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Abstract

We study the problem of selling n heterogeneous items to a single buyer, whose values for
different items are dependent. Under arbitrary dependence, Hart and Nisan [30] show that no
simple mechanism can achieve a non-negligible fraction of the optimal revenue even with only
two items. We consider the setting where the buyer’s type is drawn from a correlated distribution
that can be captured by a Markov Random Field, one of the most prominent frameworks for
modeling high-dimensional distributions with structure.

If the buyer’s valuation is additive or unit-demand, we extend the result to all MRFs and
show that max{SRev,BRev} can achieve an Ω

(
1

eO(∆)

)
-fraction of the optimal revenue, where

∆ is a parameter of the MRF that is determined by how much the value of an item can be
influenced by the values of the other items. We further show that the exponential dependence
on ∆ is unavoidable for our approach and a polynomial dependence on ∆ is unavoidable for any
approach. When the buyer has a XOS valuation, we show that max{SRev,BRev} achieves

at least an Ω

(
1

eO(∆)+ 1√
nγ

)
-fraction of the optimal revenue, where γ is the spectral gap of the

Glauber dynamics of the MRF. Note that in the special case of independently distributed items,
∆ = 0 and 1

nγ ≤ 1, and our results recover the known constant factor approximations for a

XOS buyer [41]. We further extend our parametric approximation to several other well-studied
dependency measures such as the Dobrushin coefficient [27] and the inverse temperature. In
particular, we show that if the MRF is in the high temperature regime, max{SRev,BRev} is
still a constant factor approximation to the optimal revenue even for a XOS buyer. Our results
are based on the Duality-Framework by Cai et al. [14] and a new concentration inequality for
XOS functions over dependent random variables.
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†Supported by a Sloan Foundation Research Fellowship.
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1 Introduction

The design of revenue-optimal auctions for selling multiple items is a central problem in Economics
and Computer Science. In the past decade, significant progress has been made, first in efficient
computation of revenue-optimal auctions [18, 19, 1, 10, 2, 11, 12, 15, 13, 3, 6, 24], and then in
the identification of simple auctions that achieve constant factor approximations to the optimal
revenue [4, 45, 41, 14, 21, 17] under the item-independence assumptions. 1 Despite being theoret-
ically appealing, item-independence is an unrealistic assumption in practice. In this paper, we go
beyond the item-independence assumption and study simple and approximately optimal auctions
for selling dependent items.

Unfortunately, strong negative results exist if we allow the items to be arbitrarily dependent [8,
30]. For example, Hart and Nisan [30] show that the revenue of the best deterministic mechanism
is unboundedly smaller than the revenue of the optimal randomized mechanism even when we are
only selling two correlated items to a single buyer. Since all simple mechanisms in the literature
are deterministic, the result also implies that no simple mechanism that has been considered so far
can provide any guarantee to the revenue for even two correlated items. Arguably, however, high-
dimensional distributions that arise in practice are rarely arbitrary, as arbitrary high-dimensional
distributions cannot be represented efficiently, and are known to require exponentially many samples
to learn or even perform the most basic statistical tests on them; see e.g. [25] for a discussion. To
overcome the curse of dimensionality, a major focus of Statistics and Machine Learning has been on
identifying and exploiting the structural properties of high-dimensional distributions for succinct
representation, efficient learning, and efficient statistical inference. There are several widely-studied
frameworks to model the structure of dependence in high-dimensional distributions. In this work, we
propose capturing the dependence between item values using one of the most prominent graphical
models – Markov Random Fields (MRFs). Note that MRFs are fully general and can be used to
express arbitrary high-dimensional distributions. The main advantage of MRFs is that there are
several natural complexity parameters that allow the user to tune the dependence structure in the
distributions represented by MRFs from product measures all the way up to arbitrary distributions.
Our goal is to provide parametric approximation ratios of simple mechanisms that
degrade gracefully with respect to these natural parameters.

