is DSIC. In the multi-item case,
however, it is known that DSIC mechanisms extract at most a constant fraction of the optimal revenue [55],
so it is necessary to consider BIC mechanisms and the BIC property is fragile to errors in the distributions.

Second, we consider several natural distribution distances. In multi-item settings, we consider both
the Prokhorov and the Total Variation distance. In single-item settings, we consider both the Lévy and the
Kolmogorov distance. Please see Section 2 for formal definitions of these distances and a discussion of their
relationships, and their relationship to other standard distribution distances. We note that the Lévy distance
for single-dimensional distributions, and the Prokhorov distance for multi-dimensional distributions are
quite permissive notions of distribution distance. This makes our robustness results for these distances
stronger, automatically implying robustness results under several other common distribution distances.

Finally, en route to proving our robustness results, we show a result of independent interest, namely
that the optimal revenue is continuous with respect to the distribution distances that we consider. Our continuity
results are summarized in the last column of Table 1.

Learning Multi-Item Auctions Under Item Dependence (cf. Goal I above). In view of our robustness
results, presented above, the challenge of learning near-optimal auctions given sample access to the bid-
ders’ valuation distributions, becomes a matter of estimating these distributions in the required distribution
distance, depending on which robustification result we want to apply.

3



Setting Distance d Robustness Continuity

Single
Item

Kolmogrov
REV

(
M̂, D̂

)
≥ OPT

(
D̂
)
−O (nHε)

M̂ is IR and DSIC
(Theorem 2)

∣∣∣OPT
(
D̂
)
−OPT (D)

∣∣∣ ≤ O(nHε)

(Theorem 2)

Lévy
REV

(
M̂, D̂

)
≥ OPT

(
D̂
)
−O (nHε)

M̂ is IR and DSIC
(Theorem 1)

∣∣∣OPT
(
D̂
)
−OPT (D)

∣∣∣ ≤ O(nHε)

(Corollary 1)

Multiple
Items

TV
REV

(
M̂, D̂

)
≥ OPTη

(
D̂
)
−O

(
n2mHε + nmH

√
nε
)

M̂ is IR and η- BIC w.r.t. D̂, where η = O
(
n2mHε

)

(Theorem 7)

∣∣∣OPT
(
D̂
)
−OPT (D)

∣∣∣ ≤ O
(
n2mHε + nmH

√
nε
)

(Theorem 6)

Prokhorov
REV

(
M̂, D̂

)
≥ OPTη

(
D̂
)
−O

(
nη + n

√
mHη

)

M̂ is IR and η- BIC w.r.t. D̂, where η = O
(

nmHε +m
√

nHε
)

(Theorem 7)

∣∣∣OPT(D)−OPT(D̂)
∣∣∣ ≤ O

(
nξ + n

√
mHξ

)

where ξ = O
(

nmHε + m
√

nHε
)

(Theorem 6)

Table 1: Summary of Our Robustness and Revenue Continuity Results. Recall that the true bidder distribu-

tions D̂ are unknown, and that M̂ is the robustified mechanism returned by our algorithm given an optimal

mechanism M for a collection of bidder distributions D that are ε-close to D̂ under distribution distance
d. REV(M̂, D̂) denotes the revenue of M̂ when the bidder distributions are D̂. For a collection of bidder
distributions F , OPT(F ) is the optimal revenue attainable by any BIC and IR mechanism under distribu-
tions F , and OPTη(F ) denotes the optimum revenue attainable by any η-BIC and IR mechanism under
F . Not included in the table are approximation preserving robustification results under TV and Prokhorov

closeness. We show that we can transform any c-approximation M w.r.t. D to a robust mechanism M̂, so

that M̂ is almost a c-approximation w.r.t. D̂. The results included in the table are corollaries of this more
general result when c = 1. See our theorem statements for the complete details. Moreover, if there is only a

single bidder, we can strengthen our robustness results in multi-item settings so that M̂ is IC instead of η-IC

(see Theorem 8). Our continuity results hold for any D and D̂ as long as d(Di, D̂i) ≤ ε for each bidder i.

When the item values are independent, learning bidders’ type distributions in our desired distribution
distances is immediate. So we easily recover the guarantees of the main theorem of [35]. These guarantees
are summarized in the second row of Table 2, and are expanded upon in Theorem 9.

But a main goal of our work (namely Goal I from earlier) is to push the learnability of auctions well
beyond item-independence. As stated earlier, it is impossible to attain learnability from polynomially many
samples for arbitrary joint distributions over item values so we consider the well-studied frameworks of
MRFs and Bayesnets. These frameworks are flexible and can model any distribution, but they have a tunable
complexity parameter whose value controls the degree of dependence. This parameter is the maximum
clique size of an MRF and maximum in-degree of a Bayesnet. We will denote this complexity parameter d
in both cases. Recall that we also used d(·, ·) to denote distribution distances. To disambiguate, whenever
we study MRFs or Bayesnets, we make sure to use d(·, ·), with parentheses, to denote distribution distances.

Now, in order to learn near-optimal mechanisms when item values for each bidder are sampled from an
MRF or a Bayesnet of certain complexity d, our robustness results reassure us that it suffices to learn MRFs
and Bayesnets under Total Variation or Prokhorov distance, depending on which multi-item robustenss
theorem we seek to apply. So we need an upper bound on the sample complexity necessary to learn MRFs
and Bayesnets. One of the contributions of our paper is to provide very general sample complexity bounds
for learning these distributions, as summarized in Theorems 12 and 13 for MRFs and Bayesnets respectively.
In both theorems, V is the set of variables, d is the complexity measure of the underlying distribution,
and ε is the distance within which we are seeking to learn the distribution. Each theorem has a version
when the variables take values in a finite alphabet Σ, and a version when the variables take values in
some interval Σ = [0, H]. In the first case, we provide bounds for learning in the stronger notion of Total
Variation distance. In the second case, since we are learning from finitely many samples, we need to settle
for the weaker notion of Prokhorov distance. For the same reason, we need to make some Lipschitzness
assumption on the density, so our sample bounds depend on the Lipschitzness C of the MRF’s potential
functions and the Bayesnet’s conditional distributions.

The sample bounds we obtain for learning MRFs and Bayesnets are directly reflected in the sample
bounds we obtain for learning multi-item auctions when the item-values are sampled from an MRF or a
Bayesnet respectively, as summarized in the last two rows of Table 2. Indeed, the sample complexity for
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learning auctions is entirely due to the sample complexity needed to learn the underlying item-distribution.
In all cases we consider, the complexity is polynomial in number of variables n = |V| and only depends
exponentially in d, the complexity of the distribution, and this is unavoidable.

Setting Revenue Guarantee and Sample Complexity Prior Result Technique

Item
Independence

up-to-ε optimal, η-BIC (Theorem 9)
poly (n, m, H, 1/ε, 1/η, log(1/δ))

recovers main
result of [35]

Prokhorov Robustness +
Learnability of Product Dist. (Folklore)

MRF

up-to-ε optimal, η-BIC (Theorem 10)

poly
(
n, md, |Σ|d, H, 1/η, 1/ε, log(1/δ)

)
(Finite Σ)

poly
(

n, md2
, ( CH

ε )d, 1/η, log(1/δ)
)

(Σ = [0, H])
unknown

Prokhorov Robustness +
Learnability of MRFs (Theorem 12)

Bayesnet

up-to-ε optimal, η-BIC (Theorem 11)

poly
(
n, d, m, |Σ|d+1, H, 1/η, 1/ε, log(1/δ)

)
(Finite Σ)

poly
(

n, dd+1, md+1, ( CH
ε )d+1, 1/η, log(1/δ)

)
(Σ = [0, H])

unknown
Prokhorov Robustness +

Learnability of Bayesnets (Theorem 13)

Table 2: Summary of Our Sample-based Results. We denote by Σ the support of each item-marginal, taken
to equal the interval [0, H] in the continuous case, we use δ for the failure probability, and use d to denote the
standard complexity measure of the graphical model used to model item dependence, namely the size of
the maximum hyperedge in MRFs and the largest in-degree in Bayesnets. For both MRFs and Bayesnets we
allow latent variables and we also do not need to know the underlying graphical structure. Moreover, for
continuous distributions, our results require Lipschitzness of potential functions in MRFs and conditional
distributions in Bayesnets, which we denote with C . Finally, if there is only a single bidder, the mechanism
we learnt is strengthened to be IC instead of η-IC. See our theorem statements for our complete results.

Our sample bounds improve if the underlying graph of the MRF or Bayesnet are known and, impor-
tantly, without any essential modifications our sample bounds hold even when there are latent, i.e. unobserved,
variables in the distribution. This makes both our auction and our distribution learning results much more
richly applicable. As a simple example of the modeling power of latent variables, situations can be captured
where an unobserved random variable determines the type of a bidder, and conditioning on this type the
observable values of the bidder for different items are sampled.

Finally, it is worth noting that our sample bounds for learning MRFs (i.e. Theorem 12) provide broad
generalizations of the bounds for learning Ising models and Gaussian MRFs presented in recent work of
Devroye et al [29]. Their bounds are obtained by bounding the VC complexity of the Yatracos class induced
by the distributions of interest, while our bounds are obtained by constructing ε-nets of the distributions of
interest, and running a tournament-style hypothesis selection algorithm [28, 25, 1] to select one distribution
from the net. Since the distribution families we consider are non-parametric, our main technical contribu-
tion is to bound the size of an ε-net sufficient to cover the distributions of interest. Interestingly, we use
properties of linear programs to argue through a sequence of transformations that the net size can be upper
bounded in terms of the bit complexity of solutions to a linear program that we construct.

1.2 Roadmap and Technical Ideas

In this section, we provide a roadmap to the paper and survey some of our technical ideas.

Single-item Robustness (Section 3): We consider first the setting where the model distribution D is ε-

close to the true, but unknown distribution D̂ in Kolmogorov distance. In this case, we argue directly
that Myerson’s optimal mechanism [47] for D is approximately optimal for any distribution that is in the

ε-Kolmogorov-ball around D, which includes D̂ (Theorem 2). The idea is that the revenue of the optimal
mechanism can be written as an integral over probabilities of events of the form: does vi lie in a certain

interval [a, b]? Since D and D̂ are ε-close in Kolmogorov distance, the probabilities of all such events are
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within ε of each other, which implies that the revenues under D and D̂ are also close. Finally, note that
Myerson’s optimal mechanism is DSIC and IR, so it is truthful and IR w.r.t. any distribution.

Unfortunately, the same idea fails for Lévy distance, as the difference in the probabilities of the event that

a certain vi lies in some interval [a, b] under D and D̂ can be as large as 1 even when D and D̂ are ε-close in
Lévy distance. (Indeed, consider two single point distributions: a point mass at A and a point mass at A− ε;
their probabilities of falling in the interval [A− ε/2, A + ε/2] are respectively 1 and 0.) We thus prove our
robustness result for Lévy distance via a different route. Given any model distribution D, we first construct
the “worst” distribution D and the “best” distribution D in the ε-Lévy ball around D: this means that, for

any D̂ that lies in the ε-Lévy ball around D, D̂ first-order stochastically dominates D and is dominated by

D (see Definition 3). We choose our robust mechanism M̂ to be Myerson’s optimal mechanism for D. It

is not hard to argue that M̂’s revenue under D̂ is at least OPT(D), the optimal revenue under the “worst”
distribution (Lemma 4), due to the revenue monotonicity lemma (Lemma 3) shown in [27]. The statement

provides a lower bound of M̂’s revenue under the unknown true distribution D̂. To complete the argument,

we need to argue that OPT(D̂) cannot be too much larger than OPT(D). Indeed, we relax OPT(D̂) to
OPT(D), and show that even the optimal revenue under the “best” distribution OPT(D) ≈ OPT(D). To do
so, we construct two auxiliary distributions P and Q, such that (i) OPT(P) ≈ OPT(Q); and (ii) P and D are
ε-close in Kolmogorov distance, and Q andD are ε-close also in Kolmogorov distance. Our robustness theorem
under Kolmogorov distance (Theorem 2) implies then that OPT(P) ≈ OPT(D) and OPT(Q) ≈ OPT(D).
Hence, OPT(D) ≈ OPT(D), which completes our proof.

Multi-item Robustness (Section 4): We first discuss our result for total variation distance. Unfortunately,
our approach for Lévy distance—of simply choosing the optimal mechanism for the “worst,” in the first-
order stochastic dominance sense, distribution in the ε-TV-ball around D to be our robust mechanism—no
longer applies. Indeed, it is known that the optimal revenue in multi-item auctions may be non-monotone
with respect to first-order stochastic dominance [39], i.e. a distribution may be stochastically dominated by

another but result in higher revenue. However, ifD and D̂ are ε-close in total variation distance, this means

that there is a coupling between D and D̂ under which the valuation profiles are almost always sampled

the same. If we take the optimal mechanism M for D, and apply to bidders from D̂, it will produce almost

the same revenue under D̂, and vice versa. Indeed, the only event under which M may generate different
revenue under the two distributions is when the coupling samples different profiles, but this happens with

small probability. Similarly, the BIC and IR properties of M underD become slightly approximate under D̂.

We claim that we can massage M, in a way oblivious to D̂, to produce a (poly(n, m, H) · ε)-truthful and

exactly IR mechanism M̂ for D̂, which achieves an up-to-(poly(n, m, H) · ε) revenue (Theorem 3).

The main challenge is whenD and D̂ are only ε-close in Prokhorov distance. Note that two distributions
within Prokhorov distance ε may have total variation distance 1. (Just imagine two point masses: one at
A and another at A − ε.) So we cannot directly reduce Prokhorov robustness to TV robustness. A useful
characterization of Prokhorov distance due to Strassen (Theorem 4) is the following: two distributions
P and Q are ε-close in Prokhorov distance, if and only if there exists a coupling γ, such that if random
variable s is distributed according to P, then γ(s) is distributed according to Q and Pr [‖s− γ(s)‖1 > ε] ≤ ε.

So let now M be the optimal mechanism for the model distribution D. For a particular D̂ that is ε-close
to D, a reasonable mechanism is as follows: first map the bids b to γ̂(b) = (γ̂1(b1), . . . , γ̂n(bn)) where γ̂i

is the coupling between D̂i and Di; then apply M to γ̂(b). Because bi and γ̂i(bi) are within ε with all but
small probability, we can apply similar arguments as in the total variation robustness result to massage the

mechanism above to be nearly-truthful and exactly IR for D̂, and argue it is approximately revenue optimal.

Are we done? The issue with this approach is that for every different D̂ in the ε-Prokhorov-ball around

D, our construction produces a different mechanism, as the coupling γ̂ between D̂ and D changes. To
satisfy our requirement for a robust mechanism in Goal III, we need to construct a single mechanism that is
near truthful, IR, and near-optimal simultaneously for every distribution in the ε-Prokhorov-ball aroundD.

Our proof relies on a novel way to “simultaneously couple” D with every distribution D̂ in the ε-Prokhorov-

ball around D. If we round D and any D̂ to a random grid G with width
√

ε, we can argue that the
expected total variation distance (over the randomness of the grid) between the two rounded distributions

DG and D̂G is O(
√

ε) (Lemma 8). Now consider the following mechanism: choose a random grid G, round
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the bids to the random grid, apply the optimal mechanism MG that is designed for DG. Our robustness
result under the total variation distance implies that for every realization of the random grid G, MG is

O
(

poly(n, m, H) ·
∥∥∥DG − D̂G

∥∥∥
TV

)
-truthful and up-to-O

(
poly(n, m, H) ·

∥∥∥DG − D̂G

∥∥∥
TV

)
revenue optimal

for any D̂G. Since the expected value (over the randomness of the grid) of
∥∥∥DG − D̂G

∥∥∥
TV

is O(
√

ε) for any D̂
in the ε-Prokhorov-ball ofD, our randomized mechanism is simultaneously O

(
poly(n, m, H) · √ε

)
-truthful

and up-to-O
(
poly(n, m, H) · √ε

)
revenue optimal for all distributions in the ε-Prokhorov-ball around D.4

Sample Complexity Results: In Section 5, we apply our robustness theorem to obtain sample bounds for
learning multi-item auctions under the item-independence assumption (Theorem 9). Our result provides
an alternative proof of the main result of [35]. In Section 6, we combine our robustness theorem with our
sample bounds for learning Markov Random Fields and Bayesian Networks discussed earlier to derive
new polynomial sample complexity results for learning multi-item auctions when the distributions have
structured correlation over the items. Theorem 10 summarizes our results when item values are generated
by an MRF, and Theorem 11 our results when item values are generated by a Bayesenet.

2 Preliminaries

We first define a series statistical distances that we will use in the paper and discuss their relationships.

