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Abstract
We investigate the algorithmic problem of selling information to agents who face a decision-making problem
under uncertainty. We adopt the model recently proposed by Bergemann et al. [4], in which information is
revealed through signaling schemes called experiments. In the single-agent setting, any mechanism can be
represented as a menu of experiments. Our results show that the computational complexity of designing the
revenue-optimal menu depends heavily on the way the model is specified. When all the parameters of the
problem are given explicitly, we provide a polynomial time algorithm that computes the revenue-optimal menu.
For cases where the model is specified with a succinct implicit description, we show that the tractability of the
problem is tightly related to the efficient implementation of a Best Response Oracle: when it can be implemented
efficiently, we provide an additive FPTAS whose running time is independent of the number of actions. On the
other hand, we provide a family of problems, where it is computationally intractable to construct a best response
oracle, and we show that it is NP-hard to get even a constant fraction of the optimal revenue. Moreover, we
investigate a generalization of the original model by Bergemann et al. [4] that allows multiple agents to compete
for useful information. We leverage techniques developed in the study of auction design (see e.g. [5, 1, 6, 7, 8])
to design a polynomial time algorithm that computes the revenue-optimal mechanism for selling information.
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1 Introduction

Decision-making heavily relies on information availability. The uneven distribution of information
thus enables markets for trading information. Imagine a bank reviewing a loan application. Inform-
ation about the borrower’s financial status clearly influences the bank’s lending decisions. In this
setting, the bank already has some private knowledge about the borrower, i.e., through prior interac-
tions, but may still be willing to pay to acquire supplemental information to guide its decision-making.
Indeed, Equifax, the credit report agency, provides its business consumers, e.g., banks and credit card
companies, a product called Undisclosed Debt Monitoring, that tracks negative information about
individual borrowers. 1

1 https://www.equifax.com/business/undisclosed-debt-monitoring/
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How should the information owner reveal and price the information? We adopt the model
introduced by Bergemann et al. [4] to study this problem. Their model involves a data buyer and
a data seller. The data buyer faces a decision under uncertainty, and his payoff depends on the
action he decides to take and the underlying state of the world. Initially, the buyer only has some
imperfect knowledge about the state, i.e. a prior distribution over the possible states. This piece of
information is private to the buyer. On the contrary, the data seller knows the state of the world and
can sell supplemental information to the buyer. Since the buyer’s willingness to pay for supplemental
information is determined by the precision of his own prior belief, we refer to the buyer’s prior belief
as his type. How does the seller optimize her revenue if the buyer’s type is assumed to be drawn from
a known distribution? To screen heterogeneous buyer types, the seller offers a menu of information
products. Each product has the form of a statistical experiment, whose result reveals a signal that
is correlated with the underlying state. Bergemann et al. [4] investigate what experiments should
be included and how to price them. They obtain analytic solution of the revenue-optimal menu in
two special cases: (i) the case with only two possible buyer types and (ii) the case with two states
and two possible actions for the buyer to choose from. However, general characterization of the
revenue-optimal menu remains elusive. In this paper, we initiate the algorithmic study of this problem
and investigate the computational complexity for finding the revenue-optimal menu.

Our first result considers an explicit representation of the problem, where the input contains the
buyer’s type distribution and his payoff for each action and state pair.

Result I: We design an algorithm that computes the revenue-optimal menu in time polynomial in
the number of buyer types, the number of buyer actions, and the number of underlying
states. (Theorem 4)

For many settings of interest, the model is too expensive to be specified explicitly but has a
natural succinct implicit description. Consider the following motivating example. Suppose there is
a traffic network G, and a binary state ω that indicates the level of congestion on the edges of G.
A driver wants to go from a vertex s to another vertex t, and his payoff is H minus the expected
travel time from s to t using the path he picks. 2 Of course, which path is the fastest depends on the
driver’s belief of the state ω. Suppose Waze is offering a service that provides the driver supplemental
information about the congestion. How should Waze price its service? In this setting, the driver is the
data buyer and the number of actions available to him is exactly the number of s− t paths, which
can be exponential in the size of the network G. Applying our first result is thus computationally
inefficient in this setting. Our second result concerns exactly these settings with succinct implicit
descriptions. We show that the key to tractability is the existence of a computationally efficient Best
Response Oracle, that is, an oracle that accepts a distribution over the underlying state as input and
outputs an action with the highest expected payoff. Clearly, in the example above, it is straightforward
to construct a computationally efficient best response oracle – simply assign the expected congestion
on each edge as its length and run any shortest path algorithm on the graph G. We show that finding
the revenue-optimal menu is tractable as long as there exists a best response oracle.

Result II: For any setting with a constant number of possible underlying states, we design an
FPTAS to compute an up-to-ε optimal menu, i.e., a menu whose revenue is at most ε
less than the optimum, given access to a best response oracle. a (Theorem 10)

a Our algorithm runs in time polynomial in the total number of buyer types and 1/ε.

Without the best response oracle, we show that it is NP-hard to even find a constant factor
approximation to the optimal revenue for a family of succinctly describable instances with only two
underlying states and one buyer type. (Theorem 13)

2 H is a sufficiently large constant so that the payoff is always nonnegative.
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We also investigate extensions of the basic model studied in Bergemann et al. [4]. First, we
consider the setting where multiple data buyers are competing with each other to receive an informative
signal from the data seller. We obtain the following generalization of Result I.

Result III: We design an algorithm that computes the revenue-optimal mechanism in time polyno-
mial in the total number of buyer types, the number of buyer actions, and the number of
underlying states. (Theorem 20)

Note that the straightforward generalization of Result I only gives an algorithm that runs in time
polynomial in the total number of buyer type profiles, which is exponential in the number of buyers.
Our algorithm in Result III runs in time polynomial in the total number of buyer types, which is the
description size for specifying each buyer’s type distribution.

In Section 5, we discuss another natural extension. We can treat a buyer’s payoffs for taking
actions in various states as the buyer’s private information and may be different across buyers. In
other words, a buyer type is no longer just the buyer’s prior belief of the underlying state but also
his payoff function. We show that all our results (c.f. Result I, II, and III) can be easily extended to
handle this case, and the modification is summarized in Section 5.

Our Approach:

In the explicit model, we first show that the revenue-optimal menu can be captured by a LP with
polynomially many decision variables but exponentially many constraints. We leverage a technique
introduced by Chen et al. [15] to transform it to an equivalent LP with polynomially many constraints.
In the implicit model with a best response oracle, the main difficulty is that the optimal menu may
contain experiments that use an arbitrary number of signals, and as a result the menu cannot even be
represented in polynomial time. To overcome this difficulty, we first argue that there always exists an
up-to-ε optimal menu that only contains experiments that use a small number of signals, then apply an
algorithm similar to the one in the explicit model to find such a menu. For the multi-agent setting, one
can use a LP similar to the one in the explicit model to capture the optimal mechanism. The issue with
this approach is that both of the number of variables and constraints are exponential in the number of
agents, which is too large to solve. Our solution is inspired by an approach used to computing the
revenue-optimal multi-item auctions [5, 1, 6, 7, 8]. The key idea is to first represent mechanisms in a
succinct way known as the “reduced forms” and use a LP to search for the revenue-optimal reduced
form. However, as a reduced form is only a succinct description, given a reduced form, it is not
obvious what mechanism it corresponds to. Indeed, it is not even clear whether it corresponds to any
mechanism. The main technical barrier we overcome is to design efficient algorithms to (i) check the
feasibility of a reduced form and (ii) to implement a feasible reduced form as an actual mechanism.

1.1 Related Work

Relationship with Monopoly Pricing.

A well-studied problem from mechanism design, the monopoly pricing problem, bears some re-
semblance to our problem. The monopoly pricing problem asks what is the revenue-optimal mech-
anism to sell one or more items to a buyer, whose valuation/willingness to pay for the items is
drawn from a known distribution. In single-dimensional settings, the problem is completely re-
solved by [35, 36]. In multi-dimensional settings, complete characterizations are known only in
several special cases [27, 28, 30, 18, 26, 22, 21], but simple and approximately optimal mechan-
isms [13, 14, 31, 2, 34, 37, 9, 12], as well as algorithmic characterizations [5, 1, 6, 7, 8] have been
discovered in fairly general settings. The nature of information goods adds an extra layer of difficulty
to the pricing problem. The value of information is determined by how much such information can
improve the quality of decision-making. Buyers with different beliefs do not simply have different
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values for different experiments, but they may even disagree on their ranking. This richness in buyer
valuations does not happen in single-dimensional monopoly pricing, but already exists in single-
dimensional information pricing, where there are only two possible underlying states. 3 As a result,
the optimal menu in information pricing has a more complex structure. For example, Bergemann
et al. [4] showed that even in the two-state case, the seller sometimes needs to use randomized
experiments to maximize her revenue. In this work, we show that despite the new challenges of
selling information products, some of the algorithmic ideas from monopoly pricing are still useful.

Relationship with Information Design.

Similar to our problem, the designer constructs a signaling scheme that reveals partial information
about the underlying state to influence the action of the agents in information design [32]. There
has been growing interest in the algorithmic study of information design [24, 23, 25, 16, 19, 10].
The fundamental difference between our setting and information design is that, in our setting, the
buyer’s action does not have direct effect on the seller’s utility. The seller only derives utility from the
monetary transfers received from the buyer.