MRFs are formally defined in Definition 2. Intuitively, a MRF can be thought of as a graph
(or a hypergraph) where each node represents a random variable (or item value in our case).
There is a potential function associated with each edge that captures the correlation between the
two incident random variables. How does it represent a joint distribution? The probability for a
particular realization or the random variables, or known as a configuration of the random field, is
proportional to the exponential of the total potential of the configuration. MRF is a flexible model.
For example, we can capture the degree of (positive or negative) correlations between two random
variables by controlling the corresponding potential function. Here we provide a stylistic example
to illustrate the suitability of MRFs for modeling buyers’ joint value distributions. Imagine that we
manage a car dealership. A potential buyer is hoping to purchase one car, i.e., has a unit-demand
valuation. The dealership carries various brands and types of vehicles, and will like to find the
optimal way to price each car. However, it would be näıve to assume the buyer’s value for each
car is independently distributed. The example in Figure 1 demonstrates how a MRF can better
capture the customer’s joint value distribution for different cars.

1Intuitively, item-independence means that each bidder’s value for each item is independently distributed, and
this definition has been suitably generalized to set value functions such as submodular or subadditive functions [41].
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Figure 1: We draw a green edge (or a red edge) between two cars if their values are positively
correlated (or negative correlated). The car in the center is an electric coupe with a retro design.
Its value is positively correlated with the two electric cars on its left and the two small coupes on
its right, but is negatively correlated with the pick-up truck.

1.1 Main Results and Techniques

We focus on the single buyer case and allow the buyer’s valuation to be as general as a XOS function
(a.k.a. a fractionally subadditive function). 2 We consider the two most extensively studied forms
of simple mechanisms: selling the items separately and selling the grand bundle. We use SRev and
BRev to denote the optimal revenue obtainable by these two types of mechanisms respectively.
In a sequence of papers, it was shown that max{SRev,BRev} is a constant factor approximation
to the optimal revenue for a single additive or unit-demand buyer under the item-independence
assumption [18, 4, 14]. 3 Our first main result extends the above approximation to any MRFs.
The approximation ratio degrades with the maximum weighted degree ∆ that captures the degree
of dependence among the item values.

Parameter I: Maximum Weighted Degree ∆. The formal definition can be found in Defini-
tion 4. As we mentioned, a MRF can be thought of as a graph (or a hypergraph) where each node
represents a random variable. The weight of an edge is related to the maximum absolute value
the corresponding potential function can take and represents the “strength” of the dependence
between two incident random variables. The weighted degree of a random variable is simply the
sum of weights from all incident edges. If the maximum weighted degree ∆ of a MRF is small,
then no random variable can depend strongly on many other random variables. Note that ∆ = 0
when the random variables are independent, and the instance constructed by Hart and Nisan [30]
corresponds to a MRF with ∆ =∞.

Result I: For a single additive or unit-demand buyer whose type is generated by a MRF with

maximum weighted degree ∆, max{SRev,BRev} = Ω
(

OPT
exp(O(∆))

)
, where OPT is the

optimal revenue.

The formal statement of the result is in Theorem 1 and 2. We further show that the dependence
on ∆ is necessary. For any sufficiently large number C, there exists a MRF with ∆ = O(C) such

2The class of XOS functions is a super-class of submodular functions, and is contained in the class of subadditive
functions.

3More specifically, SRev denotes the optimal expected revenue achievable by any posted price mechanism. When
the buyer has a unit-demand valuation, [18, 14] show that SRev is already a constant factor approximation of the
optimal revenue.
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that max{SRev,BRev} is no more than OPT
C1/7 (Theorem 3) using a modification of the Hart-Nisan

construction [30]. Although there is still an exponential gap between our upper and lower bounds,
it shows that whenever Result I fails to provide a constant factor approximation (independent of
the number of items), no constant factor approximation is possible without further restrictions on
the dependency. We leave it as an open question to close the gap between our upper and lower
bounds. The main tool we use is a generalization of the prophet inequality to the case where the
rewards are sampled from a MRF (Lemma 3). The overall analysis is similar to the one used by
Cai et al. [14] for the item-independent case. We show that the exponential dependence on ∆ is
unavoidable for this type of analysis in Theorem 8. More specifically, a key step of the analysis
involves approximating the optimal revenue in a single-dimensional setting, known as the copies
setting, using SRev. Theorem 8 constructs an instance such that the optimal revenue in the copies
setting is at least exp(∆) times larger than max{SRev,BRev}.