Definition 1 (Statistical Distance). Let P and Q be two probability measures. We use ‖P−Q‖TV , ‖P− Q‖K, and
‖P−Q‖L to denote the total variational distance, the Kolmogorov distance, and the Lévy distance between
P and Q, respectively. See Appendix B for more details. Prokhorov Distance is a generalization of the Lévy
Distance to high dimensional distributions. Let (U, d) be a metric space and B be a σ-algebra on U. For A ∈ B, let
Aε = {x : ∃y ∈ A s.t d(x, y) < ε}. Then two measures P and Q on B have Prokhorov distance

inf {ε > 0 : P(A) ≤ Q(Aε) + ε, Q(A) ≤ P(Aε) + ε ∀A ∈ B}

We consider distributions supported on R
k for some k ∈ N, so U will be the k-dimensional Euclidean Space, and we

choose d to be the ℓ1-distance. We denote the Prokhorov distance between distributions F , F̂ by
∥∥∥F − F̂

∥∥∥
P

.

Relationships between the Statistical Distances: Among the four metrics, the Lévy distance and the
Kolmogorov distance are only defined for single dimensional distributions, while the Prokhorov distance
and the total variation distance are defined for general distributions. In the single dimensional case, the
Lévy distance is a very liberal metric. In particular, for any two single dimensional distributions P and Q,

‖P− Q‖L ≤ ‖P−Q‖K ≤ ‖P− Q‖TV .

Note that a robustness result for a more liberal metric is more general. For example, the robustness result
for single-item auctions under the Lévy metric implies the robustness under the total variation and Kol-
mogorov metric, because the ε-ball in Lévy distance contains the ε-ball in total variation and Kolmogorov
distance. An astute reader may wonder whether one can find a more liberal metric in the single dimen-
sional case. Interestingly, for the most common metrics studied probability theory, including the Wasser-
stein distance, the Hellinger distance, and the relative entropy, the Lévy distance is the most liberal up to
a polynomial factor. That is, if the Lévy distance is ε, the distance under any of these metrics is at least
poly(ε). Indeed, the polynomial is simply the identity function or the quadratic function ε2 in most cases.
Please see the survey by Gibbs and Su [32] and the references therein for more details.

The Prokhorov distance, also known as Lévy-Prokhorov Distance, is the generalization of the Lévy
distance to multi-dimensional distributions. It is also the standard metric in robust statistical decision
theory, see Huber [41] and Hampel et al. [37]. The Prokhorov distance is almost as liberal as the Lévy
distance. 5 First, for any two distributions P and Q,

‖P− Q‖P ≤ ‖P− Q‖TV .

4Since we round the bids to a random grid, we will also need to accommodate the rounding error. Please see Theorem 5 for details.
5Note that for single dimensional distributions, the Prokhorov distance is not equivalent to Lévy distance. In particular,

‖P−Q‖L ≤ ‖P−Q‖P for any single dimensional distributions P and Q.
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Second, if we consider other well studied metrics such as the Wasserstein distance, the Hellinger distance,
and the relative entropy, the Prokhorov distance is again the most liberal up to a polynomial factor.

Multi-item Auctions: We focus on revenue maximization in the combinatorial auction with n bidders
and m heterogenous items. We use X to denote the set of possible allocations, and each bidder i ∈ [n] has
a valuation function/type vi(·) : X 7→ R≥0. In this paper, we assume the function vi(·) is parametrized by
(vi,1, . . . , vi,m), where vi,j is bidder i’s value for item j. We assume that bidder’s types are distributed indepen-
dently. Throughout this paper, we assume all bidders types lie in [0, H]m. We adopt the valuation model in
Gonczarowski and Weinberg [35] and consider valuations that satisfy the following Lipschitz property.

Definition 2 (Lipschitz Valuations). There exists an absolute constant L such that if type vi = (vi,1, . . . , vi,m) and
v′i = (v′i,1, . . . , v′i,m) are within ℓ1 distance ε, then for the corresponding valuations vi(·) and v′i(·), |vi(x)− v′i(x)| ≤
L · ε for all x ∈ X.

This for example includes common settings such as additive and unit demand with Lipschitz constant
L = 1. More generally, L = 1 holds for constrained additive valuations 6 and even in some settings with
complementarities. Please see [35] for further discussion.

A mechanism M consists of an allocation rule x(·) and a payment rule p(·). For any input bids b =
(b1, . . . , bn), the allocation rule outputs a distribution over allocations x(b) ∈ ∆(X) and payments p(b) =
(p1(b), . . . , pn(b)). If bidder i’s type is vi, her utility under input b is ui (vi, M(b)) = E [vi (x(b))− pi(b)].

Truthfulness and Revenue: We use the standard notion ε-BIC and IR (see Appendix B for details). If M is
a ε-BIC mechanism w.r.t. some distribution D, we use REVT(M,D) to denote the revenue of mechanism M
under distribution D assuming bidders are bidding truthfully. Clearly, REVT(M,D) = REV(M,D) when
M is BIC w.r.t. D. We denote the optimal revenue achievable by any ε-BIC (or BIC) mechanism by OPTε(D)
(or OPT(D)). Although it is conceivable that permitting mechanisms to be ε-BIC allows for much greater
expected revenue than if they were restricted to be BIC, past results show that this is not the case.

Lemma 1. [26, 51] In any n-bidder m-item auction, let D be any joint distribution over arbitrary L-Lipschitz
valuations, where the valuations of different bidders are independent. The maximum revenue attainable by any IR and

ε-BIC auction for a given product distribution is at most 2n
√

mLHε greater than the maximum revenue attainable
by any IR and BIC auction for that distribution.

Notations: We allow the bidders to submit a special type ⊥, which represents not participating the auc-
tion. If anyone submits ⊥, the mechanism terminates immediately, and does not allocate any item to any
bidder or charge any bidder. A bidder’s utility for submitting type ⊥ is 0. We will sometimes refer to ⊥
as the IR type.Throughout the paper, we use D̂ =×n

i=1
D̂i to denote the true type distributions of the bid-

ders. We use D =×n
i=1
Di to denote the model type distributions or our learned type distributions from

samples. We use Di |×m
j=1

[wij, wij + δ) to denote the distribution induced by Di conditioned on being in

the m-dimensional cube×m
j=1

[wij, wij + δ), and supp(F ) to denote the support of distribution F .

3 Lévy-Robustness for Single-Item Auctions

In this section, we show the robustness result under the Lévy distance in the single-item setting. If we are

given a model distribution Di that is ε-close to the true distribution D̂i, in Lévy distance, for every bidder

i ∈ [n], we show how to design a mechanism M∗ only based on D =×n
i=1
Di and extracts revenue that is

at most O(nH · ε) less than the optimal revenue under any possible true distribution D̂ =×n
i=1
D̂i.

Theorem 1 (Lévy-Robustness for Single-item Auctions). Given D =×n
i=1
Di, where Di is an arbitrary distri-

butions supported on [0, H] for all i ∈ [n]. We can design a DSIC and IR mechanism M∗ based on D such that for

any product distribution D̂ =×n
i=1
D̂i satisfying

∥∥∥Di − D̂i

∥∥∥
L
≤ ε for all i ∈ [n], we have:

REV(M∗, D̂) ≥ OPT(D̂)−O(nH · ε).
6vi(·) is constrained additive if vi(X) = maxR⊆S,R∈I ∑j∈R vi,j, for some downward closed set system I ⊆ 2[m] and S = {j : xi,j = 1}.
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Let us sketch the proof of Theorem 1. We prove our statement in three steps.

• Step (i): We first identify the “best” and “worst” distributions (Definition 3), in terms of the first-order
stochastic dominance (Definition 4), among all distributions in the ε-Lévy-ball around the model dis-
tribution D. We construct the optimal mechanism M∗ w.r.t. the “worst” distribution, and show that
its revenue under any possible true distribution is at least M∗’s revenue under the “worst” distribu-
tion (Lemma 4). The statement provides a lower bound of M∗’s revenue under the unknown true
distribution. Its proof follows from the revenue monotonicity lemma (Lemma 3) shown in [27].

• Step (ii): We use the revenue monotonicity lemma again to show the optimal revenue under the true

distribution D̂ is upper bounded by the optimal revenue under the “best” distribution(Lemma 5).

• Step (iii): We complete the proof by argueing that M∗’s revenue under the “worst” distribution can
be at most O(nH · ε) worst than the optimal revenue under the “best” distribution (Lemma 6). The
statement follows from a robustness theorem for single-item auctions under the Kolmogorov distance
(Theorem 2).

We show Step (i) and (ii) in Section 3.1 and Step (iii) in Section 3.2.

3.1 Best and Worst Distributions in the ε-Lévy-Ball

We formally define the “best” and “worst” distributions in the ε-Lévy-ball around the model distribution.

Definition 3. For every i ∈ [n], we define Di and Di based on Di. Di is supported on [0, H + ε], and its CDF
is defined as FDi

(x) = max
{

FDi
(x− ε)− ε, 0

}
. Di is supported on [−ε, H], and its CDF is defined as FDi

(x) =

min
{

FDi
(x + ε) + ε, 1

}
.

We provide a more intuitive interpretation of Di and D i here. To obtain Di, we first shift all values in
Di to the right by ε, then we move the bottom ε probability mass to H + ε. To obtain Di, we first shift all
values in Di to the left by ε, then we move the top ε probability mass to −ε. It is not hard to see that both
Di and Di are still in the ε-ball around Di in Lévy distance. More importantly, Di and Di are the “best” and
“worst” distributions in the ε-Lévy-ball under first-order-stochastic-dominance.

Definition 4 (First-Order Stochastic Dominance). We say distribution B first-order stochastically dominates
A iff FB(x) ≤ FA(x) for all x ∈ R. We use A 4 B to denote that distribution B first-order stochastically dominates
distribution A. If A = ×n

i=1Ai and B = ×n
i=1Bi are two product distributions, and Ai 4 Bi for all i ∈ [n], we

slightly abuse the notation 4 to write A 4 B.

Lemma 2. For any D̂i, such that
∥∥∥D̂i −Di

∥∥∥
L
≤ ε, we have Di 4 D̂i 4 Di.

Proof. It follows from the definition of Lévy distance and Definition 3. For any x,

FD̂i
(x) ∈ [FDi

(x− ε)− ε, FDi
(x + ε) + ε].

Clearly, 0 ≤ FD̂i
(x) ≤ 1, so we have FDi

(x) ≤ FD̂i
(x) ≤ FDi

(x) for all x.

The plan is to construct the optimal mechanism for D = ×n
i=1
D i and show that this mechanism

achieves up-to-O(nH · ε) optimal revenue under any possible true distribution D.
Next, we state a revenue monotonicity lemma that will be useful. We first need the following definition.

Definition 5 (Extension of a Mechanism to All Values). Suppose a mechanism M = (x, p) is defined for all value
profiles in T = ×n

i=1Ti. Define its extension M′ = (x′, p′) to all values. We only specify x′, as p′ can be determined
by the payment identity given x′. x′ first rounds the bid of each bidder i down to the closest value in Ti, and then
apply allocation rule x on the rounded bids. If some bidder i’s bid is smaller than the lowest value in Ti, x′ does not
allocate the item to any bidder.

Observe that the extension provides a DSIC and IR mechanism for all values if the original mechanism
is DSIC and IR.
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Lemma 3 (Strong Revenue Monotonicity [27]). Let F =×n
i=1
Fi be a product distributions. There exists an

optimal DSIC and IR mechanism M for F such that, for any product distribution F ′ =×n
i=1
F ′i < F ,

REV(M′,F ′) ≥ REV(M,F ) = OPT(F ).

M′ is the extension of M. In particular, this implies OPT(F ′) ≥ OPT(F ).

Combining Lemma 2 and 3, we show that if M∗ is the extension of the optimal mechanism for D, it

achieves at least OPT(D) under any distribution D̂ with
∥∥∥D̂i −Di

∥∥∥
L
≤ ε.

Lemma 4. Let M∗ be the extension of the optimal DSIC and IR mechanism for D. For any product distribution

D̂ =×n
i=1
D̂i with

∥∥∥D̂i −Di

∥∥∥
L
≤ ε for all i ∈ [n], we have the following:

REV(M∗, D̂) ≥ OPT(D).

Proof. Since D̂ < D (Lemma 2), the claim follows from Lemma 3.

Lemma 4 shows that with only knowledge of the model distribution D, we can design a mechanism

whose revenue under any possible true distribution D̂ is at least OPT(D). Next, we upper bound the

optimal revenue under D̂ with the optimal revenue under D.

Lemma 5. For any product distribution D̂ with
∥∥∥D̂i −Di

∥∥∥
L
≤ ε for all i ∈ [n], we have the following:

OPT(D) ≥ OPT(D̂).

Proof. Since D < D̂ (Lemma 2), the claim follows from Lemma 3.

3.2 Comparing the Revenue of the Best and Worst Distributions

In this section, we show that our lower bound of M∗’s revenue under the true distribution D̂ and our upper

bound of the optimal revenue under D̂ are at most O(nH · ε) away.

Lemma 6.
OPT(D) ≥ OPT(D)−O(nH · ε).

It is a priori not clear why Lemma 6 should be true, as D is the “best” distribution and D is the “worst”
distribution in the ε-Lévy-ball around D. We prove Lemma 6 by introducing another two auxiliary distri-

butions
˜
D and D̃. In particular, we construct D̃i by shifting all values in Di to the right by ε, and construct

˜
Di by shifting all values inDi to the left by ε. There are two important properties of these two new distribu-

tions: (i) one can couple
˜
Di with D̃i so that the two random variables are always exactly 2ε away from each

other; (ii)
˜
Di andD i are within Kolmogorov distance ε, and D̃i and Di are also within Kolmogorov distance

ε. Property (i) allows us to prove that
∣∣∣OPT(

˜
D)−OPT(D̃)

∣∣∣ ≤ 2ε (see Claim 2). To make use of property (ii),

we prove the following robustness theorem w.r.t. the Kolmogorov distance.

Theorem 2. For any buyer i ∈ [n], let Di and D̂i be two arbitrary distributions supported on (−∞, H] such that∥∥∥Di − D̂i

∥∥∥
K
≤ ε. We have the following:

OPT
(
D̂
)
≥ OPT(D)− 3nH · ε.

where D =×n
i=1
Di and D̂ =×n

i=1
D̂i.
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The proof of Theorem 2 is postponed to Appendix C. Equipped with Theorem 2, we can immediately

show that |OPT(
˜
D)−OPT(D)| ≤ O(nH · ε) and

∣∣∣OPT(D̃)−OPT(D)
∣∣∣ ≤ O(nH · ε). Lemma 6 follows

quite easily from Claim 2 and the two inequalities above. The complete proof of Lemma 6 can be found in
Appendix C.

We are now ready to prove Theorem 1.
Proof of Theorem 1: We first construct D based on D and let M∗ be the extension of the optimal mechanism

for D. By Lemma 4, we know REV(M∗, D̂) is at least OPT(D) for any D̂. We also know that the optimal

revenue under D̂ is at most OPT(D) by Lemma 5, and OPT(D) ≤ OPT(D) + O(nH · ε) by Lemma 6.
Therefore,

REV(M∗, D̂) ≥ OPT(D)−O(nH · ε) ≥ OPT(D̂)−O(nH · ε).
✷

A simple corollary of Theorem 1 is the continuity of the optimal revenue under Lévy distance in single-
item settings.

Corollary 1. If Di and D̂i are supported on [0, H], and
∥∥∥Di − D̂i

∥∥∥
L
≤ ε for all i ∈ [n], then

∣∣∣OPT(D)−OPT(D̂)
∣∣∣ ≤ O (nH · ε) ,

where D =×n
i=1
Di and D̂ =×n

i=1
D̂i.

4 Robustness for Multi-item Auctions

In this section, we prove our robustness results under the total variation distance and the Prokhorov dis-
tance in multi-item settings. As discussed in Section 1.2, the proof strategy for single-item auctions fails
miserably in multi-item settings due to the lack of structure of the optimal mechanism. In particular, one
of the crucial tools we relied on in single-item settings, the revenue monotonicity, no longer holds in multi-
item settings [39]. Nevertheless, we still manage to provide robustness guarantees in multi-item auctions.
The plan is to first prove the robustness result under the total variation distance in Section 4.1, then we
show show to relate the Prokhorov distance with the total variation distance using randomized rounding
in Section 4.2, and reduce the robustness under the Prokhorov distance to the robustness under the total
variation distance in Section 4.3.

4.1 TV-Robustness for Multi-item Auctions

Theorem 3 (TV-Robustness for Multi-item Auctions). Given D =×n
i=1
Di, where Di is a m-dimensional dis-

tribution for all i ∈ [n], and a BIC and IR mechanism M w.r.t. D. We use D̂ =×n
i=1
D̂i to denote the true but

unknown type distribution satisfying
∥∥∥Di − D̂i

∥∥∥
TV
≤ ε for all i ∈ [n]. There is a deterministic algorithm, oblivious

to D̂, that constructs a mechanism M̂ such that:

1. M̂ is a O(nmLHε)-BIC and IR mechanism for D̂;

2. the expected revenue of M̂ under truthful bidding is REVT(M̂, D̂) ≥ REV(M,D)−O
(
n2mLHε

)
.

Instead of directly proving Theorem 3, we prove a stronger version of the statement where the mecha-
nism M is only approximately BIC.