Relationship with other Information-Selling Models.

The work that is most related to the problem we are studying is by Babaoiff et al. [3]. Similar to us,
they consider a seller who knows the state of the world ω and wants to sell information to a buyer
whose prior is drawn from some distribution Θ. However, there is a subtle but crucial difference
between our models. In their work, the seller’s information disclosure strategy and the price are
allowed to be dependent on the realized state of the world ω. By contrast, our model requires the seller
to commit to a mechanism before the realization of the state ω. Their main results state that (i) when
ω and the buyer’s type are independently distributed, revelation principle holds, i.e., a single-round
interaction suffices; and (ii) when ω and the buyer’s type are correlated, a full surplus extraction
mechanism, similar to Crémer and McLean [17], exists and can be computed efficiently. These results
differ quite substantially from the structural results for the model we study here [4]. For instance, full
surplus extraction is in general impossible in our model. In a recent work, Chen et al. [15] extends
the results by Babaioff et al. [3] to the setting where the buyer is budget-constrained, and improves
upon some of the algorithmic results.

2 Preliminaries

Model and Notation.

The data buyer faces a decision problem under uncertainty. The state of the world ω is drawn from a
state space Ω. The buyer chooses an action a from an action space A. Throughout the paper, we use
m to denote the size of A. The buyer’s ex-post utility for choosing action a under state ω is defined
to be uω,a and is assumed to lie in [0, 1]. The buyer has some prior information about the state of the
world which is denoted by θ and comes from a set Θ ⊆ ∆Ω. We call θ the type of the buyer, and
use θω to denote the probability that the buyer assigns to the event that the state of the world is ω.
The type of the buyer is distributed according to F . Apart from the buyer, there is also a seller who
observes the state of the world and is willing to sell supplemental information to the buyer. We refer
to the buyer as he and to the seller as she.

3 In this case, the buyer’s prior belief can be represented using a single real number in [0, 1].
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Experiment.

The seller provides supplemental information to the buyer via a signaling scheme which we call
experiment. A signaling scheme is a commitment to |Ω| probability distributions over a set of
different signals S, such that when the state of the world is realized, the seller draws a signal
from the corresponding distribution and sends it to the buyer. We denote such an experiment by
E = (S, π(E)), where π(E) : Ω → ∆S denotes the distributions that experiment E is using.
We denote the probability that experiment E sends signal sk when the state of the world is ω by
πω,k(E) = Pr[sk|ω]. In this work, it is useful to think of the experiment π(E) as a matrix whose rows
are indexed by the states of the world and columns are indexed by the signals. A menu of experiments
is a collectionM = {(E, t(E))}, where t(E) ∈ [0, 1] is the payment the buyer has to make when he
purchases experiment E. In the multi-agent setting, a menu is insufficient to generate the optimal
revenue, and our goal there is to compute the revenue-optimal mechanism. In the single-agent setting,
the interaction between the seller and the buyer works as follows:
1. The seller posts a menuM.
2. The state of the world ω and the type of the buyer θ are realized.
3. The buyer chooses some experiment E from the menu based on his type and pays t(E).
4. The seller sends the buyer a signal s that is drawn from πω,·(E).
5. The buyer chooses an action a, based on his original belief θ and the signal s, and receives utility

uω,a.

The Value of an Experiment.

To understand the behavior of the buyer, we first explain how the buyer evaluates an experiment. We
first explain how the buyer would act if the only information available to him was his type θ. Since
the buyer picks an action that maximizes his expected utility, his best move without receiving any
additional information from the seller is a(θ) = arg maxa

∑
ω θωuω,a and his base utility following

that move is u(θ) = maxa
∑
ω θωuω,a. If he receives extra information from the seller, he updates

his beliefs and may choose a new action that induces higher expected value based on his posterior
distribution over the states. After receiving signal sk from experiment E his belief about the state of
the world is

Pr[ω|sk, θ] = θωπω,k(E)∑
ω′∈Ω θω′πω′,k(E) .

Hence, the best action is

a(sk|θ) ∈ arg max
a

∑
ω

(
θωπω,k(E)∑

ω′∈Ω θω′πω′,k(E)

)
uω,a,

which yields conditional expected utility

u(sk|θ) := max
a

∑
ω

(
θωπω,k(E)∑
ω′ θω′πω′,k(E)

)
uω,a.

When it is clear from the context, we might drop θ in the previous expressions. Notice that after
computing his posterior, the buyer’s conditional expected utility is linear in the actions so we can
assume w.l.o.g. that he picks a single action and not a distribution over actions. Taking the expectation
over the signal he will receive, we denote the value of the experiment E for type θ to be

Vθ(E) =
∑
sk∈S

max
a

{∑
ω

θωπω,k(E)uω,a

}
.
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We assume that the buyer is quasilinear. We denote the expected net utility of type θ for
experiment E as Vθ(E)− t(E).

Notice that two different types θ, θ′ may have different favorite actions under the same signal.
As a result, Vθ(E) is not a linear function over θ for a fixed experiment E even when the type θ is
single-dimensional, i.e., |Ω| = 2. Consider the following example.

I Example 1. There are two states of the world Ω = {ω1, ω2}, two possible actions A = {a1, a2}
and we have a matching action-state environment, i.e. the ex-post utilities are as follows

U =
(

1 0
0 1

)
.

Consider the following experiment E that sends two different signals s1, s2 with

E =
(

0.7 0.3
0.3 0.7

)
.

For a buyer whose prior is θω1 = θ, θω2 = 1 − θ, after receiving s1, s2 the posteriors of the buyer
are
(

0.7θ
0.4θ+0.3 ,

0.3(1−θ)
0.4θ+0.3

)
and

(
0.3θ

0.7−0.4θ ,
0.7(1−θ)
0.7−0.4θ

)
respectively. Hence, we see that when θ ≤ 0.3

the buyer will take action a2 after receiving either s1 or s2. Similarly, if 0.3 < θ ≤ 0.7 he will take
action a1 (or a2) after receiving s1 (or s2). Finally, when θ > 0.7 the buyer will take action a1 no
matter which signal he receives. This leads to the following value function for E

Vθ(E) =


1− θ if 0 ≤ θ ≤ 0.3
0.7 if 0.3 < θ ≤ 0.7
θ if 0.7 ≤ θ ≤ 1

This is in sharp contrast to standard single-dimensional auction design settings, where the agent’s
value is always a linear function over the type when the allocation is fixed. 4

IC and IR Menu.

The buyer chooses the experiment that gives him the highest net utility, and we slightly abuse notation
and denote by E(θ) the experiment of the menuM that type θ prefers

E(θ) = arg max
E

Vθ(E)− t(E).

If all experiments give him expected net utility smaller than his base utility u(θ), he will not purchase
any experiment. For convenience, we assume that there is a null experiment that provides no
information offered at price 0, so now without loss of generality every type takes an experiment from
the menu. We sometimes abuse notation to call a menu Incentive Compatible (IC) and Individually
Rational (IR). By that, we mean that every buyer type θ selects the experiment (E(θ), t(θ)) that
maximizes his expected net utility. Formally, these constraints are captured by the following two sets
of inequalities:

Vθ(E(θ))− t(θ) ≥ Vθ(E(θ′))− t(θ′), ∀θ, θ′ ∈ Θ,
Vθ(E(θ))− t(θ) ≥ u(θ), ∀θ ∈ Θ.

Once we have fixed the parameters of the model, we denote by REV(M) the revenue that menuM
generates and by OPT the optimal revenue in this setting.

4 Indeed, this linearity even holds for quite general multi-dimensional settings in auction design, for example, when
the buyer has additive valuations.
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3 Optimal Menu for a Single Agent

In this section, we consider the problem of computing the optimal menu for a single agent. As we
will show, the computational complexity of the problem is tightly related to the way that the problem
is specified. We consider three different models.

Explicit model: the distribution F and the ex-post utility matrix U are given explicitly in the
input.
Implicit model with a best response (BR) oracle: the distribution F is given along with a best
response oracle. The best response oracle accepts a distribution over the states as input and
outputs the action that generates the highest expected utility w.r.t. the input distribution.
Implicit model with succinct description: the distribution F is given along with the description
of a Turing Machine that computes the ex-post utility of any pair of state and action in time
polynomial in the description size.

We summarize our results with respect to the three different models: (i) we show that computing
the optimal menu in the explicit model is captured by a polynomial size LP; (ii) even though the
number of actions in the implicit model with BR oracle may be arbitrarily large, we provide an
FPTAS to find an up-to-ε optimal menu for settings with a constant number of underlying states; (iii)
we construct a succinctly representable instance of the problem such that computing a constant factor
approximation or an up-to-ε optimal menu is NP-hard.

3.1 Explicit Model

In this section, we discuss the basic setting where the model is explicitly given. First, we state a
structural result of the optimal menu that allows us to restrict the number of signals.

I Definition 2 (Responsive Experiment). A buyer type θ is responsive to an experiment E if
every signal s of E leads θ to a different optimal choice of action and, in particular a(sk | θ) = ak
for all sk ∈ S.