Rubinstein and Weinberg [41] show that, under the item-independence assumption, max{SRev,BRev}
is still a constant factor approximation to the optimal revenue for a buyer whose valuation is a
subadditive function. Our second main result extends their result to any MRFs when the buyer’s
valuation is a XOS function. The approximation ratio depends on ∆ and the spectral gap of the
Glauber Dynamics γ.

Parameter II: Spectral Gap of the Glauber Dynamics γ. A common way to generate a
sample from a high-dimensional distribution is via a Markov Chain Monte Carlo method known as
the Glauber dynamics (see Definition 5). The spectral gap γ of the Glauber dynamics is the differ-
ence between the largest eigenvalue λ1 = 1 and the second largest eigenvalue λ2 of the transition
matrix of the Glauber dynamics. It is well-known that λ2 is strictly less than 1 for any MRFs [36],
so γ is always strictly positive.

Result II: For a single XOS buyer whose type is generated by a MRF, max{SRev,BRev} =

Ω

(
OPT

exp(O(∆))+ 1√
nγ

)
, where n is the number of items, γ is the spectral gap of the

Glauber Dynamics, and ∆ is the maximum weighted degree. a

aAlthough the approximation ratio depends on n, the ratio indeed improves if we increase n and fix γ .

Some remarks are in order. First, our approximation ratio holds for any MRFs. Second, for
any n-dimensional random vector X = (x1, . . . , xn), the Xi’s are considered weakly dependent if
the spectral gap γ = Ω( 1

n). For example, when the xi’s are independent, γ ≥ 1
n . Finally, the

condition γ ≥ Ω( 1
n) is extensively studied in probability theory. The condition is satisfied under

the Dobrushin uniqueness condition (see Section 6 for details), a well-known sufficient condition
that ensures weak dependency; it implies rapid mixing of the Glauber dynamics (i.e., they mix in
time O(n log n)); it also guarantees that polynomial functions concentrate in Ising models [29, 26].

The formal statement of Result II can be found in Theorem 4. The analysis follows the same
general framework by Cai and Zhao [17]. The major new challenge is to prove that any XOS
function g(X) concentrates, when X is a drawn from a high-dimensional distribution D. Proving
concentration inequalities for non-linear functions over dependent random variables is a non-trivial
task that lies at the heart of many high-dimensional statistical problems. We prove a parametric
concentration inequality for XOS functions that depends on the spectral gap of the Glauber dy-
namics for D (Lemma 13). The proof is based on a combination of the Poincaré inequality and a
special property of XOS functions – the self-boundingness. We believe this concentration inequality
may be of independent interest. An interesting question is whether the approximation ratio needs
to depend on both ∆ and γ. We show that the dependence on ∆ is crucial, as no approximation
can be obtained with only restriction on the spectral gap even for a single additive or unit-demand
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buyer (Theorem 7). 4 We do not know whether it is possible to obtain an approximation that only
depends on ∆ for a XOS buyer and leave it as an open question. 5 We suspect such an improvement
requires proving a parametric concentration inequality for XOS functions that only depend on the
maximum weighted degree ∆, which we believe will have further applications.

Our Results under Other Weak Dependence Conditions. There are several alternative
ways to parametrize the degree of dependency in a high-dimensional distribution. We focus on two
prominent ones – the Dobrushin coefficient and the inverse temperature of a MRF, and discuss
how our approximation results change under these conditions. We first consider the Dobrushin
coefficient and its relaxations. An important concept is the influence matrix.