Lemma 7. Given any distribution F =×n
i=1
Fi, where each Fi is a distribution supported on [0, H]m, and a η-BIC

and IR mechanism M1 w.r.t. F , we construct a mechanism M2. We show that for any distribution F̂ =×n
i=1
F̂i ∈

[0, H]nm, if we let ε i =
∥∥∥F̂i −Fi

∥∥∥
TV

for all i ∈ [n] and ρ = ∑i∈[n] ε i, M2 is 2mLHρ + η-BIC w.r.t. F̂ and IR.

Moreover,
REVT(M2, F̂) ≥ REVT(M1,F )− nmLHρ.

Note that our construction of M2 only depends on F and does not require any knowledge of F̂ .
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We briefly describe the ideas behind the proof. If F̂ and F share the same support, it is not hard to

see that M1 is already (2mLHρ + η)-BIC w.r.t. F̂ . The reason is that for any bidder i and any type vi, her
expected utility under any report can change by at most mLHρ when the other bidders’ bids are drawn from

F̂−i rather thanF−i, as
∥∥∥F̂j −Fj

∥∥∥
TV

= ε j for all j ∈ [n]. The bulk of the proof is dedicated to the case, where

F̂ and F have different supports. We construct mechanism M2, which first takes each bidder i’s report and
maps it to the “best” possible report from supp(Fi), then runs essentially M1 on the transformed reports.

We show that M2 is 2mLHρ + η-BIC w.r.t. F̂ and generates at most nmLHρ less revenue. The proof of
Lemma 7 is postponed to Appendix D.1.

4.2 Connecting the Prokhorov Distance with the Total Variation Distance

In this section, we provide a randomized rounding scheme that relates the Prokhorov distance to the total
variation distance. We first state a characterization of the Prokhorov distance due to Strassen [52] that is
useful for our analysis.

Theorem 4 (Characterization of the Prokhorov Metric [52]). Let F and F̂ be two distributions supported on R
k.∥∥∥F − F̂

∥∥∥
P
≤ ε if and only if there exists a coupling γ of F and F̂ , such that Pr(x,y)∼γ [d(x, y) > ε] ≤ ε, where

d(·, ·) is the ℓ1 distance.

Theorem 4 states that F and F̂ are within Prokhorov distance ε of each other if and only if there exists a
coupling between the two distributions such that the two random variables are within ε of each other with

probability at least 1− ε. Next, we show that if F and F̂ are close to each other in Prokhorov distance, then

one can use a randomized rounding scheme to round both F and F̂ to discrete distributions so that the two
rounded distributions are close in total variation distance with high probability.

First, let us fix some notations.

Definition 6 (Rounded Distribution). Let F be a distribution supported on R
k
≥0. For any δ > 0 and ℓ ∈ [0, δ]k,

we define function r(ℓ,δ) : R
k
≥0 7→ R

k as follows

r
(ℓ,δ)
i (x) = max

{⌊
xi − ℓi

δ

⌋
· δ + ℓi, 0

}

for all i ∈ [k]. Let X be a random variable sampled from distribution F . We define ⌊F⌋
ℓ,δ as the distribution for the

random variable r(ℓ,δ)(X), and we call ⌊F⌋
ℓ,δ as the rounded distribution of F .

Lemma 8. Let F and F̂ be two distributions supported on R
k, and

∥∥∥F − F̂
∥∥∥

P
≤ ε. For any δ > 0, sample ℓ from

the uniform distribution over [0, δ]k,

E
ℓ∼U[0,δ]k

[∥∥∥∥⌊F⌋ℓ,δ −
⌊
F̂
⌋
ℓ,δ

∥∥∥∥
TV

]
≤
(

1 +
1

δ

)
ε.

Let us sketch the proof of the lemma, and postpone the formal proof to Appendix D.2. Let x be a

random variable sampled from F and y be a random variable sampled from F̂ . Since F and F̂ are close in
Prokhorov distance, we can couple x and y according to Theorem 4 such that they are within ε of each other
with probability at least 1 − ε. The rounding scheme chooses a random origin ℓ from [0, δ]k and rounds

F and F̂ to the corresponding random grid with width δ. More specifically, we round F and F̂ to ⌊F⌋
ℓ,δ

and
⌊
F̂
⌋
ℓ,δ

respectively. For simplicity, consider δ = Θ(
√

ε). The key observation is that when x and y

are within ℓ1-distance ε of each other, they lie in the same grid with probability at least 1−O(
√

ε) over the
randomness of ℓ. If x and y are in the same grid, they will be rounded to the same point. In other words,

the coupling between x and y induces a coupling between ⌊F⌋ℓ,δ and
⌊
F̂
⌋
ℓ,δ

such that, in expectation

over the choice of ℓ, the event that the corresponding two rounded random variables have different values
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happens with probability at most ε + (1− ε) ·O(
√

ε) = O(
√

ε). By the definition of total variation distance,

this implies that the expected total variation distance between ⌊F⌋
ℓ,δ and

⌊
F̂
⌋
ℓ,δ

is also at most O(
√

ε). A

similar argument applies to other choices of δ.

4.3 Prokhorov-Robustness for Multi-item Auctions

In this section, we show that even in multi-item settings, if every bidder’s approximate type distributionDi

is within Prokhorov distance ε of her true type distribution D̂i, given any BIC and IR mechanism M forD =

×n
i=1
Di, we can construct a mechanism M̂ that is O(poly(n, m,L, H, ε))-BIC w.r.t. D̂ =×n

i=1
D̂i, IR, and

its revenue under truthful bidding REVT(M̂, D̂) is at most O(poly(n, m,L, H, ε)) worse than REV(M,D).
Formally,

Theorem 5. Given D =×n
i=1
Di, where Di is an m-dimensional distribution for all i ∈ [n], and a BIC and

IR mechanism M w.r.t. D. We use D̂ =×n
i=1
D̂i to denote the true but unknown type distribution such that∥∥∥Di − D̂i

∥∥∥
P
≤ ε for all i ∈ [n]. We can construct a randomized mechanism M̂, oblivious to the true distribution D̂,

such that for any D̂ the followings hold:

1. M̂ is κ-BIC w.r.t. D̂ and IR, where κ = O
(

nmLHε + mL
√

nHε
)

;

2. the expected revenue of M̂ under truthful bidding is REVT

(
M̂, D̂

)
≥ REV(M,D)−O (nκ) .

We postpone the formal proof of Theorem 5 to Appendix D.3. We provide a short sketch here. Our
construction consist of the following main steps.

• Step (1): After receiving the bid profile, first sample ℓ from U[0, δ]m. For every realization of ℓ, we

construct a mechanism M̂(ℓ) and execute M̂(ℓ) on the reported bids. In the next several steps, we

show how to construct M̂(ℓ) via two intermediate mechanisms M
(ℓ)
1 and M

(ℓ)
2 for every realization of

ℓ based on M. Since ℓ is a random variable, M̂ is a randomized mechanism.

• Step (2): Round Di to ⌊Di⌋ℓ,δ for every bidder i. We construct mechanism M
(ℓ)
1 based on M and show

that M
(ℓ)
1 is O(mLδ)-BIC w.r.t.×n

i=1 ⌊Di⌋ℓ,δ and IR. Moreover,

REVT

(
M

(ℓ)
1 ,

n×
i=1

⌊Di⌋ℓ,δ

)
≥ REV(M,D)−O(nmLδ).

Here is the idea behind the construction: for any of bidder i and her type wi drawn from ⌊Di⌋ℓ,δ, we

resample a type from Di |×m
j=1

[wij, wij + δ), which is the distribution induced by Di conditioned on

being in the m-dimensional cube×m
j=1

[wij, wij + δ). We use the allocation rule of M and a slightly

modified payment rule on the resampled type profile. This guarantees that the new mechanism is

O(mLδ)-BIC w.r.t.×n
i=1 ⌊Di⌋ℓ,δ and IR. The formal statement and analysis are shown in Lemma 9.

• Step (3): We use ε
(ℓ)
i to denote

∥∥∥∥⌊Di⌋ℓ,δ −
⌊
D̂i

⌋
ℓ,δ

∥∥∥∥
TV

for our sample ℓ and every i ∈ [n], and ρ(ℓ)

to denote ∑i∈[n] ε
(ℓ)
i . We transform M

(ℓ)
1 into a new mechanism M

(ℓ)
2 using Lemma 7. In particular,

M
(ℓ)
2 is O

(
mLδ + mLH · ρ(ℓ)

)
-BIC w.r.t.×n

i=1

⌊
D̂i

⌋
ℓ,δ

and IR. Importantly, the construction of M
(ℓ)
2

is oblivious to×n
i=1

⌊
D̂i

⌋
ℓ,δ

and
{

ε
(ℓ)
i

}
i∈[n]

. Moreover,

REVT

(
M

(ℓ)
2 ,

n×
i=1

⌊
D̂i

⌋
ℓ,δ

)
≥ REVT

(
M

(ℓ)
1 ,

n×
i=1

⌊Di⌋ℓ,δ

)
−O

(
nmLH · ρ(ℓ)

)
.

13



• Step (4): We convert M
(ℓ)
2 to M̂(ℓ) so that it is O

(
mLδ + mLH · ρ(ℓ)

)
-BIC w.r.t. D̂, IR and

REVT(M̂(ℓ), D̂) ≥ REVT

(
M

(ℓ)
2 ,

n×
i=1

⌊
D̂i

⌋
ℓ,δ

)
− nmLδ.

Here is the idea behind the construction of M̂(ℓ): for every bidder i and her type wi drawn from D̂i,

round it to r
(ℓ,δ)
i (wi) (see Definition 6). We use the allocation rule of M

(ℓ)
2 and a slightly modified pay-

ment rule on the rounded type profile. This guarantees that the new mechanism is O
(

mLδ + mLH · ρ(ℓ)
)

-

BIC w.r.t. D̂ and IR. Note that our construction only requires knowledge of M
(ℓ)
2 , ℓ, and δ, and is com-

pletely oblivious to D̂ and×n
i=1

⌊
D̂i

⌋
ℓ,δ

. The formal statement and analysis are shown in Lemma 10.

• Step (5): Since for every realization of ℓ, M̂(ℓ) is O
(

mLδ + mLH · ρ(ℓ)
)

-BIC w.r.t. D̂ and IR, M̂ must

be O
(

mLδ + mLH ·Eℓ∼U[0,δ]m

[
ρ(ℓ)
])

-BIC w.r.t. D̂ and IR. According to Lemma 8,

Eℓ∼U[0,δ]m

[
ρ(ℓ)
]
= ∑

i∈[n]
Eℓ∼U[0,δ]m

[
ε
(ℓ)
i

]
= n ·

(
1 +

1

δ

)
ε.

Therefore, M̂ is O
(

mLδ + nmLH
(

1 + 1
δ

)
ǫ
)

-BIC w.r.t. D̂ and IR. Moreover,

REVT

(
M̂, D̂

)
≥ REV(M,D)−O

(
nmLδ + n2mLH

(
1 +

1

δ

)
ε

)
.

Lemma 9. Given any δ > 0, ℓ ∈ [0, δ]m, and a BIC and IR mechanism M w.r.t. D, we can construct a ξ1 =

O(mLδ)-BIC w.r.t. D =×n
i=1 ⌊Di⌋ℓ,δ and IR mechanism M

(ℓ)
1 , such that

REVT

(
M

(ℓ)
1 ,D

)
≥ REV(M,D)− nmLδ.

The proof of Lemma 9 can be found in Appendix D.3. In the next Lemma, we make Step (4) formal.

Lemma 10. For any δ > 0, ℓ ∈ [0, δ]m, and distribution D̂, if M
(ℓ)
2 is a ξ2-BIC w.r.t. D̂ =×n

i=1

⌊
D̂i

⌋
ℓ,δ

and IR

mechanism, we can transform M
(ℓ)
2 into a mechanism M̂(ℓ), so that M̂ is (ξ2 + 3mLδ)-BIC w.r.t. D̂, IR, and has

revenue under truthful bidding

REVT

(
M̂(ℓ), D̂

)
≥ REVT

(
M

(ℓ)
2 , D̂

)
− nmLδ.

Moreover, the transformation does not rely on any knowledge of D̂ or D̂.

The proof of Lemma 10 is postpone to Appendix D.3.

4.4 Lipschitz Continuity of the Optimal Revenue in Multi-item Auctions

Using Theorem 5, we can easily prove that the optimal BIC revenue w.r.t. D and the optimal BIC revenue

w.r.t. D̂ are close as long as Di and D̂i are close in either the total variation distance or the Prokhorov
distance for all i ∈ [n].

Theorem 6 (Lipschitz Continuity of the Optimal Revenue). Consider the general mechanism design setting

of Section 2. Recall that L is the Lipschitz constant of the valuations. For any distributions D =×n
i=1
Di and

D̂ =×n
i=1
D̂i, where Di and D̂i are supported on [0, H]m for every i ∈ [n]

14



• If
∥∥∥Di − D̂i

∥∥∥
TV
≤ ε for all i ∈ [n], then

∣∣∣OPT(D)−OPT(D̂)
∣∣∣ ≤ O

(
nmLH

(
nε +

√
nε
))

;

• if
∥∥∥Di − D̂i

∥∥∥
P
≤ ε for all i ∈ [n], then

∣∣∣OPT(D)−OPT(D̂)
∣∣∣ ≤ O

(
nκ + n

√
mLHκ

)
,

where κ = O
(

nmLHε + mL
√

nHε
)

.

The proof of Theorem 6 is a simple combination of Lemma 1 and Theorem 5, and can be found in
Appendix D.4.

4.5 Approximation Preserving Transformation

One interesting implication of Theorem 5 and 6 is that the transformation in Theorem 5 is also approxi-
mation preserving. If we have a mechanism M that is a c-approximation to the optimal revenue under

distribution D, applying the transformation in Theorem 5 to M, we obtain a new mechanism M̂ that is κ-

BIC w.r.t. D̂ and IR. Moreover, its revenue under truthful bidding is at least c fraction of the optimal κ-BIC

revenue under D̂ less a small additive term. Formally,

Theorem 7 (Approximation Preserving Transformation). Consider the general mechanism design setting of Sec-

tion 2. Recall that L is the Lipschitz constant of the valuations. Given D =×n
i=1
Di, where Di is a m-dimensional

distribution supported on [0, H]m for all i ∈ [n], and a BIC w.r.t. D and IR mechanism M. We use D̂ =×n
i=1
D̂i to

denote the true but unknown type distribution, and D̂i is supported on [0, H]m for all i ∈ [n].

If
∥∥∥Di − D̂i

∥∥∥
TV
≤ ε for all i ∈ [n], we can construct a mechanism M̂, in a way that is completely oblivious to the

true distribution D̂, such that

1. M̂ is η-BIC w.r.t. D̂ and IR, where η = O(nmLHε);

2. if M is a c-approximation to the optimal BIC revenue for D, then

REVT

(
M̂, D̂

)
≥ c ·OPTη

(
D̂
)
−O

(
nmLH

(
nε +

√
nε
))

.

If
∥∥∥Di − D̂i

∥∥∥
P
≤ ε for all i ∈ [n], we can again construct a mechanism M̂, in a way that is completely oblivious to

the true distribution D̂, such that

1. M̂ is κ-BIC w.r.t. D̂ and IR, where κ = O
(

nmLHε + mL
√

nHε
)

;

2. if M is a c-approximation to the optimal BIC revenue for D, then M̂ is almost a c-approximation to the optimal

κ-BIC revenue for D̂, that is,

REVT

(
M̂, D̂

)
≥ c ·OPTκ

(
D̂
)
−O

(
nκ + n

√
mLHκ

)
.

The proof is postponed to Appendix D.4.

If there is a single bidder, we can strengthen Theorem 7 and make constructed mechanism M̂ exactly IC
with essentially the same guarantees.

Theorem 8 (Single-Bidder Approximation Preserving Transformation). Given a m-dimensional distributionD
supported on [0, H]m, and a IC and IR mechanism M. We use D̂ to denote the true but unknown type distribution,

and D̂ is also supported on [0, H]m.
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• If
∥∥∥D − D̂

∥∥∥
TV
≤ ε, we can construct an IC and IR mechanism M̂, in a way that is completely oblivious to the

true distribution D̂, such that if M is a c-approximation to the optimal BIC revenue for D, then

REV

(
M̂, D̂

)
≥ c ·

(
1−O

(√
mLHε

))
·OPT

(
D̂
)
−O

((
mLH +

√
mLH

)
·
√

ε
)

.

• If
∥∥∥D − D̂

∥∥∥
P
≤ ε, we can again construct an IC and IR mechanism M̂, in a way that is completely oblivious

to the true distribution D̂, such that if M is a c-approximation to the optimal BIC revenue for D,

REV

(
M̂, D̂

)
≥ c ·

(
1−
√

κ
)
·OPT

(
D̂
)
−O

(
κ +

(√
mLH + 1

)
·
√

κ
)

,

where κ = O
(

mLHε + mL
√

Hε
)

.