Note that if an experiment E is responsive to any buyer type, E has exactly m signals. An
intuitive way to think about Definition 2 is that signal si of E recommends the buyer to take a action
ai, and type θ is responsive to E if θ always follow the recommendation. Importantly, a different
type θ′ may not be responsive to experiment E and does not follow the recommendations. We now
state the structural result from [4] that states that it is without loss of generality to consider a menu
where each buyer type purchases a responsive experiment.

I Lemma 3 (Adapted from Proposition 1 from [4]). A menuM is responsive if for every buyer
type θ, it chooses a responsive experiment E(θ) from the menu. We define the outcome of a menu
as the joint distribution of states, actions, and monetary transfers resulting from every buyer type’s
optimal choice of experiment and subsequent choice of action. The outcome of every menu can be
attained by a responsive menu.

The proof of Lemma 3 is based on a revelation-principle type of argument. More precisely, assume
that some type θ prefers an experiment E(θ) for which he is not responsive. Then, we can merge all
the signals si1 , . . . , si` of E(θ) that lead the type to take the same action ak and just send the merged
signal as the new k-th signal sk. Equipped with the structural result, we are ready to show how to
capture the design of the optimal menu as a LP. Since there exists an optimal menu that is responsive,
every experiment in this menu has at most m signals. For every buyer type θ, we use π(θ) to denote
the experiment type θ purchases, where πω,i(θ) is the probability to send signal si when the state is
ω. {πω,i(θ)}ω∈Ω,i∈[m],θ∈Θ is the first set of variables. We also have the prices for each experiment
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{t(θ)}θ∈Θ as variables. The main difference between selling experiments and selling items is that
different types may interpret the same experiment differently. More specifically, for a responsive
experiment (π(θ), t(θ)), the optimal choice of action for type θ after receiving signal si is simply
action ai; while for a different type θ′, the best action after receiving signal si can be a completely
different action aj due to a different induced posterior. As our LP is designed to compute the optimal
and responsive menu, we need to guarantee that for any type θ, purchasing experiment (π(θ, t(θ)) and
following the recommendation is better than purchasing any experiment (π(θ′), t(θ′)) for a different
type θ′ and subsequently choosing the optimal action based on the induced posterior. We remark that
the straightforward formulation of the previous constraints requires one to consider all the possible
mappings from signals to actions, resulting in a LP that has exponentially many constraints in m.
Although this huge LP can be solved using the ellipsoid algorithm, we use a technique inspired by
Chen et al. [15] that allows us to formulate it using only polynomially many constraints in m.

See Figure 1 for our LP. Besides the variables representing the experiments and prices, we
introduce a new set of variables {zi(θ, θ′)}i∈[m],θ,θ′∈Θ. zi(θ, θ′) serves as an upper bound of the
conditional expected utility that θ gets when he considers misreporting as θ′ and receives signal si,
which is guaranteed by the second set of constraints. The first set of constraints make sure that for any
type θ, the net utility of purchasing experiment E(θ) and following its recommendations is no worse
than the utility of purchasing any other experiment and subsequently choosing the best action under
each signal. Note that we allow θ′ to be the same θ in the first set of constraints, which guarantees
that the menu is responsive. The third set of constraints guarantees that purchasing experiment
(π(θ), t(θ)) is no worse than θ’s base utility. We refer to these constraints as the individual rationality
(IR) constraints. The last two constraints guarantee that π(θ) is indeed an experiment.

Variables:
{πω,i(θ)}ω∈Ω,i∈[m],θ∈Θ, denoting the experiments in the menu.
{t(θ)}θ∈Θ, denoting the prices of the experiments.
{zi(θ, θ′)}i∈[m],θ,θ′∈Θ, helper variables. zi(θ, θ′) represents an upper bound of the conditional
expected utility of signal si from experiment E(θ′) for type θ.

Linear Program:

max
∑
θ∈Θ

F (θ)t(θ)

s.t.
∑
i∈[m]

∑
ω∈Ω

θωπω,i(θ)uω,ai − t(θ) ≥
∑
i∈[m]

zi(θ, θ′)− t(θ′), ∀θ, θ′ ∈ Θ (IC)

zi(θ, θ′) ≥
∑
ω

θωπω,i(θ′)uω,aj , ∀θ, θ′ ∈ Θ,∀i, j ∈ [m]∑
i∈[m]

∑
ω∈Ω

θωπω,i(θ)uω,ai − t(θ) ≥ u(θ), ∀θ ∈ Θ (IR)∑
i∈[m]

πω,i(θ) = 1, ∀θ ∈ Θ, ω ∈ Ω

πω,i(θ) ≥ 0, ∀θ ∈ Θ,∀ω ∈ Ω,∀i ∈ [m]

Figure 1 A linear program to find the revenue-optimal menu in the explicit model.

I Theorem 4. The LP in Figure 1 can be solved in time polynomial in m = |A|, |Ω|, and |Θ|, and
its optimal solution is the revenue-optimal menu.

Proof of Theorem 4: The number of constraints and the number of variables of the LP in Figure 1
is polynomial in m, |Ω|, |Θ|, so it is clear that it can be solved in polynomial time. We now argue
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that its solution is indeed the optimal responsive menu, hence the optimal menu as guaranteed by
Lemma 3. Observe that every responsive menu corresponds to a feasible solution of the LP. This is
because if {(π(θ), t(θ))}θ∈Θ is a responsive menu, then we can satisfy all the constraints by setting
zi(θ, θ′) = maxaj

∑
ω θωπω,i(θ′)uω,aj . Conversely, note that every feasible solution of the LP

induces a responsive menu that simply chooses the experiment E(θ) as (π(θ), t(θ)) for each type
θ ∈ Θ. This is because (i) the first and second sets of constraints guarantee that E(θ) is a responsive
experiment for θ (this follows from setting θ′ to be θ in both the first and second set of constraints)
and Vθ(E(θ))− t(θ) ≥ Vθ(E(θ′))− t(θ′) ; (ii) the IR constraints ensure that V (E(θ))− t(θ) ≥ u(θ).
Hence, the optimal solution corresponds to the revenue-optimal menu. 2

3.2 Implicit Model with a Best Response Oracle

In this section, we study the case where the model is provided implicitly. We prove that, given
access to a best response oracle, our algorithm can compute an up-to-ε optimal menu in time

poly
(
|Θ|, |Ω|

|Ω|2

ε|Ω|2+|Ω|

)
, which is independent of the number of actions.

We first prove a structural result which shows that no matter how large the actual action set A may
be, there is some A′ ⊆ A such that a menuM that recommends actions only from A′ has negligible
revenue loss compared to OPT. Moreover, |A′| depends only on |Ω| and the additive approximation
error. We also show that these sets can be computed efficiently.

I Theorem 5. For any constant ε > 0 , given access to a BR oracle we can compute for each

type θ ∈ Θ a set of actions Aθ by querying O
(
|Ω||Ω|

2

ε|Ω|2+|Ω|

)
times the BR oracle, so that there exists

an IC and IR menuM, whose experiments all contain no more than O
(
|Ω||Ω|

2

ε|Ω|2+|Ω|

)
many signals.

Moreover, every type θ only uses actions from Aθ upon receiving any of these signals generated by
his experiment. Finally, the revenue ofM is at least OPT−O(

√
ε).

We present some lemmas that are used in the proof of Theorem 5. Firstly, we show that given
a menuM and ε, we can create a menuM′ with the following two properties: (i) the number of
signals thatM′ uses depends only on |Ω| and ε, and every type θ values the new experiment he gets
at most O(ε) less than his original experiment. The proof is based on the idea that merging signals of
an experiment E that are close does not decrease the value of the experiment by much.

I Lemma 6. Let ε > 0 be some given constant and let E = {E(θ)}θ∈Θ be a set of experiments,
where each E(θ) uses an arbitrary number of signals. Then, we can create a set of experiments
E′ = {E′(θ)}θ∈Θ that uses O(( |Ω|ε )|Ω|) signals per player such that Vθ(E′(θ)) ≥ Vθ(E(θ))− 2ε.
Proof of Lemma 6: Fix some θ ∈ Θ and let E(θ) be the experiment that is offered to this type. For
any signal si that the experiment E(θ) sends we define π̂ω,i(θ) = πω,i(θ)∑

ω′
πω′,i(θ)

to be the normalized

probability of sending signals si in state ω. We partition all the vectors π̂·,i according to the following
procedure. Let π̃·,i be the vector that is created by rounding the entries of π̂·,i to multiples of ε/|Ω|.
We put π̂·,i, π̂·,j in the same set of the partition if they round to the same vector, i.e. π̃·,i = π̃·,j . Notice
that this forms an actual partition, all the π̂·,i, π̂·,j that are in the same set have |π̂ω,i − π̂ω,j | ≤ ε

|Ω|
and there are at most O

(
(|Ω|/ε)|Ω|

)
different sets. We now describe a merging procedure of the

signals that will create E′(θ) and guarantees that the number of signals that E′(θ) uses is bounded by
a number that is independent of the signals in E(θ). Moreover, Vθ(E′(θ)) has a negligible decrease
compared to Vθ(E(θ)). Assume that π̂·,i, π̂·,j are in the same set of the partition. Without loss of
generality, let