Influence Matrix and the Dobrushin Condition For any n-dimensional random vector X =
(X1, . . . , Xn), we define the influence of variable j on variable i as

αi,j := sup
x−i−j
xj 6=x′j

dTV

(
FXi|Xj=xj ,X−i−j=x−i−j , FXi|Xj=x′j ,X−i−j=x−i−j

)
, 6

where FXi|X−i=x−i denotes the conditional distribution of Xi given X−i = x−i. Let αi,i := 0 for each
i. We define the influence matrix A := (αi,j)i,j∈[n]. When the Xi’s are weakly dependent, the entries

of A should have small values. The Dobrushin Coefficient, defined as ||A||∞ = maxi∈[n]

∑
j∈[n] αi,j ,

was originally introduced by Dobrushin [27] in the study of Gibbs measures. The Dobrushin
coefficient less than 1 is known as the Dobrushin uniqueness condition, under which the Gibbs
distribution has a unique equilibrium, hence the name. The condition can be viewed as a sufficient
condition that guarantees weak dependence and has been extensively studied in statistical physics
and probability literature (see e.g. [28, 43]). As the spectral radius of any matrix is no more than its
L∞ norm, a relaxation of the Dobrushin uniqueness condition is to restrict the spectral radius ρ of A
to be less than 1. We show that nγ ≥ 1−ρ (Lemma 16), so we can replace the dependence on nγ with
1− ρ in Result II when the item values are weakly dependent (Theorem 5). We also show that the
dependence on ∆ is necessary. Without any restriction on ∆, the gap between max{SRev,BRev}
and the optimal revenue could be unbounded even under the Dobrushin uniqueness condition for an
additive or unit-demand buyer (Theorem 7). Next, we consider how the approximation guarantee
degrades in terms of the inverse temperature of a MRF.

Inverse Temperature β of a MRF The inverse temperature is related to both the maximum
weighted degree and the Dobrushin coefficient. See Definition 3 for the formal definition. Intuitively,
as the inverse temperature increases (or temperature drops), the dependence between the different
random variables strengthens. When the inverse temperature is 0, the MRF represents a product
distribution. The high temperature regime is when the inverse temperature is less than 1. This
parameter often controls when phase transitions in the behavior of MRFs happen, and hence the
name. The Dobrushin coefficient always upper bounds the inverse temperature. Recently, MRFs in
the high temperature regime have been applied to model weakly dependent random variables [22].

4Indeed, we prove an even stronger result that shows no finite approximation ratio is possible under only the
Dobrushin uniqueness condition, which implies that γ = Ω( 1

n
) (Lemma 16).

5A näıve approach is to directly bound γ using a function of ∆. However, this approach can at best provide an
approximation ratio that is exponential in n, as 1

γ
could be exponential in n even when ∆ is upper bounded by some

absolute constant [39].
6dTV (·, ·) denotes the total variation distance between two distributions, hence αi,j measures the maximum total

variation distance we can have between two conditional distributions of variable i that only differ on the value of
variable j.
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Maximum Weighted Degree ∆
Maximum Weighted Degree ∆

and
Spectral Gap γ

Spectral Gap γ
or

Dobrushin Coefficient α < 1
Inverse Temperature β < 1

Additive
or

Unit-Demand

UB: Ω
(

OPT
exp(O(∆))

)
(Theorem 2 and 1)

LB: O
(

OPT

∆1/7

)
(Theorem 3)

UB: Ω
(

OPT
exp(O(∆))

)
(←)

LB: O
(

OPT

∆1/7

)
(←)

Unbounded (Theorem 7)
UB: Ω

(√
1− β ·OPT

)
(↓)

LB: open

XOS

UB: open

LB: O
(

OPT

∆1/7

)
(↑)

UB: Ω

(
OPT

exp(O(∆))+ 1√
nγ

)
(Theorem 4)

LB: O
(

OPT

∆1/7

)
(←)

Unbounded (↑)
UB: Ω

(√
1− β ·OPT

)
(Theorem 6)

LB: open

Table 1: The table contains our upper bounds and lower bounds of the approximation ratio of
max{SRev,BRev} in various settings. The results are listed based on (i) the valuation of the
buyer and (ii) the parameters the approximation ratio can depend on. In our table, an arrow
means the result follows from the result that the arrow points to.

Figure 2: The relationship between the parameters: inverse temperature, Dobrushin coefficient,
maximum weighted degree, and spectral gap of the Glauber dynamics.

We show that if the MRF is in the high temperature regime, then its maximum weighted degree
∆ < 1 and the spectral gap γ of the Glauber dynamics has value at least 1−β

n . As a corollary of
Result II, we have

Result III: For a single XOS buyer, max{SRev,BRev} = Ω
(√

1− β ·OPT
)
, where β < 1 is

the inverse temperature.