The proof follows from Theorem 7 and Lemma 11, and can be found in Appendix D.4.

5 Learning Multi-item Auctions under Item Independence

In this section, we show how to derive one of the state-of-the-art learnability results for learning multi-item
auctions via our robustness results. We consider the case where every bidder’s type distribution is a m-
dimensional product distribution. We will show that a generalization of the main result by Gonczarowski
and Weinberg [35] follows easily from our robustness result. The main idea is that it suffices to learn the
distribution Fi within small Prokhorov distance for every bidder i, and it only requires polynomial many
samples when each Fi is a product distribution.

Theorem 9. Consider the general mechanism design setting of Section 2. Recall that L is the Lipschitz constant
of the valuations. For every ε, δ > 0, and for every η ≤ poly(n, m,L, H, ε), we can learn a distribution D =

×i∈[n],j∈[m]Dij with poly (n, m,L, H, 1/ε, 1/η, log(1/δ)) samples from D̂ =×i∈[n],j∈[m] D̂ij, such that, with

probability 1− δ, we can transform any BIC w.r.t. D, IR, and c-approximation mechanism M to an η-BIC w.r.t. D̂
and IR mechanism M̂, whose revenue under truthful bidding satisfies

REVT

(
M̂, D̂

)
≥ c ·OPTη

(
D̂
)
− ε.

If n = 1, the mechanism M̂ will be IR and IC, and

REV

(
M̂, D̂

)
≥ c · (1−√η) ·OPT

(
D̂
)
− ε−√η.

In particular, Gonczarowski and Weinberg [35] proved the c = 1 case, and our result applies to any
c ∈ (0, 1]. The proof is postponed to Appendix E. We provide a proof sketch here. We first prove Lemma 12,

which shows that polynomially many samples suffice to learn a distributionD that is close to D̂ in Prokhorov
distance. Now the statement simply follows from Theorem 7.

6 Optimal Mechanism Design under Structural Item Dependence

In this section, we go beyond the standard assumption of item-independence, which has been employed
in most of prior literature, to consider settings where, as is commonly the case in practice, item values are
correlated. Of course, once we embark onto a study of correlated distributions, we should not go all the
way to full generality, since exponential sample-size lower bounds are known, even for learning approxi-
mately optimal mechanisms in single-bidder unit-demand settings [30]. Besides those sample complexity
lower bounds, however, fully general distributions are also not very natural. In practice, high-dimensional
distributions are not arbitrary, but have structure, which allows us to perform inference on them and learn
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them more efficiently. We thus propose the study of optimal mechanism design under the assumption that
item values are jointly sampled from a high-dimensional distribution with structure.

There are many probabilistic frameworks that allow modeling structure in a high-dimensional distribu-
tion. In this work we consider one of the most prominent ones: graphical models, and in particular consider
the two most common types of graphical models: Markov Random Fields and Bayesian Networks.

Definition 7. A Markov Random Field (MRF) is a distribution defined by a hypergraph G = (V, E). Associated
with every vertex v ∈ V is a random variable Xv taking values in some alphabet Σ, as well as a potential function
ψv : Σ → [0, 1]. Associated with every hyperedge e ⊆ V is a potential function ψe : Σe → [0, 1]. In terms of these
potentials, we define a probability distribution p associating to each vector x ∈ ΣV probability p(x) satisfying:

p(x) =
1

Z ∏
v∈V

ψv(xv) ∏
e∈E

ψe(xe), (1)

where for a set of nodes e and a vector x we denote by xe the restriction of x to the nodes in e, and Z is a normalization
constant making sure that p, as defined above, is a distribution. In the degenerate case where the products on the
RHS of (1) always evaluate to 0, we assume that p is the uniform distribution over ΣV . In that case, we get the same
distribution by assuming that all potential functions are identically 1. Hence, we can in fact assume that the products
on the RHS of (1) cannot always evaluate to 0.

Definition 8. A Bayesian network, or Bayesnet, specifies a probability distribution in terms of a directed acyclic
graph G whose nodes V are random variables taking values in some alphabet Σ. To describe the probability distribu-
tion, one specifies conditional probabilities pXv|XΠv

(xv|xΠv), for all vertices v in G, and configurations xv ∈ Σ and

xΠv ∈ ΣΠv , where Πv represents the set of parents of v in G, taken to be ∅ if v has no parents. In terms of these
conditional probabilities, a probability distribution over ΣV is defined as follows:

p(x) = ∏
v

pXv|XΠv
(xv|xΠv), for all x ∈ ΣV .

It is important to note that both MRFs and Bayesnets allow the study of distributions in their full gen-
erality, as long as the graphs on which they are defined are sufficiently dense. In particular, the graph
(hypergraph and DAG respectively) underlying these models captures conditional independence relations,
and is sufficiently flexible to capture the structure of intricate dependencies in the data. As such these mod-
els have found myriad applications; see e.g. [42, 48, 49, 43] and their references. A common way to control
the expressiveness of MRFs and Bayesnets is to vary the maximum size of hyperedges in an MRF and inde-
gree in a Bayesnet. Our sample complexity results presented below will be parametrized according to this
measure of complexity in the distributions.

In our results, presented below, we exploit our modular framework to disentangle the identification
of good mechanisms for these settings from the intricacies of learning a good model of the underlying
distribution from samples. In particular, we are able to pair our mechanism design framework presented
in earlier sections with learning results for MRFs and Bayesnets to characterize the sample complexity of
learning good mechanisms when the item distributions are MRFs and Bayesnets. Below, we first present our
results on the sample complexity of learning good mechanisms in these settings, followed by the learning
results for MRFs and Bayesnets that these are modularly dependent on.

6.1 Learning Multi-item Auctions under Structural Item Dependence

In this section, we state our results for learning multi-item auctions when each bidder’s values correlated.
In particular, we consider two cases: (i) every bidder’s type is sampled from an MRF, or (ii) every bid-
der’s type is sampled from a Bayesnet. Our results can accommodate latent variables, that is, some of the
variables/nodes of the MRF or Bayesnet are not observable in the samples. We show that the sample com-
plexity for learning an η-BIC and IR mechanism, whose revenue is at most ε less than the optimal revenue
achievable by any η-BIC and IR mechanisms, is polynomial in the size of the problem and scales gracefully
with the parameters of the graphical models that generate the type distributions. If there is only a single
bidder, the mechanism we learn will be exactly IC rather than approximately IC. We derive the sample com-
plexity by combining our robustness result (Theorem 7) with learnability results for MRFs and Bayesnets
(Theorem 12 and 13).
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Theorem 10 (Optimal Mechanism Design under MRF Item Distributions). Consider the general mechanism

design setting of Section 2. Recall that L is the Lipschitz constant of the valuations. Let D̂ =×i∈[n] D̂i, where each

D̂i is a m-dimensional distribution generated by an MRF pi, as in Definition 7, defined on a graph with Ni ≥ m

nodes, hyper-edges of size at most d, and supp(D̂i) ⊆ Σm ⊆ [0, H]m. When Ni > m, we say D̂i is generated by an
MRF with Ni −m latent variables. We use N to denote maxi∈[n]{Ni}.

For every ε, δ > 0, and η ≤ poly(n, m,L, H, ε), we can learn, with probability at least 1− δ, an η-BIC w.r.t. D̂
and IR mechanism M̂, whose revenue under truthful bidding is at most ε smaller than the optimal revenue achievable

by any η-BIC w.r.t. D̂ and IR mechanism, given

• poly(n,Nd,|Σ|d,L,H,1/η,log(1/δ))
ε4 samples if the alphabet Σ is finite; when the graph on which pi is defined is

known for each bidder i, then
poly(n,N,κ,|Σ|d,L,H,1/η,log(1/δ))

ε4 -many samples suffice, where κ is an upper bound
on the number of edges in all the graphs;

• poly

(
n, Nd2

,
(

H
ε

)d
, Cd,L, 1/η, log(1/δ)

)
samples if the alphabet Σ = [0, H], and the log potentials

φ
pi
v (·) ≡ log

(
ψ

pi
v (·)

)
and φ

pi
e (·) ≡ log

(
ψ

pi
e (·)

)
for every node v and every edge e are C-Lipschitz w.r.t.

the ℓ1-norm, for every bidder i; when the graph on which pi is defined is known for each bidder i, then

poly

(
n, N, κd,

(
H
ε

)d
, Cd,L, 1/η, log(1/δ)

)
-many samples suffice, where κ is an upper bound on the number

of edges in all the graphs.

If n = 1, the mechanism M̂ will be IR and IC, and

REV

(
M̂, D̂

)
≥ (1−√η) ·OPT

(
D̂
)
− ε−√η.

Theorem 11 (Optimal Mechanism Design under Bayesnet Item Distributions). Consider the general mech-

anism design setting of Section 2. Recall that L is the Lipschitz constant of the valuations. Let D̂ =×i∈[n] D̂i,

where each D̂i is a m-dimensional distribution generated by a Bayesnet pi, as in Definition 8, defined on a DAG with

Ni ≥ m nodes, in-degree at most d, and supp(D̂i) ⊆ Σm ⊆ [0, H]m. When Ni > m, we say D̂i is generated by an
MRF with Ni −m latent variables. We use N to denote maxi∈[n]{Ni}.

For every ε, δ > 0, and η ≤ poly(n, m,L, H, ε), we can learn, with probability at least 1− δ, an η-BIC w.r.t. D̂
and IR mechanism M̂, whose revenue under truthful bidding is at most ε smaller than the optimal revenue achievable

by any η-BIC w.r.t. D̂ and IR mechanism, with

• poly
(

n, d, N, |Σ|d+1,L, H, 1/η, 1/ε, log(1/δ)
)

samples if the alphabet Σ is finite;

• poly
(

n, dd+1, Nd+1, (HC
ε )d+1,L, 1/η, log(1/δ)

)
samples if the alphabet Σ = [0, H], and for every pi, the

conditional probability of every node v is C-Lipschitz in the ℓ1-norm (see Theorem 13 for the definition).

If n = 1, the mechanism M̂ will be IR and IC, and

REV

(
M̂, D̂

)
≥ (1−√η) ·OPT

(
D̂
)
− ε−√η.

6.2 Sample Complexity for Learning MRFs and Bayesnets

In this section, we present the sample complexity of learning an MRF or a Bayesnet. Our sample complexity
scales gracefully with the maximum size of hyperedges in an MRF and indegree in a Bayesnet. Furthermore,
our results hold even in the presence of latent variables, where we can only observe the values of k variables,
out of the total |V| variables, in a sample.

These results are of independent interest and provide broad generalizations of the recent upper bounds
of [29] for Gaussian MRFs and Ising models. While this recent work bounds the VC dimension of the Ya-
tracos class of these families of distributions, for our more general families of non-parametric distributions
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we construct instead covers under either total variation distance or Prokhorov distance, and combine our
cover-size upper bounds with generic tournament-style algorithms; see e.g. [28, 25, 1]. The details are pro-
vided in Appendix F. While there are many details, we illustrate one snippet of an idea used in constructing
a ε-cover, in total variation distance, of the set of all MRFs with hyper-edges E of size at most d and a discrete
alphabet Σ on every node. The proof argues that (i) the (appropriately normalized) log-potential functions
of the MRF can be discretized to take values in the negative integers at a cost of ε in total variation distance;
(ii) using properties of linear programming, it argues that using negative integers of bit complexity poly-
nomial in |E|, |Σ|d and log(1/ε) suffices at another cost of ε in total variation distance. It thus argues that

all MRFs can be covered by a set of MRFs of size exponential in poly
(
|E|, |Σ|d, log( 1

ε )
)

, which is sufficient

to yield the required sample bounds using the tournament algorithm.

Theorem 12 (Learnability of MRFs in Total Variation and Prokhorov Distance). Suppose we are given sample
access to an MRF p, as in Definition 7, defined on an unknown graph with hyper-edges of size at most d.

• Finite alphabet Σ: Given
poly(|V|d,|Σ|d,log( 1

ε ))
ε2 samples from p we can learn some MRF q whose hyper-edges

also have size at most d such that ‖p− q‖TV ≤ ε. If the graph on which p is defined is known, then
poly(|V|,|E|,|Σ|d,log( 1

ε ))
ε2 -many samples suffice. Moreover, the polynomial dependence of the sample complexity

on |Σ|d cannot be improved, and the dependence on ε is tight up to poly(log 1
ε ) factors.

• Alphabet Σ = [0, H]: If the log potentials φv(·) ≡ log (ψv(·)) and φe(·) ≡ log (ψe(·)) for every node v and

every edge e are C-Lipschitz w.r.t. the ℓ1-norm, then given poly

(
|V|d2

,
(

H
ε

)d
, Cd

)
samples from p we can

learn some MRF q whose hyper-edges also have size at most d such that ‖p− q‖P ≤ ε. If the graph on which

p is defined is known, then poly

(
|V|, |E|d,

(
H
ε

)d
, Cd

)
-many samples suffice.

Our sample complexity bounds can be easily extended to MRFs with latent variables, i.e. to the case where some
subset V′ ⊆ V of the variables are observable in each sample we draw from p. Suppose k = |V′| ≤ |V| is the number
of observable variables. In this case, for all settings discussed above, our sample complexity bound only increases by a
k · log |V| multiplicative factor.

Theorem 13 (Learnability of Bayesnets in Total Variation and Prokhorov Distance). Suppose we are given
sample access to a Bayesnet p, as in Definition 8, defined on an unknown DAG with in-degree at most d.

• Finite alphabet Σ: Given O

(
d|V| log |V|+|V|·|Σ|d+1 log

( |V||Σ|
ε

)

ε2

)
-many samples from p we can learn some

Bayesnet q defined on a DAG whose in-degree is also bounded by d such that ‖p− q‖TV ≤ ε. If the graph

on which p is defined is known, then O

(
|V|·|Σ|d+1 log

( |V||Σ|
ε

)

ε2

)
-many samples suffice. Moreover, the depen-

dence of the sample complexity on |Σ|d+1 and 1
ε is tight up to logarithmic factors.

• Alphabet Σ = [0, H]: Suppose that the conditional probability distribution of every node v is C-Lipschitz

in the ℓ1-norm, that is,
∥∥∥pXv|XΠv=σ − pXv|XΠv=σ′

∥∥∥
TV
≤ C · ‖σ− σ′‖1, ∀v and σ, σ′ ∈ ΣΠv . Then, given

O

(
d|V| log |V|+|V|·

(
H|V|dC

ε

)d+1
log
( |V|HdC

ε

)

ε2

)
-many samples from p, we can learn some Bayesnet q defined on

a DAG whose in-degree is also bounded by d such that ‖p− q‖P ≤ ε. If the graph on which p is defined is

known, then O

(
|V|·

(
H|V|dC

ε

)d+1
log
( |V|HdC

ε

)

ε2

)
-many samples suffice.

Our sample complexity bounds can be easily extended to Bayesnets with latent variables, i.e. to the case where some
subset V′ ⊆ V of the variables are observable in each sample we draw from p. Suppose k = |V′| ≤ |V| is the number
of observable variables. In this case, for all settings discussed above, our sample complexity bound only increases by a
k · log |V| multiplicative factor.
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A Further Related Work

As described earlier, most prior work on learning multi-item auctions follows a PAC-learning approach,
bounding the statistical complexity of classes of mechanisms that are (approximately) optimal for the set-
ting of interest. The statistical complexity measures that are used for this purpose are the standard no-
tions of pseudodimension, which generalizes VC dimension to real valued functions, and Rademacher
complexity. In particular, Morgenstern and Roughgarden [45] and Syrgkanis [53] bound respectively the
pseudodimension and Rademacher complexity of simple classes of mechanisms that have been shown in
the literature to contain approximately optimal mechanisms in multi-item multi-bidder settings satisfy-
ing item-independence [18, 5, 54, 14, 16]. The classes of mechanisms studied by these works contain ap-
proximately optimal mechanisms in multi-item settings with item-independence and either multiple unit-
demand/additive bidders, or a single subadditive bidder. More powerful classes of simple mechanisms
are also known in the literature. The state-of-the-art is the sequential two-part tariff mechanism considered by
Cai and Zhao [16], which is shown to approximate the optimal revenue in multi-item settings even with
multiple bidders whose valuations are fractionally subadditive, again under item-independence. Unfortu-
nately, both the pseudodimension and the empirical Rademacher complexity of sequential two-part tariff
mechanisms are already exponential even in two bidder settings, making these measures unsuitable tools
for showing the learnability of two-part tariff mechanisms.