∑
ω′ πω′,i(θ) ≤

∑
ω′ πω′,j(θ). Then, we have that∑

ω′

θω′πω′,j(θ)uω′,aj ≥
∑
ω′

θω′πω′,j(θ)uω′,ai
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=⇒
∑
ω′ θω′πω′,j(θ)uω′,aj∑

ω πω,j(θ)
≥
∑
ω′ θω′πω′,j(θ)uω′,ai∑

ω πω,j(θ)

=⇒
∑
ω′ θω′πω′,i(θ)uω′,aj∑

ω πω,i(θ)
≥
∑
ω′ θω′πω′,i(θ)uω′,ai∑

ω πω,i(θ)
− 2 ε

|Ω|

(
as |π̂ω,i − π̂ω,j | ≤

ε

|Ω|

)
=⇒

∑
ω′

θω′πω′,i(θ)uω′,aj ≥
∑
ω′

θω′πω′,i(θ)uω′,ai − 2 ε

|Ω|
∑
ω′

πω′,i(θ)

=⇒
∑
ω′

θω′(πω′,i(θ) + πω′,j(θ))uω′,aj ≥
∑
ω′

θω′πω′,i(θ)uω′,ai

+
∑
ω′

θω′πω′,j(θ)uω′,aj − 2 ε

|Ω|
∑
ω′

πω′,i(θ)

=⇒ max
a∈A

∑
ω′

θω′(πω′,i(θ) + πω′,j(θ))uω′,a ≥
∑
ω′

θω′πω′,i(θ)uω′,ai

+
∑
ω′

θω′πω′,j(θ)uω′,aj − 2 ε

|Ω|
∑
ω′

πω′,i(θ)

Hence, we see that when we merge two signals that are in the same set, the value of the buyer for
the experiment drops by at most 2ε

∑
ω′ πω′,i(θ), where π·,i(θ) is the signal with the smallest sum.

Let π·,i+j be the merged signal and assume that for ω we have π̂ω,i ≤ π̂ω,j . Then, it holds that
π̂ω,i ≤ π̂ω,i+j ≤ π̂ω,j because for any four positive numbers a, b, c, d with a

b ≤
c
d we have that

a
b ≤

a+c
b+d ≤

c
d . Thus, we see that the merged signal will remain in the same set of the partition that

the two original ones were. Let π·,1, . . . , π·,N be the signals that are in some set P . Our previous
discussion shows that we can merge π·,1, π·,2 to create π·,1+2, then merge π·,1+2 with π·,3 and so on.
Importantly, all these signals will remain in P and the amount by which they decrease the value of
the experiment is at most 2 ε

|Ω|
∑
i∈P

∑
ω∈Ω πω,i(θ). If we do that for all sets P , the total decrease in

the value is at most 2 ε
|Ω|
∑
i

∑
ω∈Ω πω,i(θ) = 2ε 2

We now argue that when we merge two signals, no type can value any experiment more than he
did before.

B Claim 7. Let E(θ) be the initial experiment that is offered to type θ and E′(θ) the experiment
that is offered to θ after the merge. Then, for any type θ′ ∈ Θ it holds that Vθ(E′(θ′)) ≤ Vθ(E(θ′)).

Proof of Claim 7: Consider the first time that two signals si, sj of E(θ′) are merged. Then, the value
of θ for this new experiment is

Vθ(E′(θ′)) =
∑
l 6=i,j

max
a

∑
ω

θωπω,l(E(θ′))uω,a + max
a

∑
ω

θω(πω,i(E(θ′)) + πω,j(E(θ′)))uω,a

≤
∑
l 6=i,j

max
a

∑
ω

θωπω,l(E(θ′))uω,a

+ max
a

∑
ω

θωπω,i(E(θ′))uω,a + max
a

∑
ω

θωπω,j(E(θ′))uω,a

= Vθ(E(θ′))

Continuing inductively, we prove the claim. 2

So far we have established the existence of a menuM′ whose number of signals is significantly
smaller than the initial one. However, if we do not have access to M we cannot compute M′.
Lemma 8 shows that we can overcome this issue. By “rounding” the entries of the experiment so
that for any type the value this experiment generates does not change much. Now, since there is a
small number of signals, and the size of every experiment depends only on ε and |Ω|, we can do an
exhaustive search over the discretized entries.
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I Lemma 8. Let {E(θ)}θ∈Θ be a set of experiments, where each E(θ) uses signals from S. We
also let 0 < δ < 1 be a given number such that 1/δ ∈ N. Then, we can create a set of experiments
{E′(θ)}θ∈Θ that uses signals from S′ with |S′| = |S|, such that E′(θ) is a valid experiment with
πω,s′(E′(θ)) being a multiple of δ for all ω ∈ Ω, s′ ∈ S′, θ ∈ Θ, and |Vθ(E′(θ′))− Vθ(E(θ′))| ≤
δ|S|, for all θ, θ′ ∈ Θ.

Proof of Lemma 8: Fix some θ ∈ Θ and consider any θ′ ∈ Θ. We create E′(θ′) by rounding every
entry of π·,·(E(θ′)) to multiples of δ in such a way that

∑
i′ πω,i′ = 1,∀ω ∈ Ω. Consider a particular

signal sk of E(θ′) that results in θ taking action a(sk). After the rounding step, the rounded signal
s′k might lead θ to take a different action a(s′k). Thus, we have

Vθ(E′(θ′)) =
∑
s′
k
∈S′

∑
ω∈Ω

θωπω,k′(E′(θ′))uω,a(s′
k
) ≥

∑
s′
k
∈S′

∑
ω∈Ω

θωπω,k′(E′(θ′))uω,a(sk)

≥
∑
sk∈S

∑
ω∈Ω

θω(πω,k(E(θ′))− δ)uω,a(sk) ≥ Vθ(E(θ′))− δ|S|

The other direction is proved similarly. 2

One construction that will be useful in our proofs is the ε-IC to IC transformation. Lemma 9
shows that if we have a menu whose IC, IR constraints are violated by at most ε, we can modify the
prices so that it becomes IC, IR and has negligible O(

√
ε) revenue loss. The construction is based

on a technique developed [20, 11] and frequently used in the Mechanism Design literature. In the
single agent setting, the idea is to offer a small multiplicative discount to all types to make sure that if
they want to deviate to some other experiment, this will not be much cheaper than the one they were
buying in the initial ε-IC menu.

I Lemma 9. LetM = {Ei, t(Ei)}i∈[k] be a menu with k experiments. Suppose that the IC, IR
constraints are violated by at most ε. Then, we can compute a new set of prices {t̃(Ei)}i∈[k] such
that the menu M̃ = {Ei, t̃(Ei)}i∈[k] is IR, IC and REV(M̃) ≥ (1−

√
ε)REV(M)−

√
ε− ε, in time

O(k).

Proof of Lemma 9: Let t̃(Ei) = (1− η)t(Ei)− ε, where η > 0. We immediately see that all the IR
constraints are now satisfied. Consider a type θ who buys experiment E under the original prices.
Since the IC constraints are violated by at most ε, we know that

Vθ(E)− t(E) ≥ Vθ(E′)− t(E′)− ε, ∀E′ ∈M.

Now suppose that θ prefers E′′ under the new prices. Then

Vθ(E′′)− (1− η)t(E′′) ≥ Vθ(E)− (1− η)t(E).

Choosing E′ to be E′′ in the first inequality and combining the two inequalities, we have that

Vθ(E′′)− (1− η)t(E′′) ≥ Vθ(E′′)− t(E′′)− ε+ ηt(E) =⇒ t(E)− t(E′′) ≤ ε

η

Hence, for the revenue we have REV(M̃) ≥ (1− η)REV(M)− ε− ε
η . By picking η =

√
ε we get

the result. 2

We are now ready to present a sketch of the proof for Theorem 5. Assume that we start with the
optimal menuM∗. By Lemma 6, Claim 7, and Lemma 8, we know that we can modify the experi-
ments inM∗ so that they use only discretized signals. Moreover, the new menu is approximately IC
and IR. We then apply Lemma 9 to obtain a menu that is IC and IR by sacrificing a negligible amount
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of revenue. Finally, to compute the collection of action sets that the types will choose after receiving
the signals, we query BR oracle on all the possible discretized distributions where the signals are
drawn from.