The result states that as long as the inverse temperature is bounded away from 1 by any
constant, max{SRev,BRev} achieves a constant fraction of the optimal revenue. Theorem 6
contains the formal statement of the result.

We summarize our results in Table 1 and the relationship between the parameters in Figure 2.

1.2 Related Work

Simple vs. Optimal Auctions There has been a large body of work on multi-item auction
design focusing on either approximation results under item-independence [18, 19, 1, 15, 37, 4, 45,
41, 14, 21, 17] or impossibility to approximate under arbitrary dependence [8, 30]. Two types of
models have been studied for items with limited dependence. The first model considers a specific
type of dependence where each item’s value is a linear combination of “independent features” [20, 5].
Unlike MRFs, this model cannot express arbitrary structure of dependence. Indeed, the values of
any two items can only be positively correlated under this model. The second model considers the
smoothed complexity of the problem [38]. Their result applies to arbitrary dependence structure
between the item values, but only achieves an approximation ratio that is exponential in the
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number of items. Our paper is the first to consider a model general enough to capture arbitrary
structure of dependence and obtain parametric approximation ratios that are independent of the
number of items.

MRFs and Weakly Dependent Random Variables There has been growing interest in
understanding the behavior of weakly dependent random variables that can be captured by a MRF
in the high temperature regime or under the Dobrushin uniqueness condition [29, 26, 22]. In
mechanism design, Brustle et al. [9] is the first to propose modeling dependent item values using
MRFs in multi-item auctions, but they focus on the sample complexity of learning nearly optimal
auctions.

2 Preliminaries

Basic Notation We consider an auction where a seller is selling n heterogeneous items to a single
buyer. We denote the buyer’s type t as 〈ti〉ni=1, where ti is the buyer’s private information about
item i. We use D to denote the distribution of t, Di to denote the marginal distribution of ti, and
Di|c−i to denote the distribution of ti conditioned on t−i = c−i. We use Supp(F) to denote the
support of distribution F , and Ti = Supp(Di) and T = Supp(D). Moreover, we use f(c) to denote
Prt∼D[t = c]. For any item i and any ci ∈ Ti and c−i ∈ T−i, we use fi(ci) to denote Prti∼Di [ti = ci],

fi(ci | c−i) to denote Prt∼D[t=(ci,c−i)]
Prt∼D[t−i=c−i]

, f−i(c−i) to denote Prt∼D[t−i = c−i], and f−i(c−i | ci) to denote
Prt∼D[t=(ci,c−i)]

Prt∼D[ti=ci]
. We also define Fi(ci) = Prti∼Di [ti ≤ ci] and Fi(ci | c−i) = Prti∼Di|c−i [ti ≤ ci].

Finally, when the buyer’s type is t, her valuation for a set of items S is denoted by v(t, S).
We investigate the performance of simple mechanisms for several well-studied valuation classes.

Definition 1 (Valuation Classes). We define several classes of valuations formally.

• Constrained Additive: interpret ti as the value of item i, and v(t, S) = maxR⊆S,R∈I
∑

i∈R ti,

where I ⊆ 2[m] is a downward closed set system over the items specifying the feasible bundles.
When I = 2[m], the valuation is called Additive. When I contains all the singletons and the
empty set, the valuation is called unit-demand.

• XOS/Fractionally Subadditive: interpret ti as {t(k)
i }k∈[K] that encodes all the possible

values associated with item i, and v(t, S) = maxk∈[K]

∑
i∈S t

(k)
i .

It is well known that the class of XOS valuations contains all constrained additive valuations.

Mechanism A mechanism M is specified by an allocation rule and a payment rule. We use π
to denote the allocation rule, and πi(t) is the probability that the buyer receives item i when she
reports type t. We also use p(t) to denote the buyer’s payment when she reports type t. We
assume the buyer has quasi-linear utility. We say a mechanism M is Incentive Compatible (IC) if
the buyer cannot increase their expected utility by misreporting their type, and Individual Rational
(IR) if the buyer has non-negative expected utility when they report their type truthfully to the
mechanism.