An important feature of the afore-described works is that bounding the pseudo-dimension or empirical
Rademacher complexity of mechanism classes is oblivious to the structure in the distribution. Hence, while
the mechanisms considered in these works are only approximately optimal under item-independence, the
independence cannot be exploited. In contrast to empirical Rademacher complexity, Rademacher com-
plexity is sensitive to the underlying distribution, but bounds exploiting the structure of the distribution
are not easy to obtain. This observation motivated another line of work which heavily exploits the struc-
ture of the distributions of interest to choose both the class of mechanisms and the statistical complexity
measure to bound their learnability. So far, this approach has only been applied to settings satisfying item-
independence. Indeed, Cai and Daskalakis [10] propose a statistical complexity measure that is tailored to
product distributions, and use their new measure to establish learnability of sequential two-part tariff mech-
anisms under item-independence. Gonczarowski and Weinberg [35] choose a finite class of mechanisms so
that an up-to-ε optimal mechanism is guaranteed to exist in the class. For item-independent distributions,
the size of this class is only singly exponential implying polynomial sample learnability. Unfortunately, the
size becomes doubly exponential for correlated items turning the sample complexity exponential.

Finally, Goldner and Karlin [33] do not use a PAC-learning based approach. They show how to learn
approximately optimal auctions in the multi-item multi-bidder setting with additive bidders using only
one sample from each bidder’s distribution, assuming that it is regular and independent across items. Their
approach is tailored for a mechanism designed by Yao [54] and does not apply to broader settings.

B Additional Preliminaries

Definition 9 (Total Variation Distance). The total variation distance between two probability measures P and Q
on a σ-algebra F of subsets of some sample space Ω, denoted ||P− Q||TV , is defined as

sup
E∈F
|P(E)− Q(E)| .

Definition 10 (Kolmogorov Distance). The Kolmogorov distance between two distributions P and Q over R,
denoted ‖P−Q‖K, is defined as

sup
x∈R

∣∣∣∣ Pr
X∼P

[X ≤ x]− Pr
X∼Q

[X ≤ x]

∣∣∣∣ .

Definition 11 (Lévy Distance). Let D1 and D2 be two probability distributions on R with cumulative distribution
functions F and G respectively. Then we denote their Lévy distance by

‖D1 −D2‖L = inf {ε > 0 : F(x− ε)− ε ≤ G(x) ≤ F(x + ε) + ε, ∀x ∈ R}

24



Multi-item Auctions: We focus on revenue maximization in the combinatorial auction with n bidders
and m heterogenous items.

The outcomes of the auction lie in X ⊆ {0, 1}n·m such that for any allocation x ∈ X, xi,j is the probability

that bidder i receives item j. Formally, X =
{
(xi,j)i∈[n],j∈[m] ∈ {0, 1}nm | ∀j : ∑

n
i=1 xi,j ≤ 1

}
. Each bidder

i ∈ [n] has a valuation function vi(·) : X → R that maps an allocations of items to a real number. In this
paper, we assume the function vi(·) is parametrized by (vi,1, . . . , vi,m), where vi,j is bidder i’s value for item
j. We will refer to the vector (vi,1, . . . , vi,m) as bidder i’s type, and we assume that each bidder’s type is drawn
independently from some distribution. 7 Throughout this paper, we assume all bidders types lie in [0, H]m.

Mechanisms, Payments, and Utility: We use p = (p1, . . . , pn) to specify the payments for the bidders.
Given some prices p = (p1, . . . , pn), allocation x and type vi, denote the quasilinear utility of bidder i ∈ [n]
by ui(vi, (x, p)) = vi(x)− pi. Let M = (x(·), p(·)) be a mechanism with allocation rule x(·) and payment
rule p(·). For any input bid vector b = (b1, . . . , bn), the allocation rule outputs a distribution over allocations
x(b) ∈ ∆(X) and payments p(b) = (p1(b), . . . , pn(b)). Then ui(vi, M(b)) = vi(x(b)) − pi(b). If bidder
i’s type is vi, then her utility under input bid vector b is ui (vi, M(b)) = E [vi (x(b))− pi(b)], where the
expectation is over the randomness of the allocation and payment rule.

ε-Incentive Compatible and Individually Rational:

• Ex-post Individually Rational (IR): M is IR if for all types v ∈ [0, H]n·m and all bidders i ∈ [n],

ui(vi, M(vi, v−i)) ≥ 0.

• ε-Dominant Strategy Incentive Compatible (ε-DSIC): if for all i ∈ [n], v ∈ [0, H]n·m and potential misre-
ports v′i ∈ [0, H]m of bidder i, ui(vi, M(vi, v−i)) ≥ ui(vi, M((v′i, v−i)))− ε. A mechanism is DSIC if it
is 0-DSIC.

• ε-Bayesian Incentive Compatible (ε-BIC): if bidders draw their values from some distribution F =
(F1, . . . ,Fn), then define M to be ε-BIC with respect to F if

Ev−i∼F−i
[ui(vi, M(vi, v−i))] ≥ Ev−i∼F−i

[ui(vi, M(v′i, v−i))]− ε,

for all potential misreports v′i, in expectation over all other bidders bid v−i. A mechanism is BIC if it
is 0-BIC.

If there is only one bidder, the definition of DSIC coincides with the definition of BIC, and we simply
use ε-IC to describe the incentive compatibility of single bidder mechanisms.

In single-bidder case, there is a well known transformation, Lemma 11, that maps any ε-IC mechanism
to an IC mechanism with negligible revenue loss. To the best of our knowledge, the result is attributed
Nisan in [17, 38, 35] and many other papers.

Lemma 11 (Nisan, circa 2005). Let M be an IR and ε-IC mechanism for a single bidder, and D be the bidder’s
type distribution. Modifying each possible allocation and payment pair by multiplying the payment by 1−√ε and
letting the bidder choose the (modified) allocation and payment pair that maximizes her utility yields an IR and IC
mechanism M′ with expected revenue at least (1−√ε)(REVT(M,D)−√ε). Importantly, the modification does not
require any knowledge of D.

Interested readers can find a proof of Lemma 11 in [35].

Up-to-ε Optimal Mechanisms: We say a mechanism M is up-to-ε optimal under distribution D, if

REVT(M,D) ≥ OPT(D)− ε.

7We will not explicitly write bidder i’s valuation as vi,vi
(·) where vi = (vi,1, . . . , vi,m).
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C Missing Proofs from Section 3

Proof of Theorem 2: We prove the claim using a hybrid argument. We construct a collection of distributions,

where D(0) = D, D(i) = D̂1 × · · · × D̂i ×Di+1 × · · · × Dn for all 1 ≤ i < n, and D(n) = D̂. We first show
the following claim

Claim 1.
OPT

(
D(i)

)
≥ OPT

(
D(i−1)

)
− 3H · ε,

for all i ∈ [n].

Proof. W.l.o.g, we can assume the optimal mechanism for D(i−1) is a deterministic. We use M = (x, p) to
denote it. In particular, there exists a collection of monotone non-decreasing functions {µj(·)}{j∈[n]} such

that µj : supp
(
D(i−1)

j

)
7→ R. We extend the function µj(·) to the whole interval (−∞, H]. We slightly abuse

notation and still call the extended function µj(·). For any z ∈ supp
(
D(i−1)

j

)
, µj(x) remains the same. For

any z > inf supp
(
D(i−1)

j

)
, let

µj(z) = sup
{

µj(w) | w ≤ z and w ∈ supp
(
D(i−1)

j

)}
.

If z ≤ inf supp
(
D(i−1)

j

)
and /∈ supp

(
D(i−1)

j

)
, let µj(z) = −∞.

Now we define a mechanism M′ = (x′, p′) for D(i) based on the extended {µj(·)}{j∈[n]}. For every

profile v, let the bidder j∗ with the highest positive µj(vj) be the winner. If no bidder j has positive µj(vj),
the item is unallocated. When there are ties, break the tie in alphabetical order. Clearly, the allocation
rule is monotone. According to Myerson’s payment identity, if a bidder wins the item, she should pay
inf{z | z is a winning bid}.

To prove the claim, we demonstrate the following two statements: for every fixed v−i (A1:) bidder i’s

expected payments under D(i) and D(i−1) are within O(H · ε); (A2:) the total expected payments of all

bidders except i under D(i) and D(i−1) are within O(H · ε). We first prove A1.

Proof of A1: For every fixed v−i, let ℓ∗ = argmax
ℓ 6=i µℓ(vℓ). For bidder i to win the item, µi(vi) needs to

be greater than µℓ∗(vℓ∗). Therefore, there exists a threshold θ(v−i) for every fixed v−i, such that bidder i
wins the item iff vi ≥ θ(v−i). Clearly,

E
vi∼D̂i

[p′i(vi, v−i)] = θ(v−i) · Pr
vi∼D̂i

[vi ≥ θ(v−i)] ,

and
Evi∼Di

[pi(vi, v−i)] = θ(v−i) · Pr
vi∼Di

[vi ≥ θ(v−i)] .

Since
∥∥∥Di − D̂i

∥∥∥
K
≤ ε,

∣∣∣Pr
vi∼D̂i

[vi ≥ θ(v−i)]− Prvi∼Di
[vi ≥ θ(v−i)]

∣∣∣ ≤ ε, which implies that

∣∣Ev∼D(i)[p
′
i(v)]−Ev∼D(i−1)[pi(v)]

∣∣

≤ E
v−i∼D(i)

−i

[∣∣∣Evi∼D̂i
[p′i(vi, v−i)]−Evi∼Di

[pi(vi, v−i)]
∣∣∣
]

≤ E
v−i∼D(i)

−i

[θ(v−i) · ε]

≤ H · ε

This completes the argument for statement A1. Next, we prove statement A2.
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Proof of A2: Since there is only one item, only the winner ℓ∗ has non-zero payment and ∑ℓ 6=i pℓ(v) =

pℓ∗(v) for any vi. Our goal now is to bound the difference between Evi∼Di
[pℓ∗(v)] and E

vi∼D̂i

[
p′
ℓ∗(v)

]
.

Note that

Evi∼Di
[pℓ∗(v)] =

∫ H

0
Pr

vi∼Di

[pℓ∗(v) > t]dt.

When µℓ∗(t) ≥ µℓ∗(vℓ∗), Prvi∼Di
[pℓ∗(v) > t] = 0, so we only consider the case where µℓ∗(t) < µℓ∗(vℓ∗). Let

α = maxℓ 6=i or ℓ∗ µℓ(vℓ). pℓ∗(v) > t is equivalent to having max{α, µi(vi)} > µℓ∗(t) and µi(vi) < µℓ∗(vℓ∗) if
ℓ∗ > i (or µi(vi) ≤ µℓ∗(vℓ∗) if ℓ∗ < i). Since µi(·) is monotone, it is not hard to observe that this is equivalent
to having vi lying in some interval that only depends on v−i. Let the lower bound of the interval be a(v−i)
and the upper bound be b(v−i). Similarly, we know

E
vi∼D̂i

[pℓ∗(v)] =
∫ H

0
Pr

vi∼D̂i

[p′ℓ∗(v) > t]dt,

and Pr
vi∼D̂i

[p′
ℓ∗(v) > t] is also the probability that vi lies between a(v−i) and b(v−i). Since

∥∥∥Di − D̂i

∥∥∥
K
≤ ε,

∣∣∣Prvi∼Di
[pℓ∗(v) > t]− Pr

vi∼D̂i
[p′

ℓ∗(v) > t]
∣∣∣ ≤ 2ε for all t ∈ [0, H], and

∣∣∣Evi∼Di
[pℓ∗(v)]−E

vi∼D̂i

[
p′
ℓ∗(v)

]∣∣∣ ≤ H · 2ε.

Combining statement (i) and (ii), we complete the proof.

By Claim 1, it is clear that

OPT
(
D̂
)
= OPT

(
D(n)

)
≥ OPT

(
D(0)

)
− 3nH · ε = OPT (D)− 3nH · ε

✷

Proof of Lemma 6: For every i ∈ [n], we construct two extra distributions D̃i and
˜
Di as follows. D̃i is

supported on [ε, H + ε], and its CDF is defined as FD̃i
(x) = FDi

(x− ε).
˜
Di is supported on [−ε, H − ε], and

its CDF is defined as FDi
(x) = FDi

(x + ε). In other words, D̃i is the distribution by shifting all values in Di

to the right by ε, and
˜
Di is the distribution by shifting all values in Di to the left by ε.

Claim 2. Let M be any DSIC and IR mechanism for D̃ =×n
i=1
D̃i, there exists a DSIC and IR mechanism M′ for

˜
D =×n

i=1 ˜
Di such that

REV(M′,
˜
D) ≥ REV(M, D̃)− 2ε.

Proof. Based on the construction of D̃ and
˜
D, we can couple the two distributions so that whenever we

draw a value profile v = (v1, . . . , vn) from D̃, we also draw a value profile v− 2ε = (v1 − 2ε, . . . , vn − 2ε)
from

˜
D. Given mechanism M = (x, p), we construct mechanism M′ as follows. For every bid profile v, we

offer bidder i the item with probability xi(v + 2ε) and asks her to pay pi(v + 2ε)− 2ε · xi(v + 2ε). Why is
M′ a DSIC and IR mechanism? For any value profile v and any bidder i, her utility for reporting the true
value is

(vi + 2ε) · xi(v + 2ε)− pi(v + 2ε),

and her utility for misreporting to v′i is

(vi + 2ε) · xi

(
(v′i, v−i) + 2ε

)
− pi((v

′
i, v−i) + 2ε).

Now consider a different scenario, where we run mechanism M and all the other bidders report v−i + 2ε.
The former is bidder i’s utility in M when her true value is vi + 2ε and she reports truthfully. The latter
is bidder i’s utility in M when she lies and reports v′i + 2ε. As M is a DSIC and IR mechanism, (vi +
2ε) · xi(v + 2ε)− pi(v + 2ε) is nonnegative and greater than (vi + 2ε) · xi

(
(v′i, v−i) + 2ε

)
− pi((v

′
i, v−i) + 2ε).

Thus, M′ is also a DSIC and IR mechanism. Since there is only one item for sale, ∑i xi(v + 2ε) ≤ 1. For
every value profile v, the total payment in M′ for this profile is at most 2ε smaller than the total payment in

M for value profile v + 2ε. Therefore, REV(M′,
˜
D) ≥ REV(M, D̃)− 2ε.
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An easy corollary of Claim 2 is that

OPT(
˜
D) ≥ OPT(D̃)− 2ε. (2)

Next we will use this corollary and Theorem 2 to prove our claim. Note that ‖
˜
Di −Di‖K ≤ ε and

∥∥∥D̃i −Di

∥∥∥
K
≤

ε for all i ∈ [n]. Theorem 2 implies that

OPT(D) ≥ OPT(
˜
D)− 3nH · ε (3)

and
OPT(D̃) ≥ OPT(D)− 3n(H + ε) · ε. (4)

Chaining inequalities (3), (2), and (4), we have

OPT(D) ≥ OPT(D)− (6nH + 3nε + 2) · ε.

✷

D Missing Proofs from Section 4

D.1 Proof of Lemma 7

Proof of Lemma 7:

We first construct a mechanism M2, and we show that M2 is (2mLHρ + η)-BIC w.r.t. F̂ and IR. We first
define a mapping τi for every bidder i:

τi(vi) =

{
vi, if vi ∈ supp(Fi)

argmaxz∈supp(Fi)∪⊥Eb−i∼F−i
[ui(vi, M1(z, b−i))] , otherwise.

(5)

Note that Eb−i∼F−i
[ui(vi, M1(⊥, b−i))] = 0. For any bid profile v, we use τ(v) to denote the vector

(τ1(v1), . . . , τn(vn)). Let x(·) and p(·) be the allocation and payment rule for M1. We now define M2’s
allocation rule x′(·) and payment rule p′(·). For any bid profile v, x′(v) = x(τ(v)). If τi(vi) 6= vi and
τℓ(vℓ) 6=⊥ for all bidders ℓ ∈ [n], then

p′i(vi, v−i) = vi(x(τ(v))) ·
Eb−i∼F−i

[pi(τi(vi), b−i)]

Eb−i∼F−i
[vi (x (τi(vi), b−i))]

.

Otherwise, p′i(v) = pi(τ(v)).
An important property of p′(·) is that Eb−i∼F−i

[
p′i(vi, b−i)

]
= Eb−i∼F−i

[pi(τi(vi), b−i)] for any vi. We
first argue that M2 is IR.

M2 is IR: For any bidder i and any bid profile v, if any of τℓ(vℓ) =⊥ bidder i’s utility is clearly 0. So we
only need to consider the case where τℓ(vℓ) 6=⊥ for all ℓ ∈ [n].

• If vi = τi(vi), bidder i’s utility is vi(x(vi, τ−i(v−i))) − pi(vi, τ−i(v−i)) = ui (vi, M1(vi, τ−i(v−i))),
which is non-negative as vi ∈ supp(Fi) and M1 is IR.

• If vi 6= τi(vi), since τi(vi) 6=⊥ by our assumption,

Eb−i∼F−i
[vi (x (τi(vi), b−i))]−Eb−i∼F−i

[pi(τi(vi), b−i)] = Eb−i∼F−i
[ui(vi, M1(τi(vi), b−i))] ,

which is non-negative due to the definition of τi(·). Equivalently, this means that

Eb−i∼F−i
[pi(τi(vi), b−i)]

Eb−i∼F−i
[vi (x (τi(vi), b−i))]

≤ 1

and p′i(vi, v−i) ≤ vi(x(τ(v))) = vi(x′(v)).