Proof of Theorem 5: Let {E(θ)}θ∈Θ be a set of experiments that use signals from S and {t(θ)}θ∈Θ
be the corresponding set of prices that form a valid IC, IR menu. Let {E′(θ)}θ∈Θ be the set of
experiments that is induced by first merging and then rounding the experiments of {E(θ)}θ∈Θ.
By Lemma 6 and Lemma 8, we have that Vθ(E′(θ)) ≥ Vθ(E(θ)) − 2ε − δ|S′|, where |S′| =
Θ
(
(|Ω|/ε)|Ω|)

)
. We pick δ so that δ|S′| ≤ ε. Thus, Vθ(E′(θ)) ≥ Vθ(E(θ)) − 3ε. Moreover,

Claim 7 and Lemma 8 guarantee that Vθ(E′(θ′)) ≤ Vθ(E(θ′))+δ|S′| ≤ Vθ(E(θ′))+ε for any other
experiment E′(θ′) . Hence, the IC and IR constraints for the menu {(E′(θ), t(θ))}θ∈Θ are violated
by at most 4ε. Lemma 9 shows how we can transform the prices {t(θ)}θ∈Θ to {t′(θ)}θ∈Θ so that the
revenue drops by at most Θ(

√
ε), without modifying the experiments that are offered. Considering

{E(θ), t(θ)}θ∈Θ to be the optimal menu concludes gives us the revenue guarantee. Consider some
type θ ∈ Θ. Note that if we let δ = ε/|S′|, since every column of the experiment consists of |Ω|

entries, we have that there are at most (1/δ)|Ω| = O

(
|Ω||Ω|

2

ε|Ω|2+|Ω|

)
different possible columns that

we can send to θ. Every such column induces a posterior distribution for θ, so by querying the BR

oracle O
(
|Ω||Ω|

2

ε|Ω|2+|Ω|

)
many times, we find the set of actions Aθ that this type will ever consider after

receiving any of the signals from S′. 2

So far we have only shown a structural result about the existence of a menu that usesO
(
|Ω||Ω|

2

ε|Ω|2+|Ω|

)
signals and gives an additive O(

√
ε)-approximation to the optimal revenue. We now argue that we

can use a LP (Figure 2) to find such a menu. This is done by combining the result of Theorem 5 and
modifying the LP we used in Section 3.1.

I Theorem 10. For any ε > 0, any set Θ of types, given access to a BR oracle, we can use the LP
in Figure 2 to compute a menuM that achieves REV(M) ≥ OPT−O(

√
ε). The number of queries

to the BR oracle is poly
(
|Θ|, |Ω|

|Ω|2

ε|Ω|2+|Ω|

)
and the running time is poly

(
|Θ|, |Ω|

|Ω|2

ε|Ω|2+|Ω|

)
. Moreover,

each experiment contains at most O
(
|Ω||Ω|

2

ε|Ω|2+|Ω|

)
many signals, and each type θ only chooses actions

from a set of actions Aθ with size O
(
|Ω||Ω|

2

ε|Ω|2+|Ω|

)
.

Proof of Theorem 10: By Theorem 5, we know that we can construct a collection of actions sets

{Aθ}θ∈Θ in timeO
(
|Θ| |Ω|

|Ω|2

ε|Ω|2+|Ω|

)
so that there exists a valid IC, IR menuM′ that only recommends

actions from Aθ to any type θ. The running time of this construction and the number of queries to the

BR oracle are both O
(
|Θ| |Ω|

|Ω|2

ε|Ω|2+|Ω|

)
. We assume set Aθ = {aτθ(i)}i∈[|Aθ|] for every type θ. Now

consider the LP in Figure 2, which is a modified version of the one in Section 3.1.
First we query BR oracle for every θ ∈ Θ to figure out what u(θ) is for every type θ. SinceM′

is IC and IR, we know that this menu is a feasible solution for the LP 5. However, in this case the
second set of constraints may contain an arbitrarily large number of inequalities. Nevertheless, we
can construct a polynomial time Separation Oracle that checks these constraints using the BR oracle,
hence we can solve the LP with the Ellipsoid Algorithm. The Separation Oracle works as follows. Fix

5 Some actions may not be recommended in the experiment for θ in M′. Simply set πω,i(θ) to 0 for those actions.



Y. Cai and G. Velegkas 13

the value of the variables in the LP and consider two types θ, θ′ and some signal si ∈ [|Aθ′ ]|. For the
posterior of θ that this signal induces, we can query the BR oracle to figure out what the best action
aj ∈ A is. Hence, we can find the “tightest” constraint regarding the variable zi(θ, θ′) with one query.

Since there are only O
(
|Θ|2 |Ω|

|Ω|2

ε|Ω|2+|Ω|

)
such variables, we need that many queries to the BR oracle

to check if one of them is violated. For the other set of constraints, it is easy to check whether they

are violated. So we can solve this LP in time poly
(
|Θ|, |Ω|

|Ω|2

ε|Ω|2+|Ω|

)
. Observe that, as in Theorem 4,

every feasible point of this LP is a responsive menu. Moreover, since there exists a feasible point that
generates revenue at least OPT−O(

√
ε) we know that every optimal solution of the LP generates at

least this much revenue. 2

Variables:
{πω,i(θ)}ω∈Ω,i∈[|Aθ|],θ∈Θ, denoting the experiments in the menu.
{t(θ)}θ∈Θ, denoting the prices of the experiments.
{zi(θ, θ′)}i∈[|Aθ′ |]θ,θ′∈Θ, helper variables. zi(θ, θ′) represents an upper bound of the conditional expected
utility of signal si from experiment E(θ′) for type θ.

Linear Program:

max
∑
θ∈Θ

F (θ)t(θ)

s.t.
∑

i∈[|Aθ|]

∑
ω∈Ω

θωπω,i(θ)uω,aτθ(i) − t(θ) ≥
∑

i∈[|Aθ′ |]

zi(θ, θ′)− t(θ′), ∀θ, θ′ ∈ Θ (IC)

zi(θ, θ′) ≥
∑
ω

θωπω,i(θ′)uω,aj , ∀θ, θ′ ∈ Θ,∀i ∈ [|Aθ′ |],∀aj ∈ A∑
i∈[|Aθ|]

∑
ω∈Ω

θωπω,i(θ)uω,aτθ(i) − t(θ) ≥ u(θ), ∀θ ∈ Θ (IR)∑
i∈[|Aθ|]

πω,i(θ) = 1, ∀θ ∈ Θ, ω ∈ Ω

πω,i(θ) ≥ 0, ∀θ ∈ Θ,∀ω ∈ Ω,∀i ∈ [|Aθ|]

Figure 2 A linear program to find an approximately revenue-optimal menu in the implicit model.

So far, the number of experiments in our constructions depends on the number of types |Θ|. We
show that the number of experiments needed for an up-to-ε optimal menu is independent of |Θ|. We
achieve this by dropping experiments that are offered to types who are close in TV-distance. We show
that this leads to a menu that preserves the revenue, is O(|Ω|ε)-IC, IR and has O

(
|Ω|2|Ω|
ε|Ω|

)
different

experiments. Finally, we apply the ε-IC to IC transformation to the modified menu.

I Lemma 11. LetM = {E(θ), t(θ)}θ∈Θ be a menu of experiments. Then, for any θ, θ′ ∈ Θ with
dTV (θ, θ′) ≤ ε it holds that Vθ(E(θ′))− t(θ′) ≥ Vθ(E(θ))− t(θ)− 2|Ω|ε.

Proof of Lemma 11: Let a(sk) be the action that type θ takes upon receiving signal sk ∈ Sθ′ from
E(θ′) and a′(sk) the action that θ′ takes upon reception of the same signal. Then we have that

Vθ(E(θ′)) =
∑

sk∈Sθ′

∑
ω∈Ω

θωπω,k(E(θ′))uω,a(sk) ≥
∑

sk∈Sθ′

∑
ω∈Ω

θωπω,k(E(θ′))uω,a′(sk)

≥
∑

sk∈Sθ′

(∑
ω∈Ω

θ′ωπω,k(E(θ′))uω,a′(sk) − ε ·
∑
ω∈Ω

πω,k(E(θ′)
)
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=⇒ Vθ(E(θ′)) ≥ Vθ′(E(θ′))− |Ω|ε

Similarly, we have that Vθ′(E(θ)) ≥ Vθ(E(θ))− |Ω|ε.
SinceM is IC, it holds that Vθ′(E(θ′))− t(θ′) ≥ Vθ′(E(θ))− t(θ). Thus, using the inequalities

above we have that

Vθ′(E(θ′))− t(θ′) ≥ Vθ′(E(θ))− t(θ) ≥ Vθ(Eθ)− t(θ)− |Ω|ε,

and
Vθ(E(θ′))− t(θ′) ≥ Vθ′(E(θ′))− t(θ′)− |Ω|ε,

which implies
Vθ(E(θ′))− t(θ′) ≥ Vθ(E(θ))− t(θ)− 2|Ω|ε.

2

We are now ready to prove that we can create a menu that offers a small number of experiments
and loses negligible revenue compared to OPT. We do that in two steps, since we are dealing with an
action space and type space that are arbitrary. The first step is to shrink the action space that we are
considering. In order to do that, we use Theorem 5 that guarantees the existence of a menu which
loses negligible revenue and only considers actions from smaller action spaces. The next step is to
divide the state space into regions in which all the types are within ε in TV-distance. Lemma 11
shows us that if we consider offering a single experiment to all the types in the same region, their
values for the new experiment will not change much compared to the one they were getting. Finally,
we apply Lemma 9 to solve the issue that the menu resulting from dropping experiments might not be
IC, IR.

I Theorem 12. Consider an environment with a type space Θ, action space A and state space Ω.
Then, given some ε > 0 and access to a BR oracle we can find a menuM that generates revenue at

least OPT −O(
√
ε) and offers at most O

(
|Ω|2|Ω|
ε|Ω|

)
experiments, in time poly

(
|Θ|, |Ω|

|Ω|2

ε|Ω|2+|Ω|

)
.