Given D, valuation function v(·, ·), we use Rev(M, v,D) to denote the expected revenue of an
IC and IR mechanism M . We slightly abuse notation to use Rev(D) to denote the optimal revenue
achievable by any IC and IR mechanism under distribution D.

Throughout the paper, we use the following notations for the simple mechanisms we consider.
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- SRev(v,D) denotes the optimal expected revenue achievable by any posted price mechanism,
and we use SRev for short if there is no ambiguity. - BRev(v,D) denotes the optimal expected
revenue achievable by selling a grand bundle and we use BRev for short if there is no ambiguity.

2.1 Markov Random Fields

Definition 2 (Markov Random Fields). A Markov Random Field (MRF) is defined by a hyper-
graph G = (V,E). Associated with every vertex v ∈ V is a random variable Xv taking values
in some alphabet Σv, as well as a potential function ψv : Σv → R. Associated with every hy-
peredge e ⊆ V is a potential function ψe : Σe → R. In terms of these potentials, we define
a probability distribution π associating to each vector c ∈×v∈V Σv probability π(c) satisfying:

π(c) ∝
∏
v∈V e

ψv(cv)
∏
e∈E e

ψe(ce),where Σe denotes ×v∈eΣv and ce denotes {cv}v∈e.
We refer the interested readers to [35, 32] and the references therein for more details about

MRFs. Throughout the paper, when we say the type distribution D is a MRF over a hypergraph
G = (V,E), if V = [n], ti = xi, Ti = Σi, and there exists a collection of potential functions
{ψi(·)}i∈[n] and {ψe(·)}e∈E so that the corresponding distribution p(·) equals to D. If there are only
pairwise potentials, then G is a graph. We say that a random variable t is generated by a MRF, if
t is sampled from a distribution that is represented by the MRF.

Next, we define two ways to measure the degree of dependence in a MRF.

Definition 3. Let random variable t be generated by a Markov Random Field over a hyper-
graph G = ([n], E), we define the Markov influence between item i and j to be: βi,j(t) :=

maxx∈×`∈[n]T`

∣∣∣∣∑e∈E:
i,j∈e

ψe(xe)

∣∣∣∣. We further define the inverse temperature of the MRF as β(t) :=

maxi∈[n]

∑
j 6=i βi,j(t). We say random variable/type t is in the high temperature regime if

β(t) < 1.

Definition 4. Given a random variable/type t generated by a Markov Random Field over a hyper-
graph G = ([n], E), we define the weighted degree of item i as: di(t) := maxx∈×i∈[n]Ti

∣∣∑
e∈E:i∈e ψe(xe)

∣∣,
and the maximum weighted degree as ∆(t) := maxi∈[n] di(t).

Remark 1. Both β(t) and ∆(t) capture the degree of dependence between the items. Note that
∆(t) ≤ β(t) for any MRF t, and it is possible that β(t) = Ω(d · ∆(t)), where d is the size of
the largest hyperedge in G. When t is drawn from a product measure, both β(t) and ∆(t) are
0. In general, restricting β(t) and ∆(t) to be small ensures that the item values are only weakly
dependent.

To achieve our results, we need another important concept – the Glauber dynamics. In Section 5,
we relate the approximation ratio achievable by simple mechanisms to the spectral gap of the
Glauber dynamics of the MRF.

Definition 5 (Glauber Dynamics). Let X1, . . . , Xn be an n-dimensional random vector drawn from
distribution π. Let Ω be the support of π. The Glauber dynamics for π is a reversible Markov chain
with state space Ω. The Glauber chain moves from state x ∈ Ω as follows: an index i is chosen
uniformly at random from [n], and a new state y is chosen so that (i) yj = xj for all j 6= i; (ii)
draw yi from the conditional distribution π | X−i = x−i. It is not hard to verify that the Glauber
dynamics is a reversible Markov chain with stationary distribution π.