Next, we argue that M2 is (2mLHρ + η)-BIC.
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M2 is (2mLHρ + η)-BIC: Consider any bidder i and any type vi and t, we first bound the difference

between Eb−i∼F−i
[ui(vi, M1(τi(t), b−i))] and E

b̂−i∼F̂−i

[
ui(vi, M2(t, b̂−i))

]
. Note that

Eb−i∼F−i
[ui(vi, M1(τi(t), b−i))] = Eb−i∼F−i

[ui(vi, M2(t, b−i))] . (6)

This is because x′(t, b−i) = x(τi(t), b−i) ∀b−i ∈ supp(F−i) and Eb−i∼F−i

[
p′i(t, b−i)

]
= Eb−i∼F−i

[pi(τi(t), b−i)]

Since
∥∥∥F̂j −Fj

∥∥∥
TV

= ε j, we can couple b−i and b̂−i so that

Pr[b−i 6= b̂−i] ≤ ρ.

Clearly, when b−i = b̂−i, ui(vi, M2(t, b−i)) = ui(vi, M2(t, b̂−i)). When b−i 6= b̂−i,

∣∣∣ui(vi, M2(t, b−i))− ui(vi, M2(t, b̂−i))
∣∣∣ ≤ mLH,

as ui(vi, M2(t, b′−i)) ∈ [0, mLH] for any b′−i. Hence, for any vi and t

∣∣∣Eb−i∼F−i
[ui(vi, M2(t, b−i))]−E

b̂−i∼F̂−i

[
ui(vi, M2(t, b̂−i))

]∣∣∣ ≤ mLHρ. (7)

Combining Inequality (6) and (7), we have the following inequality

∣∣∣Eb−i∼F−i
[ui(vi, M1(τi(t), b−i))]−E

b̂−i∼F̂−i

[
ui(vi, M2(t, b̂−i))

]∣∣∣ ≤ mLHρ. (8)

Suppose bidder i has type vi, how much more utility can she get by misreporting? Since M2 is IR, she
clearly cannot gain by reporting a type t, whose corresponding τi(t) =⊥. Next, we argue that she cannot
gain much by reporting any other possible types either. If all other bidders report truthfully, bidder i’s
interim utility for reporting her true type

E
b̂−i∼F̂−i

[
ui(vi, M2(vi, b̂−i))

]
≥ Eb−i∼F−i

[ui(vi, M1(τi(vi), b−i))]−mLHρ

≥ max
x∈supp(Fi)

Eb−i∼F−i
[ui(vi, M1(x, b−i))]−mLHρ− η

≥ max
t:τi(t) 6=⊥

Eb−i∼F−i
[ui(vi, M1(τi(t), b−i))]−mLHρ− η

≥ max
t:τi(t) 6=⊥

E
b̂−i∼F̂−i

[
ui(vi, M2(t, b̂−i))

]
− 2mLHρ− η

The first inequality is due to Inequality (8). The second inequality is true because (a) if vi = τi(vi), then

Eb−i∼F−i
[ui(vi, M1(τi(vi), b−i))] ≥ max

x∈supp(Fi)
Eb−i∼F−i

[ui(vi, M1(x, b−i))]− η

as M1 is η-BIC; (b) if vi /∈ supp(Fi), then by the definition of τi(vi),

Eb−i∼F−i
[ui(vi, M1(τi(vi), b−i))] ≥ max

x∈supp(Fi)
Eb−i∼F−i

[ui(vi, M1(x, b−i))] .

The third inequality is because when τi(t) 6=⊥ it must lie in supp(Fi). The last inequality is again due to
Inequality (8).

Finally, we show that REVT(M2, F̂) is not much less than REVT(M1,F ). Let b ∼ F and b̂ ∼ F̂ . There

exists a coupling of b and b̂ so that they are different w.p. less than ρ. When b = b̂, M1(b) = M2(b̂). When

b 6= b̂, the revenue in M1(b) is at most nmLH more than the revenue in M2(b̂), as both mechanisms are IR.
Therefore,

REVT(M2, F̂) ≥ REVT(M1,F )− nmLHρ.

✷
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D.2 Proof of Lemma 8

Proof of Lemma 8: According to Theorem 4, there exists a coupling γ of F and F̂ so that

Pr
(x,y)∼γ

[d(x, y) > ε] ≤ ε.

Now we bound the probability that r(ℓ,δ)(x) 6= r(ℓ,δ)(y), when (x, y) is drawn from γ, and ℓ is drawn from
U[0, δ]k.

Pr
ℓ∼U[0,δ]k,(x,y)∼γ

[
r(ℓ,δ)(x) 6= r(ℓ,δ)(y)

]

=Pr
ℓ∼U[0,δ]k,(x,y)∼γ

[
r(ℓ,δ)(x) 6= r(ℓ,δ)(y) ∧ d(x, y) > ε

]

+ Pr
ℓ∼U[0,δ]k,(x,y)∼γ

[
r(ℓ,δ)(x) 6= r(ℓ,δ)(y) ∧ d(x, y) ≤ ε

]

≤Pr(x,y)∼γ [d(x, y) > ε] + Pr
ℓ∼U[0,δ]k

[
r(ℓ,δ)(x) 6= r(ℓ,δ)(y) | d(x, y) ≤ ε

]
· Pr
(x,y)∼γ

[d(x, y) ≤ ε]

≤ε + Pr
ℓ∼U[0,δ]k

[
r(ℓ,δ)(x) 6= r(ℓ,δ)(y) | d(x, y) ≤ ε

]

Now, we bound the probability that r(ℓ,δ)(·) rounds two points x and y to two different points when x
and y are within distance ε. For any fixed x and y, we have the following.

Pr
ℓ∼U[0,δ]k

[
r(ℓ,δ)(x) 6= r(ℓ,δ)(y)

]

≤ ∑
i∈[k]

Prℓi∼U[0,δ]

[
r
(ℓ,δ)
i (x) 6= r

(ℓ,δ)
i (y)

]

≤ ∑
i∈[k]

|xi − yi|
δ

=
d(x, y)

δ

The first inequality follows from the union bound. Why is the second inequality true? If |xi − yi| ≥ δ,
the inequality clearly holds, so we only need to consider the case where |xi − yi| < δ. W.l.o.g. we assume
yi ≥ xi and we consider the following two cases: (i)

⌊ yi
δ

⌋
=
⌊ xi

δ

⌋
and (ii)

⌊ yi
δ

⌋
=
⌊ xi

δ

⌋
+ 1. In case (i),

r
(ℓ,δ)
i (x) 6= r

(ℓ,δ)
i (y) if and only if ℓ ∈

[
xi −

⌊ xi
δ

⌋
· δ, yi −

⌊ yi
δ

⌋
· δ
]
. Since ℓ is drawn from the uniform distri-

bution over [0, δ], this happens with probability exactly
yi−xi

δ . In case (ii), r
(ℓ,δ)
i (x) 6= r

(ℓ,δ)
i (y) if and only if

ℓ ∈
[
xi −

⌊ xi
δ

⌋
· δ, δ

]
∪ [0, yi −

⌊ yi
δ

⌋
· δ]. This again happens with probability

yi−xi
δ . Therefore,

Pr
ℓ∼U[0,δ]k

[
r(ℓ,δ)(x) 6= r(ℓ,δ)(y) | d(x, y) ≤ ε

]
≤ ε

δ

and

Pr
ℓ∼U[0,δ]k,(x,y)∼γ

[
r(ℓ,δ)(x) 6= r(ℓ,δ)(y)

]
≤
(

1 +
1

δ

)
ε. (9)

Clearly, for any choice of ℓ,

∥∥∥∥⌊F⌋ℓ,δ −
⌊
F̂
⌋
ℓ,δ

∥∥∥∥
TV

≤ Pr(x,y)∼γ

[
r(ℓ,δ)(x) 6= r(ℓ,δ)(y)

]
. Combining this

inequality with Inequality (9), we have

30



E
ℓ∼U[0,δ]k

[∥∥∥∥⌊F⌋ℓ,δ −
⌊
F̂
⌋
ℓ,δ

∥∥∥∥
TV

]

≤E
ℓ∼U[0,δ]k

[
Pr

(x,y)∼γ

[
r(ℓ,δ)(x) 6= r(ℓ,δ)(y)

]]

=Pr
ℓ∼U[0,δ]k,(x,y)∼γ

[
r(ℓ,δ)(x) 6= r(ℓ,δ)(y)

]

≤
(

1 +
1

δ

)
ε

✷

D.3 Missing Proofs from Section 4.3

Proof of Lemma 9: We first define M
(ℓ)
1 . If the bid profile w /∈ supp(D), the mechanism allocates nothing

and charges no one. If the bid profile w ∈ supp(D), for each bidder i sample w′i independently from the

distribution Di |×m
j=1

β(wij), where β(wij) is defined to be [0, ℓj) if wij = 0 and [wij, wij + δ) otherwise.

Bidder i receives allocation xM,i(w
′) and pays (pM,i(w

′)− mLδ)+ = max{0, pM,i(w
′)− mLδ}. Note that,

for any i ∈ [n], if wi is drawn from ⌊Di⌋ℓ,δ then w′i is drawn from Di. If all bidders bid truthfully in M
(ℓ)
1 ,

the revenue is at least REV(M,D)− nmLδ. Next, we argue that M
(ℓ)
1 is IR and ξ1-BIC with ξ1 = O(mLδ).

Note that for every bidder i and wi ∈ supp(⌊Di⌋ℓ,δ) her interim utility in M
(ℓ)
1 when all other bidders

bid truthfully is at least Ew′i∼Di|×m
j=1 β(wij),w

′
−i∼D−i

[
ui(wi, M(w′i, w′−i))

]
due to the definition of M

(ℓ)
1 . Now

consider every realization of w′i, it must hold that

Ew′−i∼D−i

[
ui(wi, M(w′i, w′−i))

]

≥Ew′−i∼D−i

[
ui(w

′
i, M(w′i, w′−i))

]
−mLδ

≥ max
x∈supp(Di)

Ew′−i∼D−i

[
ui(w

′
i, M(x, w′−i))

]
−mLδ

≥ max
x∈supp(Di)

Ew′−i∼D−i

[
ui(wi, M(x, w′−i))

]
− 2mLδ

The first and the last inequalities are both due to the fact that the valuation is L-Lipschitz and
∥∥wi − w′i

∥∥
1
≤

mδ. The second inequality is because M is BIC w.r.t. D. Hence, bidder i’s interim utility in M
(ℓ)
1 is at least

maxx∈supp(Di)
Ew′−i∼D−i

[
ui(wi, M(x, w′−i))

]
− 2mLδ.

If bidder i misreports, her utility is no more than

max
x∈supp(Di)

Ew′−i∼D−i

[
ui(wi, M(x, w′−i))

]
+ mLδ,

due to the definition of M
(ℓ)
1 . Therefore, misreporting can increase bidder i’s utility by at most 3mLδ, and

M
(ℓ)
1 is 3mLδ-BIC.

Next, we argue that M
(ℓ)
1 is IR. If the w−i /∈ supp(D−i), bidder i’s utility is 0. So we focus on the

case where w−i ∈ supp(D−i). We will show that for any realization of w′i and w′−i, bidder i’s utility is
non-negative. If the payment is 0, the claim is trivially true. If the payment is nonzero, bidder i pays
pM,i(w

′) − mLδ and has utility ui(wi, M(w′i, w′−i))) + mLδ which is at least ui(w
′
i, M(w′i, w′−i))), since the

valuation is L-Lipschitz and
∥∥wi −w′i

∥∥
1
≤ mδ. As M is IR, ui(w

′
i, M(w′i, w′−i))) ≥ 0. Thus, bidder i’s utility

is non-negative and M
(ℓ)
1 is IR.✷

Proof of Lemma 10: We first construct M̂(ℓ). For any bid profile w, construct w′ = (r(ℓ,δ)(w1), . . . , r(ℓ,δ)(wn)),

and run M
(ℓ)
2 on w′. Bidder i receives allocation x

M
(ℓ)
2 ,i

(w′) and pays max{0, p
M

(ℓ)
2 ,i

(w′)−mLδ}. Note that
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if wi ∼ D̂i, then w′i ∼
⌊
D̂i

⌋
ℓ,δ

. Assuming all other bidders bid truthfully and bidder i’s type is wi, bidder i’s

interim utility for bidding truthfully is

E
b−i∼D̂−i

[
ui(wi, M̂(ℓ)(wi, b−i))

]
≥ E

b′−i∼D̂−i

[
ui(wi, M

(ℓ)
2 (w′i, b′−i))

]

≥ E
b−i∼D̂−i

[
ui(w

′
i, M

(ℓ)
2 (w′i, b′−i))

]
−mLδ

≥ max
x∈supp(⌊D̂i⌋ℓ,δ

)
E

b′−i∼D̂−i

[
ui(w

′
i, M

(ℓ)
2 (x, b′−i))

]
− ξ2 −mLδ

≥ max
x∈supp(⌊D̂i⌋ℓ,δ

)
E

b′−i∼D̂−i

[
ui(wi, M

(ℓ)
2 (x, b′−i))

]
− ξ2 − 2mLδ

≥ max
y∈supp(D̂i)

E
b−i∼D̂−i

[
ui(wi, M̂(ℓ)(y, b−i))

]
− ξ2 − 3mLδ

The first inequality and the last equality are due to the definition of M̂(ℓ). The second and the fourth
inequalities are due to the L-Lipschitzness of the valuation function and

∥∥wi −w′i
∥∥

1
≤ mδ. The third

inequality is because M
(ℓ)
2 is a ξ2-BIC mechanism w.r.t. D̂. By this chain of inequalities, we know that M̂(ℓ)

is a (ξ2 + 3mLδ)-BIC mechanism w.r.t. D̂.

Next, we argue that M̂(ℓ) is also IR. Consider any bidder i and type profile w, M̂(ℓ)(w) has the same

allocation as M
(ℓ)
2 (w′). When bidder i’s payment is 0, her utility is clearly non-negative. When bidder

i’s payment is p
M

(ℓ)
2 ,i

(w′) − mLδ, her utility is at least ui(w
′
i, M

(ℓ)
2 (w′)) due to the L-Lipschitzness of the

valuation function and
∥∥wi −w′i

∥∥
1
≤ mδ. Since M

(ℓ)
2 is IR, bidder i’s utility in M̂(ℓ) is also non-negative.

Finally, if all bidders bid truthfully in M̂(ℓ) when their types are drawn from D̂, its revenue under
truthful bidding is

REVT

(
M̂(ℓ), D̂

)
≥ REVT

(
M

(ℓ)
2 , D̂

)
− nmLδ.

✷

Proof of Theorem 5: First, sample ℓ uniformly from [0, δ]m, and construct ⌊Di⌋ℓ,δ for all i ∈ [n]. According to

Lemma 9, we can construct a mechanism M
(ℓ)
1 based on M that is ξ1 = O(mLδ)-BIC w.r.t.×n

i=1 ⌊Di⌋ℓ,δ, IR,

and has revenue REVT

(
M

(ℓ)
1 ,×n

i=1 ⌊Di⌋ℓ,δ

)
≥ REV(M,D)− nmLδ.

Next, we transform M
(ℓ)
1 to M

(ℓ)
2 using Lemma 7. We use ε

(ℓ)
i to denote

∥∥∥∥⌊Di⌋ℓ,δ −
⌊
D̂i

⌋
ℓ,δ

∥∥∥∥
TV

for

our sample ℓ and every i ∈ [n], and ρ(ℓ) to denote ∑i∈[n] ε
(ℓ)
i . For every realization of ℓ, M

(ℓ)
2 is ξ2 =(

2mLHρ(ℓ)+ ξ1

)
-BIC w.r.t.×n

i=1

⌊
D̂i

⌋
ℓ,δ

and IR. Its revenue under truthful bidding satisfies

REVT

(
M

(ℓ)
2 ,

n×
i=1

⌊
D̂i

⌋
ℓ,δ

)
≥ REVT

(
M

(ℓ)
1 ,

n×
i=1

⌊Di⌋ℓ,δ

)
− nmLHρ(ℓ).

Lemma 10 shows that we can construct M̂(ℓ) using M
(ℓ)
2 , such that M̂(ℓ) is a (ξ2 + 3mLδ)-BIC w.r.t. D̂

and IR mechanism with revenue

REVT

(
M̂(ℓ), D̂

)
≥ REVT

(
M

(ℓ)
2 ,

n×
i=1

⌊
D̂i

⌋
ℓ,δ

)
− nmLδ.

Since M̂(ℓ) is O(mLδ + mLHρ(ℓ))-BIC w.r.t. D̂ and IR for every realization of ℓ, our mechanism M̂

is clearly O
(

mLδ + mLH ·Eℓ∼U[0,δ]m

[
ρ(ℓ)
])

-BIC w.r.t. D̂ and IR. Moreover, its expected revenue under

truthful bidding satisfies
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REVT

(
M̂, D̂

)
≥ REV (M,D)−O

(
nmLδ + nmLH ·Eℓ∼U[0,δ]m

[
ρ(ℓ)
])

.