Proof of Theorem 12: Let ε1, ε2 > 0 be some constants that will be specified later. Also, let
M∗ be the optimal menu for this environment. We first observe that Theorem 10 shows that

we can get a menu M that sends at most O
(
|Ω||Ω|

2

ε
|Ω|2+|Ω|
1

)
different signals and generates revenue

REV(M) ≥ OPT − O(√ε1) in time poly
(
|Θ|, |Ω|

|Ω|2

ε
|Ω|2+|Ω|
1

)
. The number of experiments thatM

offers is at most |Θ|. In order to get rid of this dependence on |Θ| we partition the types into regions
in which all the types are within ε2 in TV-distance. One way to do that is to round every θω to
multiples of ε2/|Ω|, so after this step there will be at most O

(
(|Ω|/ε2)|Ω|

)
different types. Note that

this guarantees that all the types that are rounded to the same type are within ε2 TV-distance. Let Θ̃ be
the set of rounded types. We consider a new menuM′ that offers all the types θ ∈ Θ who are rounded
to the same θ̃ ∈ Θ̃ the most expensive expensive experiment among E(θ) at price t(θ). It is clear
that if the types are willing to buy the experiments thatM′ offers them then REV(M′) ≥ REV(M).
However, it could be the case that they actually deviate and buy some other experiment in the menu.
Consider some type θ who was getting E(θ) fromM and is now getting E(θ′) fromM′. Lemma 11
shows that Vθ(E(θ′)) − t(θ′) ≥ Vθ(E(θ)) − t(θ) − 2|Ω|ε2. Moreover, for any other experiment
E′′ ∈M′ we know that Vθ(E′′)− t(E′′) ≤ Vθ(E(θ))− t(E(θ)) ≤ Vθ(E(θ′))− t(E(θ′))− 2|Ω|ε2.
Hence, we see that the IC, IR constraints forM′ are violated by at most 2|Ω|ε2. Now Lemma 9
shows how to modify the prices ofM′ to create a menu that is exactly IC, IR and loses at most
O(
√
|Ω|ε2) revenue compared toM′. We call this new menu M̃. Plugging the values in, we see that
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REV(M̃) ≥ OPT−O
(√
|Ω|ε2

)
−O(√ε1). Thus, we see that we can set ε1 = ε, ε2 = ε

|Ω| and this

would guarantee revenue at least OPT−O(
√
ε). The number of signals is O

(
|Ω||Ω|

2

ε|Ω|2+|Ω|

)
and there

are O
(
|Ω|2|Ω|
ε|Ω|

)
different experiments. 2

3.3 Implicit Model with Succinct Description

In this section, we consider a setting where the model has a succinct implicit description. We show
that no algorithm can obtain even a constant factor approximation to the optimal revenue for this
setting, unless P = NP. To be more precise, we consider the following problem.

Information Pricing SAT (IP-SAT): find the revenue-optimal menu in the following setting:
State space Ω, type space Θ.
for each state ω, Φω is a boolean formula in CNF over variables in X = {x1, . . . , xn}
Action space A: all the possible truth assignments of the variables in X
uω,a = # satisfied clauses of Φω with assignment a

# clauses of Φω

IP-SAT is a hard problem for the buyer in general, as maximizing his net utility requires solving an
NP-hard problem. We show here that designing an approximately revenue-optimal menu for IP-SAT
is also computationally intractable for the seller. Of course, it is not even clear what the optimal menu
looks like in general for IP-SAT as we only have a limited characterization of the optimal menu. In
Theorem 13, we construct a special family of IP-SAT instances with 2 states and 1 buyer type, and
show how to reduce SAT to it.

I Theorem 13. For any constant ε > 0, there does not exit a polynomial time algorithm A that
computes an menu with revenue at least (1/2 + ε)OPT− ε

2m+4 in the IP-SAT problem with m+ 2
clauses, unless P = NP .

Proof of Theorem 13: Let Φ = C1 ∧ . . . ∧ Cm be any SAT instance over variables x1, . . . , xn. We
show that given A we can decide whether Φ is satisfiable. We create the following IP-SAT instance:
there are two states ω1, ω2, a single type θ = ( 1

2 ,
1
2 ) and we set Φω1 = (C1 ∨ y) ∧ . . . ∧ (Cm ∨ y) ∧

(x1 ∨ y)∧ (¬x1 ∨ y),Φω2 = (C1 ∨¬y)∧ . . .∧ (Cm ∨¬y)∧ (x1 ∨¬y)∧ (¬x1 ∨¬y) to be the two
SAT instances with m + 2 clauses that the buyer faces. At each state, the actions are the possible
assignments of the variables x1, . . . , xn, y. Let Ψ be some boolean formula in CNF and a some
assignment of its variables. We define za(Ψ) to be the number of clauses in Ψ that a satisfies and
w(Ψ) the total number of clauses in Ψ. Then, at each state ω when the agent chooses assignment a
we define his ex-post utility to be uω,a = za(Φω)

w(Φω) .
From Bergemann et al. [4], we know the optimal menu should contain only the fully informative

experiment E∗, and the price for this experiment is Vθ(E∗)− u(θ). 6 Clearly, Vθ(E∗) = 1, because
the buyer can pick y to be T and F in states ω1, ω2 respectively and satisfy all clauses. We now
focus our attention on u(θ). Assume that without receiving any information the buyer decides to set
y = T . This is w.l.o.g. since it is symmetric with the case he decides to set y = F . When the state is
ω1, he satisfies all the clauses. According to his prior, this happens 1/2 of the time, so we see that
so far u(θ) ≥ 1/2. Let us consider which assignment he should pick when the state is ω2. Observe
that no matter which value he picks for x1, he will always satisfy exactly one of the last two clauses
in Φ2. Hence, for variables x1, . . . , xn he better pick the assignment a that maximizes za(Φ). Let
k = maxa za(Φ). Then u(θ) = 1/2 + (k + 1)/(2m+ 4) = m+k+3

2m+4 . Hence, the optimal revenue is

6 The fully informative experiment simply sends out a signal to reveal the state.
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Vθ(E∗)− u(θ) = 1− m+k+3
2m+4 = m−k+1

2m+4 . If Φ is satisfiable, then k = m, so OPT = 1
2m+4 . If Φ is

not satisfiable then k ≤ m− 1 so OPT ≥ 2
2m+4 . Now assume that there is such an algorithm A and

denote REV(A) the revenue generated by the mechanism output by A. If Φ is not satisfiable, since
OPT ≥ 2

2m+4 , it must be that REV(A) > 1
2m+4 . On the other hand, if Φ is not satisfiable we have

that REV(A) ≤ 1
2m+4 . Hence, the existence of A allows us to distinguish between satisfiable and

unsatisfiable SAT formulas. 2

I Remark 14. Since m is linear in the description length of the problem, given access to a BR
oracle, for any ε > 0 we can set ε′ = c(mε)2, for some appropriate constant c > 0, and then apply
Theorem 10. Since |Ω| = 2 and |Θ| = 1, the revenue we get is at least OPT− ε and the running time
is O

(
1

(mε)10

)
. However, this does not contradict with the result of Theorem 13, since in this setting

the BR oracle solves an NP-hard problem.

4 Multi-Agent Setting

In this section, we consider a multi-agent generalization of the model by Bergemann et al. [4]. More
specifically, we assume that there are n buyers who are interested in acquiring extra information
from the seller and each buyer’s ex-post utility only depends on the state of the world and his own
action. We further assume that the types of the buyers are drawn independently from their own type
distributions. If there is no competition among them, the solution to the problem follows immediately
from the single-agent setting, since the seller can offer each agent his optimal menu separately. Thus,
we focus on a more interesting case where the buyers are competitors and only one of them can
receive an informative signal.

Input Model and New Notation

We first need to introduce some new notation. We use Θi to denote the type space of buyer i and
F i(θi) to denote the probability that buyer i’s type is θi. We use Θ to denote the set of all type
profiles and F (θ) to denote ×i∈[n]F

i(θi). We assume the action space A is the same for each buyer
i, but the ex-post utility uiω,a for choosing action a under state ω may be different for different
buyers. We consider the explicit model, that is, for each buyer i, both F i and the ex-post utility matrix
U i = {uiω,a}ω∈Ω,a∈A are given as input. We use ui(θi) to denote the base utility of buyer i for
choosing the best action under distribution θi.

Interaction between the Seller and Buyers

The interaction happens in the following order:
1. The seller commits to a mechanism

{(
Π(θ) =

(
Π1(θ), . . . ,Πn(θ)

)}
,
{
t(θ) =

(
t1(θ), . . . , tn(θ)

))}
θ∈Θ,

and announces the mechanism to all buyers.
2. The types of the buyers θ = (θ1, . . . , θn) are realized.
3. Each buyer i privately submits his type θi to the seller.
4. The seller chooses buyer i as the winner with probability pi(θ).
5. The seller observes the state of the world ω and sends buyer i a signal s according to the signaling

scheme Πi(θ) and charges buyer i price ti(θ).
6. Each buyer i chooses an action ai and receives ex-post utility uiω,ai .