Remark 2. When π is the distribution that can be represented by a MRF G = (V,E), the Glauber
dynamics has state space×v∈V Σv. The Glauber chain moves from state x ∈×v∈V Σv as follows:
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a vertex v is chosen uniformly at random from V , and a new state y is chosen so that (i) yu = xu

for all u 6= v; (ii) for any c ∈ Σv, yv = c w.p.
exp(ψv(c))Πe:v∈e exp(ψe(c,xe/{v}))∑

c′∈Σv
exp(ψv(c′))Πe:v∈e exp(ψe(c′,xe/{v}))

, in other

words, sample yv according to the distribution conditioned on y−v = x−v. Note that for a MRF,
the Glauber dynamics is an irreiducible Markov chain, so π is its only stationary distribution. The
Glauber dyanamics is a standard method for generating samples from a MRF, as it does not require
computing the partition function, which is often a computationally intractable task.

3 Markov Random Fields: Basic Properties and Tools

We first present some basic properties of a MRF. Roughly speaking, we show that the condi-
tional distribution can be approximated by the corresponding marginal distribution of D, and the
approximation quality only depends ∆(t).

Lemma 1. Let random variable t be generated by a MRF. Then for any ti ∈ Ti, t−i ∈ T−i:

exp(ψi(ti))∑
t′i∈Ti

exp(ψi(t′i))
exp(−2∆(t)) ≤ fi(ti | t−i) ≤

exp(ψi(ti))∑
t′i∈Ti

exp(ψi(t′i))
exp(2∆(t))

and
fi(ti) · exp(−4∆(t)) ≤ fi(ti | t−i) ≤ fi(ti) · exp(4∆(t)).

Proof. Note that for any t′i ∈ Ti,
f((ti,t−i))

f((t′i,t−i))
= exp(ψi(ti))

exp(ψi(t′i))
· exp(

∑
e∈E,i∈e ψe(ti,t−i)e)

exp(
∑
e∈E,i∈e ψe(t′i,t−i)e)

.

Clearly,

exp(ψi(ti))

exp(ψi(t′i))
· exp(−2∆(t)) ≤ f ((ti, t−i))

f ((t′i, t−i))
≤ exp(ψi(ti))

exp(ψi(t′i))
· exp(2∆(t)).

Since fi(ti | t−i) = f((ti,t−i))∑
t′
i
∈Ti

f((t′i,t−i))
,

exp(ψi(ti)) · exp(−2∆(t))∑
t′i∈Ti

exp(ψi(t′i))
≤ fi(ti | t−i) ≤

exp(ψi(ti)) exp(2∆(t))∑
t′i∈Ti

exp(ψi(t′i))
.

By Law of Total Probability,

fi(ti) =
∑

t−i∈T−i

fi(ti | t−i)f−i(t−i) ∈

[
exp(ψi(ti)) · exp(−2∆(t))∑

t′i∈Ti
exp(ψi(t′i))

,
exp(ψi(ti)) · exp(2∆(t))∑

t′i∈Ti
exp(ψi(t′i))

]
.

Lemma 2. Let random variable t be generated by a MRF. For any i and any set E ⊆ Ti and set
E ′ ⊆ T−i:

exp(−4∆(t)) ≤ Prt∼D [ti ∈ E ∧ t−i ∈ E ′]
Prti∼Di [ti ∈ E ] Prt−i∼D−i [t−i ∈ E ′]

≤ exp(4∆(t)).

Proof. Note that Prt∼D [ti ∈ E ∧ t−i ∈ E ′] =
∑

t∈E×E ′ fi(ti | t−i)·f−i(t−i) and Pr[ti ∈ E ] Pr [t−i ∈ E ′] =∑
t∈E×E ′ fi(ti) · f−i(t−i). Hence

Prt∼D [ti ∈ E ∧ t−i ∈ E ′]
Prti∼Di [ti ∈ E ] Prt−i∼D−i [t−i ∈ E ′]

=

∑
t∈E×E ′ fi(ti | t−i) · f−i(t−i)∑

t∈E×E ′ fi(ti) · f−i(t−i)

8



Using Lemma 1 we get that:∑
t∈E×E ′ fi(ti | t−i) · f−i(t−i)∑

t∈E×E ′ fi(ti) · f−i(t−i)
≤ exp(4∆)

∑
t∈E×E ′ fi(ti) · f−i(t−i)∑
t∈E×E ′ fi(ti) · f−i(t−i)

= exp(4∆)

and ∑
t∈E×E ′ fi(ti | t−i) · f−i(t−i)∑

t∈E×E ′ fi(ti) · f−i(t−i)
≥ exp(−4∆)

∑
t∈E×E ′ fi(ti) · f−i(t−i)∑
t∈E×E ′ fi(ti) · f−i(t−i)

= exp(−4∆).