According to Lemma 8,

Eℓ∼U[0,δ]m

[
ρ(ℓ)
]
≤ n

(
1 +

1

δ

)
ε.

We choose δ to be
√

nHε, and M̂ becomes κ-BIC w.r.t. D̂, where κ = O
(

nmLHε + mL
√

nHε
)

, and IR.

Furthermore,

REVT

(
M̂, D̂

)
≥ REV (M,D)−O (nκ) .

✷

D.4 Proofs of Theorem 6, 7, and 8

Proof of Theorem 6: Let M∗ be the optimal BIC mechanism forD. We first prove the Prokorov case. According

to Theorem 5, there exists a mechanism M̂∗ such that it is κ-BIC w.r.t. D̂ and IR. Moreover,

REVT(M̂∗, D̂) ≥ REV(M∗,D)−O(nκ).

By Lemma 1, REVT

(
M̂∗, D̂

)
≤ OPT

(
D̂
)
+ 2n

√
mLHκ. Combining the two inequalities, we have

OPT
(
D̂
)
≥ OPT(D)−O

(
nκ + n

√
mLHκ

)
.

By symmetry, we can also argue that

OPT(D) ≥ OPT
(
D̂
)
−O

(
nκ + n

√
mLHκ

)
.

In the TV case, REVT

(
M̂∗, D̂

)
≥ REV(M∗,D)−O(n2mLHε). Since M̂∗ is O(mnLHε)-BIC, OPT

(
D̂
)
≥

REVT

(
M̂∗, D̂

)
− O(nmLH

√
nε) due to Lemma 1. By symmetry and the inequalities above, we have

∣∣∣OPT(D)−OPT
(
D̂
)∣∣∣ ≤ O

(
nmLH(nε +

√
nε)
)
. ✷

Proof of Theorem 7: For the TV case, by Theorem 3, we can construct a η-BIC w.r.t. D̂ and IR mechanism

M̂ such that REVT

(
M̂, D̂

)
≥ REV(M,D)− O

(
n2mLHε

)
≥ c · OPT(D) − O

(
n2mLHε

)
. By Theorem 6,

OPT(D) is at least OPT(D̂) −O
(
nmLH(nε +

√
nε)
)
. Finally, OPT(D̂) ≥ OPTη(D̂) − 2n

√
mLHη due to

Lemma 1, so

REVT

(
M̂, D̂

)
≥ c ·OPTη

(
D̂
)
−O

(
nmLH(nε +

√
nε)
)

.

For the Prokhorov case, according to Theorem 5, we can construct a κ-BIC w.r.t. D̂ and IR mechanism

M̂ such that REVT

(
M̂, D̂

)
≥ REV(M,D)−O (nκ) ≥ c ·OPT(D)−O (nκ). By Theorem 6 and Lemma 1,

OPT(D) ≥ OPT
(
D̂
)
−O

(
nκ + n

√
mLHκ

)
≥ OPTκ(D̂)−O

(
nκ + n

√
mLHκ

)
Chaining all the inequali-

ties above, we have

REVT

(
M̂, D̂

)
≥ c ·OPTκ(D̂)−O

(
nκ + n

√
mLHκ

)
.

✷

Proof of Theorem 8: We only sketch the proof here. Let M′ be the mechanism constructed using Theorem 7,

and we construct another mechanism M̂ by modifying M′ using Lemma 11. Clearly, M̂ is IC and IR. It is not

hard to verify that REV

(
M̂, D̂

)
satisfies the guarantees in the statement by combining the revenue guaran-

tees for REVT

(
M′, D̂

)
as provided by Theorem 7 and the relation between REV

(
M̂, D̂

)
and REVT

(
M′, D̂

)

as stated in Lemma 11. ✷
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E Missing Proofs from Section 5

We first show that for any product distribution F , we can learn the rounded distribution of F within small
TV distance with polynomially many samples.

Lemma 12. Let F =×m
j=1
Fj, where Fj is an arbitrary distribution supported on [0, H] for every j ∈ [m]. Given

N = O
(

m3H
η3 · (log 1/δ + log m)

)
samples, we can learn a product distribution F̂ =×m

j=1
F̂j such that

∥∥∥F − F̂
∥∥∥

P
≤ η

with probability at least 1− δ.

Proof. We denote the samples as s1, . . . , sN . Round each sample to multiples of η′ = η/m. More specif-

ically, let ŝi =
(⌊

si
1/η′

⌋
· η′, . . . ,

⌊
si

m/η′
⌋
· η′
)

for every sample i ∈ [N]. Let F̂j be the uniform distribu-

tion over ŝ1
j , . . . , ŝN

j . Let F j =
⌊
Fj

⌋
0,η′ . Note that F̂j is the empirical distribution of N samples from

F j. As
∣∣supp(F j)

∣∣ =
⌊

H
η′

⌋
= mH

η , with N = O

(
|supp(F j)|

η′2 · (log 1/δ + log m)

)
samples, the empirical

distribution F̂j should satisfy
∥∥∥F̂j −F j

∥∥∥
TV
≤ η′ with probability at least 1 − δ/m. By the union bound

∥∥∥F̂j −F j

∥∥∥
TV
≤ η′ for all j ∈ [m] with probability at least 1− δ, which implies

∥∥∥F̂ − F
∥∥∥

TV
≤ η with prob-

ability at least 1− δ. Observe that F and F can be coupled so that the two samples are always within η

in ℓ1 distance. When
∥∥∥F̂ − F

∥∥∥
TV
≤ η, consider the coupling between F̂ and F by composing the optimal

coupling between F̂ and F and the coupling between F and F . Clearly, the two samples from F̂ and F
are within ℓ1 distance η with probability at least 1− η. Due to Theorem 4, the existence of this coupling

implies that
∥∥∥F̂ − F

∥∥∥
P
≤ η.

Proof of Theorem 9: We only consider the case, where η ≤ α ·min
{

ε
n , ε2

n2mLH

}
. α is an absolute constant and

we will specify its choice in the end of the proof.

In light of Lemma 12, we take N = O
(

m3H
σ3 · (log n

δ + log m)
)

from D̂ and learn a distribution D so that,

with probability at least 1− δ,
∥∥∥Di − D̂i

∥∥∥
P
≤ σ for all i ∈ [n]. According to Theorem 7, we can transform

M into mechanism M̂ that is O
(

nmLHσ + mL
√

nHσ
)

-BIC w.r.t. D̂ and IR. Choose σ in a way so that M̂ is

η-BIC w.r.t. D̂. Moreover, M̂’s revenue under truthful bidding satisfies

REVT

(
M̂, D̂

)
≥ c ·OPTη

(
D̂
)
−O

(
nη + n

√
mLHη

)
.

If we choose α to be sufficiently small, then

REVT

(
M̂, D̂

)
≥ c ·OPTη

(
D̂
)
− ε.

When there is only a single-bidder, we can apply Lemma 11 to transform M̂ to an IC and IR mechanism,
whose revenue satisfies the guarantee in the statement.

✷

F Missing Proofs from Section 6

F.1 Proof of Theorem 12

Proof of Theorem 12: For the purposes of this proof we take n = |V|. We first prove the finite alphabet case,
we then extend the result to the infinite alphabet case, and finally we discuss how to accommodate latent
variables.
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Finite alphabet Σ: We will prove our first sample complexity bound by constructing an ε-cover, in total
variation distance, of the set P of all MRFs with hyperedges of size at most d. We can assume that all p ∈ P
satisfy the following:

(A1) : p is defined on the hypergraph G = (V, E), whose edge set is E = (V
d ), and all its node potential

functions are constant and equal 1.

The reason we can assume (A1) for all p ∈ P is that potentials of nodes and smaller-size hyperedges can
always be incorporated into the potentials of some size-d hyperedge that contains them, and the potentials
of size-d hyperedges that are not present can always be taken to be constant 1 functions.

Moreover, we can assume the following property for all MRFs p ∈ P :

(A2): maxσ∈Σe ψe(σ) = 1, ∀e ∈ E.

The reason we can assume (A2) for all p ∈ P is that the density of an MRF is invariant to multiplying any
single potential function by some scalar.

Now, given some MRF p ∈ P , satisfying (A1) and (A2), which we can assume without loss of generality,
we will make a sequence of transformations to arrive at some MRF p′′ ∈ P such that ‖p− p′′‖TV ≤ ε and p′′

can be described using B = poly
(
|E|, |Σ|d, log( 1

ε )
)

bits. This, in turn, will imply that there exists an ε-cover

P ′ ⊂ P that has size 2B, and the existence of an ε-cover of this size implies that O(B/ε2)-many samples
from any p ∈ P suffice to learn some q ∈ P such that ‖p− q‖TV ≤ O(ε), using a tournament-style density
estimation algorithm; see e.g. [28, 25, 1] and their references.

Here are the steps to transform an arbitrary p ∈ P into some p′′ ∈ P of low bit complexity:

• (Notation:) From now on we will use p̂ to denote unnormalized densities. I.e. if p is defined in terms
of potential functions (ψ

p
e (·))e∈E, then p̂(x) = ∏e∈E ψ

p
e (xe), ∀x ∈ ΣV .

• (Step 1:) Given some arbitrary p ∈ P , we construct some p′ ∈ P such that ‖p− p′‖TV ≤ ε, p′

satisfies (A1) and (A2) and, moreover, the unnormalized density of p′ satisfies that, for all x ∈ ΣV ,

p̂′(x) =
(

1 + ε
2nd

)ix
, for some integer ix . The existence of such p′ follows from the invariance of MRFs

with respect to multiplying their potential functions by scalars, and the following.

Claim 3. Suppose p, p′ ∈ P satisfy (A1) and are defined in terms of potential functions (ψ
p
e )e and (ψ

p′
e )e

respectively. Moreover, suppose that ∀e, σ ∈ Σe :

ψ
p′
e (σ) ≤ ψ

p
e (σ) ≤

(
1 +

ε

2nd

)
ψ

p′
e (σ).

Then ‖p− p′‖TV ≤ ε.

Proof of Claim 3: It follows from the condition in the statement of the claim that, for all x ∈ ΣV :

p̂′(x) ≤ p̂(x) ≤
(

1 +
ε

2nd

)(n
d)

p̂′(x) ≤ eε/2 p̂′(x) ≤ (1 + ε) p̂′(x).

Using the above, let us compare the normalized densities. For all x ∈ ΣV :

p(x) =
p̂(x)

∑y p̂(y)
≤ p̂′(x)(1+ ε)

∑y p̂′(y)
≤ p′(x)(1+ ε).

Moreover,

p(x) =
p̂(x)

∑y p̂(y)
≥ p̂′(x)

∑y p̂′(y)(1+ ε)
≥ p′(x)/(1 + ε).
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Using the above, let us bound the total variation distance between p and p′:

∥∥p− p′
∥∥

TV
=

1

2 ∑
x

|p(x)− p′(x)|

=
1

2 ∑
x:p(x)≥p′(x)

(p(x)− p′(x)) +
1

2 ∑
x:p(x)<p′(x)

(p′(x)− p(x))

≤ 1

2 ∑
x:p(x)≥p′(x)

εp′(x) +
1

2 ∑
x:p(x)<p′(x)

εp(x) ≤ ε.

✷

• (New Notation:) We introduce some further notation. Let
(

ψ
p′
e

)
e

be the potential functions defining

distribution p′ ∈ P from Step 1. We reparametrize these potential functions as follows:

∀e, x ∈ Σe : ξ
p′
e (x) ≡ log

(
ψ

p′
e (x)

)
/ log

(
1 +

ε

2nd

)
.

Given the definition of p′ in Step 1, our new potential functions satisfy the following linear equations:

∀x ∈ ΣV : ∑
e∈E

ξ
p′
e (xe) = ix , (10)

where, because of Assumption (A2), satisfied by p′, the integers ix ≤ 0, for all x.

• (Step 2:) We define p′′ by setting up a linear program with variables ξ
p′′
e (xe), ∀e, xe ∈ ΣE. In particular,

the number of variables of the linear program we are about to write is L = |E| · |Σ|d. To define our
linear program, we first define x∗ = argmaxx ix , and partition ΣV into two sets ΣV = G ⊔B, by taking

G = {x | ix ≥ ix∗ − T}, and B the complement of G, for T = 4nd

ε (n log |Σ|+ log( 1
ε )). In particular, all

configurations in B have probability p′(x) ≤ ε/|Σ|n. Our goal is to exhibit that there exists p′′ ∈ P
that (i) satisfies properties (A1) and (A2); (ii) can be described with poly

(
|E|, |Σ|d, log( 1

ε )
)

bits; and

(iii) satisfies ∑x∈B p′′(x) ≤ ε and p′′(x) = p′(x) · (1+ δ) ∀x ∈ G, where δ ∈
[
−ε, ε

1−ε

]
. We note that (iii)

implies that ‖p′ − p′′‖TV ≤ ε, as either p′′(x) ≥ p′(x) for all x ∈ G simultaneously or p′′(x) < p′(x)
for all x ∈ G simultaneously, and the total mass in B under both p′ and p′′ are at most ε. Combining
(iii) and Claim 3, we have (iv) ‖p− p′′‖TV ≤ 2ε. To exhibit the existence of p′′ we write the following
linear program:

∀x ∈ G \ {x∗} : ∑
e∈E

ξ
p′′
e (xe)− ∑

e∈E

ξ
p′′
e (x∗e ) = ix − ix∗ (11)

∀x ∈ B : ∑
e∈E

ξ
p′′
e (xe)− ∑

e∈E

ξ
p′′
e (x∗e ) ≤ −T

Note that, because LP (10) is feasible, it follows that LP (11) is feasible as well. Moreover, the coef-
ficients and constants of LP (11) have absolute value less than T and bit complexity polynomial in d,

log n, log( 1
ε ) and log log |Σ|, and the number of variables of this LP is L = |E| · |Σ|d. From the theory

of linear programming it follows that there exists a solution to LP (11) of bit complexity polynomial

in |E|, |Σ|d, log n, and log( 1
ε ). Why is (iii) true? It is not hard to see that for any x ∈ B, p′′(x) ≤ ε/|Σ|n

due to the second type of constraints in LP (11). For any x ∈ G \ {x∗}, p′′(x)
p′′(x∗) = p′(x)

p′(x∗) due to the

first type of constraints in LP (11), so p′′(x) = p′(x) · (1 + δ) ∀x ∈ G for some constant δ. Since both

∑x∈G p′(x) and ∑x∈G p′′(x) lie in [1− ε, 1], δ lies in
[
−ε, ε

1−ε

]
.

To summarize the above (setting ε ← ε/2 in the above derivation), given an arbitrary p ∈ P we can

construct p′′ ∈ P such that: p′′ can be described using B = poly
(
|E|, |Σ|d, log( 1

ε )
)

bits—by specifying the
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low complexity solution
(

ξ
p′′
e

)
e

to LP (11), and p′′ satisfies ‖p− p′′‖TV ≤ ε. As we have noted above, the

existence of such p′′ for every p ∈ P implies the existence of an ε-cover, in total variation distance, of P that
has size 2B, and tournament-style arguments imply then that any p ∈ P can be learned to within O(ε) in

total variation distance from O( B
ε2 )-many samples, i.e. from

poly(|E|,|Σ|d,log( 1
ε ))

ε2 -many samples.

We now prove the second part of the statement. If the hypergraph (V, Ep) with respect to which p is
defined is known, we redo the above argument, except we take P to be all MRFs defined on the graph
G = (V, E), where E is the union of Ep and all singleton sets corresponding to the nodes V.

For the third part of the statement, we note that an arbitrary distribution p on d variables, each taking
values in Σ, can be expressed as a MRF with maximum hyperedge-size d. As such, it is folklore (see e.g. [28])
that Ω(|Σ|d/ε2) samples are necessary to learn p to within ε in total variation distance. This completes the
proof for the finite alphabet case.

Next, we show how to extend our sample complexity to the case where the alphabet Σ = [0, H].

Alphabet Σ = [0, H]: Let δ = ε
8dC(n+1)d , and Σδ be the set of all multiples of δ between 0 and H.8 We

first define distribution p̃ to be the rounded version of p using the following coupling. For any sample x
drawn from p, create a sample x̃ drawn from p̃ such that x̃v =

⌊ xv
δ

⌋
· δ for every v ∈ V. Note that (i) this

coupling makes sure that the two samples from p and p̃ are always within ε of each other in ℓ1-distance.
Our plan is to show that we can (ii) learn an MRF q with polynomially many samples from distribution p̃
such that ‖q− p̃‖TV = O(ε). Why does this imply our statement? First, we can generate a sample from p̃
using a sample from p due to the coupling between the two distributions. Second, ‖q− p̃‖TV = O(ε) means
that we can couple q and p̃ in a way that the two samples are the same with probability at least 1−O(ε).
Composing this coupling with the coupling between p̃ and p, we have a coupling between p and q so that
the two samples are within ε of each other in ℓ1-distance with probability at least 1−O(ε). According to
Theorem 4, ‖p− q‖P = O(ε). Now, we focus on proving (ii).