There are some subtle issues in our model that require further clarification. The most important of
them being the following. After the winner has been chosen, does he observe the signaling scheme
Πi(θ) that the seller uses to generate the signal s? In this work, we consider the setting where the
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signaling scheme Πi(θ) is not revealed and the winner only observes the realized signal. 7 Some
remarks are in order. Firstly, the seller may want to preserve the privacy of the buyers, and revealing
Πi(θ) allows the winner i to infer the other buyers’ priors. Secondly, hiding the implemented
signaling scheme Πi(θ) from the winner allows the seller to design a mechanism with less stringent
IC constraints and thus generates higher revenue for the seller. This is because the winner does not
know the exact experiment he is getting, if he wants to deviate from the recommendation he must
map the same signal to the same action for all potential experiments that he may win. Therefore, he
would map the signal to an action that induces the highest expected utility, where the expectation
is over the other bidders’ types and the chosen experiment. On the other hand, if the buyer knew
which experiment the signal is drawn from, he could use a mapping that is the best for each particular
experiment.

Our goal in this section is to design a polynomial time algorithm to find the Bayesian Incentive
Compatible (BIC) and Interim Individually Rational (IIR) mechanism that achieves the highest
revenue among all BIC and IIR mechanisms for our model. It is not hard to see that Lemma 3
generalizes to our multi-agent setting. We begin by introducing an extension of the LP in Figure 1
to the multi-agent setting. Define Πi(θ) =

(
πiω,j(θ)

)
ω∈Ω,j∈[m], p

i(θ), and ti(θ) as the decision
variables for every buyer i and type profile θ. Recall that m = |A|.

max
∑
θ∈Θ

F (θ)
∑
i∈[n]

ti(θ)

s.t
∑
θ−i

F−i(θ−i)

∑
ω∈Ω,
j∈[m]

θiωπ
i
ω,j(θi, θ−i)uiω,aj + (1− pi(θ))ui(θi)− ti(θi, θ−i)

 ≥
∑
θ−i

F−i(θ−i)

∑
j∈[m]

zij(θi, θ̃i, θ−i) + (1− pi(θ̃i, θ−i))ui(θi)− ti(θ̃i, θ−i)

 , ∀i,∀θi, θ̃i (BIC)∑
θ−i

F−i(θ−i)zij(θi, θ̃i, θ−i) ≥
∑
θ−i

F−i(θ−i)
∑
ω

θiωπ
i
ω,j(θ̃i, θ−i)uω,ak , ∀i,∀j, k,∀θi, θ̃i

∑
θ−i

F−i(θ−i)

∑
ω∈Ω,
j∈[m]

θiωπ
i
ω,j(θ)uω,aj + (1− pi(θ))ui(θi)− ti(θ)

 ≥ ui(θi), ∀i, θi (IIR)

∑
j∈[m]

πiω,j(θ) = pi(θ), ∀i,∀θ,∀ω (feasibility)∑
i∈[n]

pi(θ) ≤ 1, ∀θ (feasibility)

πiω,j(θ) ≥ 0, ∀i,∀θ,∀ω,∀j (feasibility)

Observe that the number of variables is exponential in n and the number of constraints is
exponential in both n and m. There is no hope to solve this LP in polynomial time. The main
challenge is how to remove the exponential dependence on n. To overcome this obstacle, we use a
method that is powerful in the study of multi-item auctions, that is, rewriting the LP using a more
succinct representation of the mechanism known as the reduced form [5, 1, 6, 7, 8]. We first define
the reduced form of a mechanism.

7 One may worry that the winner can obtain extra information from the price ti(θ). To avoid this, we will design a
mechanism so that the price for buyer i only depends on i’s type θi. This is without loss of generality, as we can
simply set the price to be Eθ−i [ti(θ)].
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I Definition 15 (Reduced Form). Given a mechanism M =
(
{Π(θ)}θ∈Θ , {t(θ)}θ∈Θ

)
, we

define its reduced form
{

Π̂i(θi)
}
i∈[n],θi∈Θi

, where Π̂i(θi) = {π̂iω,j(θi)}ω∈Ω,j∈[m] and π̂iω,j(θi) =

Eθ−i [πiω,j(θ)] for each state ω and j ∈ [m], and its interim prices {t̂i(θi)}i∈[n],θi∈Θi , where t̂i(θi) =
Eθ−i [ti(θ)]. We use P(F ) to denote the set of all reduced forms for a particular type distribution F .

It is not hard to see that P(F ) is a closed convex set, as the set of all mechanisms is clearly closed
and convex, and P(F ) is simply a linear transformation of that set. Intuitively, the reduced form is
the “expected experiment and price” that the each buyer believes he will be allocated when his type is
realized, and the expectation is taken over the randomness of the other buyers’ types.

I Lemma 16. For any type distribution F , P(F ) is a closed convex set.

The LP in Figure 3 searches for the reduced form of the revenue-optimal mechanism. Notice
that the size of the reduced-form LP is substantially smaller than the original one, and the number of
variables is polynomial in the number of agents. With these new variables we can still express the
BIC and IIR constraints of the initial LP. However, it is not yet clear how to check whether these
variables correspond to an actual feasible mechanism. In the next section, we show how to design a
separation oracle that checks the feasibility efficiently.

Variables:
{π̂iω,j(θi)}ω∈Ω,i∈[n],θi∈Θi,j∈[m], denoting the reduced form of the mechanism.
{t̂i(θi)}i∈[n],θi∈Θi , denoting the interim prices.
{p̂i(θi)}i∈[n],θi∈Θi , denoting the allocation probabilities of the experiment
{ẑij(θi, θ̃i)}i∈[n],j∈[m],θi,θ̃i∈Θi , helper variables. ẑij(θi, θ̃i) represents an upper bound of the condi-
tional expected utility of signal sj for type θi.

Linear Program:

max
∑
i∈[n]

∑
θi∈Θi

F i(θi)t̂i(θi)

subject to
∑
j∈[m]

∑
ω∈Ω

θiωπ̂
i
ω,j(θi)uiω,aj + (1− p̂i(θi))ui(θi)− t̂i(θi) ≥∑

j∈[m]

ẑij(θi, θ̃i) + (1− p̂i(θ̃i))ui(θi)− t̂i(θ̃i), ∀i,∀θi, θ̃i (BIC)

ẑij(θi, θ̃i) ≥
∑
ω∈Ω

θiωπ̂
i
ω,j(θ̃i)uiω,ak ∀i,∀θi, θ̃i,∀j, k∑

j∈[m]

∑
ω∈Ω

θiωπ̂
i
ω,j(θi)uiω,aj + (1− p̂i(θi))ui(θi)− t̂i(θi) ≥ ui(θi), ∀i,∀θi (IIR)

p̂i(θi) =
∑
j∈[m]

π̂iω,j(θi) ∀i,∀ω,∀θi

{π̂iω,j(θi)}ω∈Ω,i∈[n],θi∈Θi,j∈[m] ∈ P(F ) (Feasibility)

Figure 3 A linear program to find the reduced form of the revenue-optimal mechanism in the multi-agent
setting.

4.1 Feasibility of Reduced Forms

To design a separation oracle for the set P(F ), we invoke the equivalence between Optimization
and Separation in Linear Programming [29, 33], which states that being able to optimize any linear
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function over a convex set P is equivalent to having a separation oracle for P . It is a well-known fact
that given a separation oracle for P one can optimize any linear function using the ellipsoid method.
Interestingly, the reverse is also true. If there is an algorithm to optimize any linear function over
P , one can construct a separation oracle for P using the ellipsoid method. We state a strengthened
version of the equivalence due to Cai et al. [7]. The reason that we need to be able to decompose a
feasible point into corners of the polytope is that we eventually need to able to implement the reduced
forms as a feasible mechanism. We elaborate more on this later.

I Theorem 17. (Adapted from Theorem H.1 of [7]) Let P be a d-dimensional closed convex region,
and let A be any polynomial-time algorithm that takes any direction w ∈ Rd as input and outputs the
extreme point A(w) ∈ P in direction w such that A(w) · w ≥ ·maxx∈P x · w . Then we can design
a polynomial time separation oracle SO for P such that, whenever SO(x) = “yes”, the execution of
SO explicitly finds directions w1, . . . , wk such that x lies in the convex hull of {A(w1), . . . ,A(wk)}.

To apply this equivalence, we need to show how we can optimize a linear function over the set
of feasible reduced-form variables. Recall that we use Πi(θ) =

(
πiω,j(θ)

)
ω∈Ω,j∈[m] and Π̂i(θi) =(

π̂iω,j(θi)
)
ω∈Ω,j∈[m] to denote the ex-post signaling scheme and its reduced form. We will treat Πi(θ)

and Π̂i(θi) as m|Ω|-dimensional vectors. The following maximization problem plays a crucial role
in our approach.

I Definition 18. Consider any type profile θ. Let {Xi(θi)}i∈[n],θi∈Θi be a collection of m|Ω|-
dimensional vectors. We define a Virtual Payoff Maximizer (VPM) w.r.t. these weight vectors
VPM({Xi(θi)}i∈[n],θi∈Θi) to be the ex-post signaling scheme Π(θ) that maximizes the following
quantity

∑
i Πi(θi) · Xi(θi) for every type profile θ. The corresponding reduced form Π̂(θ) is

called rVPM({Xi(θi)}i∈[n],θi∈Θi). In order to ensure that the maximizer is unique, we break ties
lexicographically.