We separate the proof into two steps. In the first step, we show that for any p̃, there is a discretized
MRF q′ supported on ΣV

δ with hyperedges of size at most d such that ‖ p̃− q′‖TV ≤ ε and q′ can be de-

scribed with B = poly
(
|E|, |Σδ|d, log( 1

ε )
)

bits. In other words, there is a 2B-sized ε-cover over all possible

distributions p̃. In the second step, we show how to learn an MRF q with O(B/ε2) samples from p̃ using a
tournament-style density estimation algorithm; see e.g. [28, 25, 1] and their references. Before we present
the two steps of our proof, and in order to simplify our notation and avoid carrying around node poten-
tials, let us introduce into the edge set E of our hypergraph a singleton edge for every node v, and take the
potential of every such edge e = {v} to equal the node potential of node v.

• (Step 1:) We first define a discrete MRF p′ on the same graph G = (V, E) as p with alphabet Σδ.

Distribution p′ is defined by choosing its log-potential φ
p′
e (xe) to be exactly φ

p
e (xe) for every hyperedge

e ∈ E and every possible value xe ∈ Σe
δ. Next, we show that (iii) ‖p′ − p̃‖TV ≤ ε/2.

We use Ax to denote the n-dimensional cube×v∈V
[xv, xv + δ) for any x ∈ ΣV

δ . Note that

p̃(x) =

∫
Ax

exp
(

∑e φ
p
e (ye)

)
dy

∫
[0,H]n exp

(
∑e φ

p
e (ye)

)
dy
≤

δn exp
(

∑e φ
p
e (xe)

)
· exp(d|E|Cδ)

δn ∑y∈ΣV
δ

exp
(

∑e φ
p
e (ye)

)
· exp(−d|E|Cδ)

≤ p′(x)(1+ ε/2).

The first inequality is due the C-Lipschitzness of the log potential functions and the second inequality
is due to the definition of δ. Similarly,

p̃(x) =

∫
Ax

exp
(

∑e φ
p
e (ye)

)
dy

∫
[0,H]n exp

(
∑e φ

p
e (ye)

)
dy
≥

δn exp
(

∑e φ
p
e (xe)

)
· exp(−d|E|Cδ)

δn ∑y∈ΣV
δ

exp
(

∑e φ
p
e (ye)

)
· exp(d|E|Cδ)

≥ p′(x)

1 + ε/2
.

8We further assume that H is a multiple of δ. If not, let k be the integer such that δ ∈
[

H
2k , H

2k−1

]
, and change δ to be H

2k .
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We complete the proof of (iii) by combining the two inequalities.

∥∥ p̃− p′
∥∥

TV
=

1

2 ∑
x∈ΣV

δ

| p̃(x)− p′(x)|

=
1

2 ∑
x: p̃(x)≥p′(x)

( p̃(x)− p′(x)) +
1

2 ∑
x: p̃(x)<p′(x)

(p′(x)− p̃(x))

≤ 1

2 ∑
x: p̃(x)≥p′(x)

ε

2
p′(x) +

1

2 ∑
x: p̃(x)<p′(x)

ε

2
p̃(x) ≤ ε/2.

Let P be the set of all MRFs with hyperedges of size at most d and alphabet Σδ. By redoing Step 1 and
2 of the proof for the finite alphabet case, we can show that (iv) for any p̂ ∈ P , there exists another

p̂′ ∈ P describable with B = poly
(
|E|, |Σδ|d, log( 1

ε )
)

bits such that ‖ p̂− p̂′‖TV ≤ ε/2. Since p′ ∈ P ,

there exists a q′ ∈ P describable with B bits such that ‖p′ − q′‖TV ≤ ε/2. Combining this inequality
with (iii), we have ‖ p̃− q′‖TV ≤ ε.

• (Step 2:) Let P ′ ⊂ P be the set of all MRFs in P with bit complexity at most B from Step 1. Since
minq̃∈P ′ ‖q̃− p̃‖TV ≤ ε, we can learn an MRF q ∈ P ′ such that ‖q− p̃‖TV ≤ O(ε) with O(B/ε2)
samples from p̃ using a tournament-style density estimation algorithm [28, 25, 1].

To sum up, we can learn an MRF q such that ‖q− p‖P ≤ ε with poly

(
|V|d2

,
(

H
ε

)d
, Cd

)
many samples

from p. If the graph G on which p is defined is known, we can choose δ to be O
(

ε
8dC|E|

)
and improve the

sample complexity to poly

(
|V|, |E|d,

(
H
ε

)d
, Cd

)
.

Latent Variable Models: Finally, we consider the case where only k out of the n variables of the MRF
are observable. Let S be the set of observable variables, and use pS to denote the marginal of p on these
variables. We will first consider the finite alphabet case. Consider the ε-cover we constructed earlier. We
argued that for any MRF p there exists an MRF q in the cover such that ‖p− q‖TV ≤ ε. For that q we clearly
also have ‖pS − qS‖TV ≤ ε. The issue is that we do not know for a given q in the cover which subset of its
variables set S might correspond to. But this is not a big deal. We can use our cover to generate an ε-cover
of all possible marginals pS of all possible MRFs p as follows. Indeed, for any q′ in the original ε-cover, we
include in the new cover the marginal distribution q′S′ of every possible subset S′ of its variables of size k.

This increases the size of our original cover by a multiplicative factor of at most nk. As a result, the number
of samples required for the tournament-style density estimation algorithm to learn a good distribution
increases by a multiplicative factor of k log n. For the infinite alphabet case, our statement follows from
applying the same modification to the ε-cover of p̃. ✷

F.2 Proof of Theorem 13

Proof of Theorem 13: We first prove the theorem statement for the finite alphabet case, we then extend it to
the infinite alphabet case, and finally show how we can accommodate latent variables as well.

Finite alphabet Σ: We prove the claims in the theorem statement in reverse order.

For the third part of the statement, we note that an arbitrary distribution p on d + 1 variables, each
taking values in Σ, can be expressed as a Bayesnet with maximum indegree d. As such, it is folklore (see
e.g. [28]) that Ω(|Σ|d+1/ε2) samples are necessary to learn p to within ε in total variation distance.

To prove the second part of the statement, we show that there is an ε-cover, in total variation distance, of

all Bayesnets P on a given DAG G of indegree at most d, which has size B =
(

n|Σ|
ε

)n|Σ|d+1

, where n = |V|.
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The existence of an ε-cover of this size implies that O(log(B)/ε2)-many samples from any p ∈ P suffice
to learn some q ∈ P such that ‖p− q‖TV ≤ O(ε), using a tournament-style density estimation algorithm;
see e.g. [28, 25, 1] and their references. Thus, to prove the second part of the theorem statement it suffices
to argue that an ε-cover of size B exists. We prove the existence of this cover by exploiting the following
lemma.

Lemma 13. Suppose p and q are Bayesenets on the same DAG G = (V, E). Suppose that, for all v ∈ V, for all

σ ∈ ΣΠ(v), where Π(v) are the parents of v in G (using the same notation as in Definition 8), it holds that

∥∥∥pXv|XΠv=σ − qXv |XΠv=σ

∥∥∥
TV
≤ ε

|V| .

Then ‖p− q‖TV ≤ ε.

Proof of Lemma 13: We employ a hybrid argument. First, let us denote n = |V| and label the nodes in V with
labels 1, . . . , n according to some topological sorting of G. In particular, the parents (if any) of any node
i have indices < i. Now, for our hybrid argument we construct the following auxiliary distributions, for
i = 0, . . . , n:

hi(x) =
i

∏
v=1

pXv|XΠv
(xv|xΠv )

n

∏
v=i+1

qXv |XΠv
(xv|xΠv ), for all x ∈ ΣV .

In particular, h0 ≡ q and hn ≡ p, and the rest are fictional distributions. By triangle inequality, we have
that:

‖p− q‖TV ≤
n

∑
i=1

∥∥∥hi − hi−1
∥∥∥

TV
.

We will bound each term on the RHS by ε/n to conclude the proof of the lemma. Indeed,

∥∥∥hi − hi−1
∥∥∥

TV

=∑
x

i

∏
v=1

pXv|XΠv
(xv|xΠv) ·

n

∏
v=i+1

qXv |XΠv
(xv|xΠv )−

i−1

∏
v=1

pXv|XΠv
(xv|xΠv ) ·

n

∏
v=i

qXv|XΠv
(xv|xΠv )

=∑
x

i−1

∏
v=1

pXv|XΠv
(xv|xΠv) ·

(
pXi|XΠi

(xi|xΠi
)− qXi|XΠi

(xi|xΠi
)
)
·

n

∏
v=i+1

qXv|XΠv
(xv|xΠv )

=∑
x

i−1

∏
v=1

pXv|XΠv
(xv|xΠv) · pXi|XΠi

(xi|xΠi
)− qXi|XΠi

(xi|xΠi
) ·

n

∏
v=i+1

qXv |XΠv
(xv|xΠv )

= ∑
x1...i−1

(
i−1

∏
v=1

pXv|XΠv
(xv|xΠv ) · ∑

xi

(
pXi|XΠi

(xi|xΠi
)− qXi|XΠi

(xi|xΠi
) · ∑

xi+1...n

(
n

∏
v=i+1

qXv |XΠv
(xv|xΠv )

)))

= ∑
x1...i−1

(
i−1

∏
v=1

pXv|XΠv
(xv|xΠv ) · ∑

xi

(
pXi|XΠi

(xi|xΠi
)− qXi|XΠi

(xi|xΠi
)
))

≤ ∑
x1...i−1

(
i−1

∏
v=1

pXv|XΠv
(xv|xΠv ) · ε/n

)

=ε/n,

where for the inequality we used the hypothesis in the statement of the lemma.✷

Now suppose p ∈ P is an arbitrary Bayesnet defined on G. It follows from Lemma 13 that p lies ε-
close in total variation distance to a Bayesnet q such that, for all v ∈ V, and all σ ∈ ΣΠv , the conditional
distribution qXv|XΠv=σ is a discretized version of pXv|XΠv=σ that is ε

n -close in total variation distance. Note

that pXv|XΠv=σ is an element of the simplex over |Σ| elements, and it is easy to see that this simplex can be
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ε
n -covered, in total variation distance, using a discrete set of at most

(
n|Σ|

ε

)|Σ|
-many distributions. As there

are at most n · |Σ|d conditional distributions to discretize, a total number of

B =

(
n|Σ|

ε

)n|Σ|d+1

discretized distributions suffice to cover all P .

To prove the first part of the theorem statement, we proceed in the same way, except that now that we
do not know the DAG our cover will be larger. Since there are at most ndn DAGs of indegree at most d on n
labeled vertices, and for each DAG there is a cover of all Bayesnets defined on that DAG of size at most B,
as above, it follows that there is an ε-cover, in total variation distance, of all Bayesnets of indegree at most d
of size:

ndn · B.

Given the bound on the cover size, the proof concludes by appealing to tournament-style density estimation
algorithms, as we did earlier. This completes our proof for the finite alphabet case.

Alphabet Σ = [0, H]: Let δ = ε
dCn , and Σδ be the set of all multiples of δ between 0 and H.9 For any set

of nodes S and x = (xv)v∈S, we use ⌊x⌋δ to denote the corresponding rounded vector
(
⌊ xv

δ ⌋ · δ
)

v∈S
. We

first define distribution p̃ to be the rounded version of p using the following coupling. For any sample x
drawn from p, create a sample x̃ = ⌊x⌋δ drawn from p̃. Note that (i) this coupling makes sure that the two
samples from p and p̃ are always within ε of each other in ℓ1-distance. Our plan is to show that we can (ii)
learn a Bayesnet q with in-degree at most d using polynomially many samples from distribution p̃ such that
‖q− p̃‖TV = O(ε). Why does this imply our claim? First, we can generate a sample from p̃ using a sample
from p due to the coupling between the two distributions. Second, ‖q− p̃‖TV = O(ε) means that we can
couple q and p̃ in a way that the two samples are the same with probability at least 1−O(ε). Composing
this coupling with the coupling between p̃ and p, we have a coupling between p and q such that the two
samples are at most ε away from each other in ℓ1-distance with probability at least 1−O(ε). This implies,
according to Theorem 4, that ‖p− q‖P = O(ε). Now, we focus on proving (ii) and separate the proof into
three steps.

• (Step 1:) We first prove that there is a Bayesnet p′′ with in-degree at most d and alphabet Σδ such
that ‖ p̃− p′′‖TV ≤ ε. We first construct a Bayesnet p′ on the same DAG as p, where the conditional

probability distribution for every node v, and σ ∈ ΣΠv is defined as

p′Xv|XΠ(v)=σ
≡ pXv|XΠ(v)=⌊σ⌋δ

.

Clearly, for any node v, and σ ∈ ΣΠv ,
∥∥∥pXv|XΠ(v)=σ

− p′Xv|XΠ(v)=σ

∥∥∥
TV

=
∥∥∥pXv|XΠ(v)=σ

− pXv|XΠ(v)=⌊σ⌋δ

∥∥∥
TV
≤ C · ‖σ− ⌊σ⌋δ‖1 ≤ Cdδ ≤ ε

|V| .

Hence, Lemma 13 implies that: (iii) ‖p− p′‖TV ≤ ε.10

Next, we construct the rounded distribution p′′ of p′ via the following coupling. For any sample x′

drawn from p′, create a sample x′′ = ⌊x′⌋δ from p′′. It is not hard to verify that p′′ can also be captured
by a Bayesnet defined on the same DAG as p and p′. In particular, for every node v, every xv ∈ Σδ,

and xΠv ∈ Σ
Πv
δ , the conditional probability is

p′′Xv|XΠv
(xv|xΠv) =

∫ xv+δ

xv

p′Xv|XΠv
(z|xΠv) dz.

As p′′ is the rounded distribution of p′, p̃ is the rounded distribution of p, and ‖p− p′‖TV ≤ ε, it must
be the case that ‖p′′ − p̃‖TV ≤ ε.

9We further assume that H is a multiple of δ. If not, let k be the integer such that δ ∈
[

H
2k , H

2k−1

]
, and change δ to be H

2k .
10Even though Lemma 13 was only proved earlier for a finite alphabet, the same proof extends to when the alphabet is infinite.
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• (Step 2:) Let P be the set of all Bayesnets defined on a DAG with n nodes and in-degree at most d,

and which have alphabet Σδ. We argue that there is a size A = ndn ·
(

n|Σδ|
ε

)n|Σδ|d+1

ε-cover P ′, in total

variation distance, of P , and P ′ ⊂ P . This follows from the same argument we did in the proof for the
finite alphabet case. First, there are ndn different DAGs with n nodes and in-degree at most d. Second,
for each DAG there are at most n · |Σδ|d conditional distributions. Finally, it suffices to ε

n -cover each
conditional distribution, in total variation distance, which can be accomplished by a discrete set of

at most
(

n|Σδ|
ε

)|Σδ|
-many distributions. Since p′′ ∈ P and ‖p′′ − p̃‖TV ≤ ε, there exists a Bayesnet q̃

from the ε-cover P ′ such that ‖q̃− p̃‖TV ≤ 2ε.

• (Step 3:) Since minq′∈P ′ ‖q′ − p̃‖TV ≤ 2ε, we can use a tournament-style density estimation algorithm

(see e.g. [28, 25, 1] and their references) to learn a Bayesnet q ∈ P ′ such that ‖q− p̃‖TV = O(ε) given

O
(

log A

ε2

)
samples from p̃ .

To sum up, we can learn a Bayesnet q defined on a DAG with in-degree at most d using

O




d|V| log |V|+ |V| ·
(

H|V|dC
ε

)d+1
log
(
|V|HdC

ε

)

ε2




samples from p such that ‖q− p‖P ≤ ε. If the DAG that p is defined on is known, the sample complexity

improves to O

(
|V|·

(
H|V|dC

ε

)d+1
log
( |V|HdC

ε

)

ε2

)
.

Latent Variable Model: Finally, we consider the case where only k out of the n variables of the Bayesnet
p are observable. Let S be the set of observable variables, and use pS to denote the marginal of p on these
variables. We will first consider the finite alphabet case. Consider the ε-cover we constructed earlier. We
argued that for any Bayesnet p there exists an Bayesnet q in the cover such that ‖p− q‖TV ≤ ε. For that q
we clearly also have ‖pS − qS‖TV ≤ ε. The issue is that we do not know for a given q in the cover which
subset of its variables set S might correspond to. But this is not a big deal. We can use our cover to generate
an ε-cover of all possible marginals pS of all possible Bayesnets p as follows. Indeed, for any q′ in the
original ε-cover, we include in the new cover the marginal distribution q′S′ of every possible subset S′ of its

variables of size k. This increases the size of our original cover by a multiplicative factor of at most nk. As
a result, the number of samples required for the tournament-style density estimation algorithm to learn a
good distribution increases by a multiplicative factor of k log n. For the infinite alphabet case, our statement
follows from applying the same modification to the ε-cover of p̃. ✷
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