When there is no confusion, we also write V PM(w), rV PM(w) as the maximizers for the
weight vector w.

I Lemma 19. Given an arbitrary collection of weights {Xi(θi)}i∈[n],θi∈Θi we can find the exact
optimal solution of

maxΠ̂∈P(F )
∑
i∈[n]

∑
θi∈Θi Π̂i(θi) ·Xi(θi) in time O

(
m|Ω|

(∑
i∈[n] |Θi|

)
+
(∑

i∈[n] |Θi|
)2
)

.

Proof of Lemma 19: We first rewrite the maximization problem

max
Π̂∈P(F )

∑
i∈[n]

∑
θi∈Θi

Π̂i(θi) ·Xi(θi) = max
Π

∑
i,θi,θ−i

F−i(θ−i)Πi(θi, θ−i) ·Xi(θi) =

max
Π

∑
i,θ

F (θ)Πi(θ) · X
i(θi)

F i(θi) = max
Π

∑
θ

F (θ)
∑
i

Πi(θ) · X̃i(θi),

where X̃i(θi) = Xi(θi)
F i(θi) .

Let θ be a type profile. We now characterize the solution of maxΠ(θ)
∑
i Πi(θ) · X̃i(θi). If we

allocate the experiment to buyer i, the maximum value we can derive is vi(θi) =
∑
ω maxa X̃i

ω,a(θi).
Clearly, the optimal solution of the linear function above is to always allocate the experiment to the
buyer with the largest vi(θi).

The ex-post signaling scheme that maximizes
∑
θ F (θ)

∑
i Πi(θ) · X̃i(θi) is the one that always

allocates the experiment to the buyer with the largest vi(θi) for every type profile θ. To solve
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maxΠ̂∈P(F )
∑
i∈[n]

∑
θi∈Θi Π̂i(θi) · Xi(θi), we only need to calculate the reduced form of this

ex-post signaling scheme and we denote it using Π̂∗
We first compute vi(θi) =

∑
ω maxa xiω,a(θi) for every buyer i and every type θi. This step

takes time O
(
m|Ω|

(∑
i∈[n] |Θi|

))
, and there are

∑
i∈[n] |Θi| different such values. Next, for each

buyer, we sort vi(θi). This step takes time O
(∑

i∈[n] |Θi| log |Θi|
)

. To compute Π̂i
∗(θi), we only

need to calculate the probability of the event that over the random draws of θ−i, there exists another
buyer ` 6= i either v`(θ`) > vi(θi) or ` < i and v`(θ`) = vi(θi). This probability can be computed
in time O

(∑
i∈[n] |Θi|

)
for each buyer i and type θi. Hence, in total we can optimize the linear

function in time O
(
m|Ω|

(∑
i∈[n] |Θi|

)
+
(∑

i∈[n] |Θi|
)2
)

.

2

Combining Theorem 17 and Lemma 19, we have a polynomial time algorithm to solve the LP in
Figure 3, but we still need to turn the reduced form into an ex-post signaling scheme. We again use an
idea from computing the optimal multi-item auctions, that is, first decomposing the optimal reduced
form into a distribution over extreme points of P(F ), then implementing all the extreme points that
appear in the distribution using a VPM ex-post signaling scheme.

I Theorem 20. We design an algorithm to compute the revenue-optimal mechanism in time
poly

(
n,m, |Ω|,

∑
i∈[n] |Θi|

)
. Moreover, the mechanism can be implemented as a distribution over

m|Ω|
(∑

i∈[n] |Θi|
)

+ 1 VPM ex-post signaling schemes.

Proof of Theorem 20: Combining Theorem 17 and Lemma 19, we have a polynomial time al-
gorithm to solve the LP in Figure 3. Let Π∗ =

{
Π̂i
∗(θi)

}
i∈[n],θi∈Θi

be the optimal reduced form

and
{
t̂i∗(θi)

}
i∈[n],θi∈Θi be the optimal interim prices. Since the SO must return “yes” on Π∗, as

guaranteed by Theorem 17, the SO also finds a collection of directions w1, . . . , wk so that Π∗ lies
in the convex hull of rV PM(w1), . . . , rV PM(wk). Due to the Carathéodory’s theorem, we can
decompose Π∗ into a distribution D over at most m|Ω|

(∑
i∈[n] |Θi|

)
+ 1 of the above rVPMs.

Moreover, we can use a LP to find this distribution in polynomial time. To implement Π∗, we first
sample a rV PM(w) from the distribution D, and implement the corresponding ex-post signaling
scheme V PM(w). Finally, for each buyer i, we charge him t̂i(θi) if he reports θi, so the mechanism
is BIC and IIR, and we do not reveal extra information through the prices. 2

5 Further Extensions and Future Directions

In this section, we discuss further generalizations of the model by Bergemann et al. [4] and future
research directions that we believe are interesting to pursue.

5.1 Extensions of the Original Model

Enlarged Buyer Type:

Recall that in the original model the only private information of the buyer is his private belief of the
underlying state, which is realized at the beginning of the interaction with the seller. Importantly, the
payoffs are public knowledge and remain the same across different buyers. A natural generalization
one can consider is to allow the buyer to draw not only his prior belief θ, but also his payoff function
u : Ω×A→ [0, 1] from some distribution.
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To be more specific, we consider the setting where a buyer’s type ρ = (θ, u) is drawn from some
distribution F at the beginning of the interaction between the buyer and the seller, and ρ is private
to the buyer. As in the original model, we assume that the seller has access to this distribution. We
remark that all of our positive results from Section 3 and Section 4, except for Theorem 12, hold in
this extended model as well. The only difference in our constructions is that instead of indexing the
variables by θ we now index them by ρ.

Misspecified Model:

Another generalization we consider in the single-agent setting is the misspecified model. In this
model the seller has access to some type distribution F̃ which is within ε in TV-distance with the
real type distribution F . Moreover, the seller has access to a type space Θ̃ with the following two
properties: |Θ̃| = |Θ|, for all θ̃ ∈ Θ̃ there is some θ ∈ Θ for which dTV (θ̃, θ) ≤ ε. Then, the menu
that the seller designs for the misspecified distributions can be modified so that it guarantees only a
negligible revenue loss when it is evaluated in the true setting. Lemma 21 formalizes this claim.

I Lemma 21. Let F̃ , F be the distributions of the types that the seller has access to and the true
distribution of the types, respectively. Let also {θ̃i}i∈[k], {θi}i∈[k] be the types that the seller has
access to and the true types, respectively. Assume that dTV (F̃ , F ) ≤ ε1, dTV (θ̃i, θi) ≤ ε2,∀i ∈ [k].
We also let M̃ = {Ẽ(θ̃i), t̃(θ̃i)}i∈[k] be an IC, IR menu that has revenue REV(M̃) under the misspe-
cified distributions and uses at most |S| signals. Then, we can compute a set of prices {t(θ̃i)}i∈[k] so

thatM = {Ẽ(θi), t(θi)}i∈[k] is IR, IC and has REV(M) ≥ REV(M̃)− O
(
ε1 +

√
|Ω|ε2

)
under

the true distributions.

Proof of Lemma 21: We first show that M̃ violates the IC, IR constraints by at most 2|Ω|ε2.
Consider a type θ̃ who buys E, but the true type θ prefers E′ over E. Then, by Lemma 11,
Vθ(E) − t̃(E) ≥ Vθ(E′) − t̃(E′) − 2|Ω|ε2. Hence, by Lemma 9 we know that we can compute a
new set of prices in time O(|M̃|) losing at most O(

√
|Ω|ε2) revenue. Moreover, since the seller’s

distribution over the types is also misspecified we have

∑
θ

(
F̃ (θ)− F (θ)

)
t(θ) ≤ 2ε1 =⇒

∑
θ

F (θ)t(θ) ≥
∑
θ

F̃ (θ)t(θ)− 2ε1 ≥∑
θ̃

F̃ (θ̃)t̃(θ̃)− 2ε1 −O(
√
|Ω|ε2)

2

Note that Lemma 21 allows us to generalize our results and obtain approximately-optimal menus
when we only have black-box access to the distribution of the types. That is, we take enough samples
to learn the distribution within Total Variation distance ε and then apply Lemma 21.

5.2 Future Directions

We believe that the design of Information Markets is a very important problem that has not received
sufficient attention by the Theory of Computation community. There are many interesting questions
waiting be addressed.

1. In the single-buyer setting where we only have access to the action space via a BR oracle the
running time of our algorithms is exponential in the number of states. An immediate question to
ask is whether we can get an FPTAS or even a PTAS that has a better dependence on the number
of states.
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2. In the multi-agent setting, we consider the case in which the seller does not reveal the signaling
scheme that she uses to send a signal to the winner. An interesting question is whether we can
have efficient algorithms in the setting where the seller reveals the signaling scheme to the buyer.

3. Currently, in the multi-agent setting we assume that the ex-post utility of each buyer depends
only on the state of the world and the action he takes. Is the problem of designing the optimal
mechanism when the ex-post utilities also depend on the actions of the other buyers tractable?
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