Prophet Inequality for MRF Equipped with Lemma 2, we provide a generalization of the
Prophet inequality when the rewards in different stages are dependent and generated by a MRF.
We can think of the prophet inequality problem, as finding a good policy for a gambler in a multi-
round game. At the i-th round, the gambler is given the choice to accept a reward or to continue
to the next round. The goal of the gambler is to find a policy that obtains high expected reward,
given the distributions of the rewards at each round. Prophet inequalities have been obtained when
the rewards between stages are independent [34, 42, 33] or can be expressed a a linear combination
of some independent random variables [31].

Lemma 3. Let t = (t1, . . . , tn) be an n-dimensional random vector generated by a MRF. There are
totally n rounds, and the reward of round i is gi(ti), where gi is an arbitrary function. The total
reward of the prophet is Et

[
maxi∈[n] gi(ti)

]
. We denote by Rewardt

[
{gi}i∈[n], τ

]
the expected of

reward of the following policy – accept any reward that is at least τ . The following inequality holds
if we choose τ∗ = Mediant

(
maxi∈[n] gi(ti)

)
(i.e., Pr[maxi∈[n] gi(ti) ≥ τ∗] = 1/2),

exp(−4∆(t))

2
Et

[
max
i∈[n]

gi(ti)

]
≤ Rewardt

[
{gi}i∈[n], τ

∗] .
Proof. The proof is similar to the case when all ti are independent.

It is not hard to see that

Et

[
max
i∈[n]

gi(ti)

]
≤ τ∗ +

∑
i∈[n]

Eti∼Di
[
(gi(ti)− τ∗)+] .

We provide a lower bound on Rewardt

[
{gi}i∈[n], τ

∗].
Rewardt

[
{gi}i∈[n], τ

∗] ≥ Pr
t

[
max
i∈[n]

gi(ti) ≥ τ∗
]
· τ∗ +

∑
i∈[n]

Et

[
(gi(ti)− τ∗)+ · 1[max

j 6=i
gj(tj) ≤ τ∗]

]

For every i ∈ [n], we define the set Ei as {ti ∈ Ti : gi(ti) > τ∗} and E ′i as {t−i ∈ T−i : maxj 6=i gj(tj) ≤
τ∗}. Note that

Et

[
(gi(ti)− τ∗)+ · 1[max

j 6=i
gj(tj) < τ∗]

]
=

∑
t∈Ei×E ′i

(gi(ti)− τ∗) · f(t)

≥ exp(−4∆(t))
∑

t∈Ei×E ′i

(gi(ti)− τ∗) · fi(ti)f−i(t−i)

= exp(−4∆(t))Eti∼Di
[
(gi(ti)− τ∗)+] Pr

t−i∼D−i
[t−i ∈ E ′i]

9



The inequality is due to Lemma 2. Putting everything together, we know that

Rewardt

[
{gi}i∈[n], τ

∗] ≥ 1

2
· τ∗ +

∑
i∈[n]

Eti∼Di
[
(gi(ti)− τ∗)+

]
· exp(−4∆(t))

2
,

which is at least exp(−4∆(t))
2 of the upper bound we provide for Et

[
maxi∈[n] gi(ti)

]
. 7

4 Simple Mechanisms for a Unit-Demand or Additive Buyer un-
der MRF

In this section, we first use the duality framework from [14, 17] to construct an upper bound of
Rev(D). Next, we prove that if the buyer has either unit-demand or additive valuation across the
items, max{SRev,BRev} is a O(exp(12∆(t)))-approximation or a O(exp(4∆(t)))-approximation
of Rev(D), respectively.

4.1 Benchmark of the Optimal Revenue for Constrained Additive Valuations

In this section, we use the duality framework from [14, 17] to construct an upper bound of Rev(D).
We describe a benchmark of the optimal revenue for all constrained additive valuations. Deriving
a benchmark for XOS valuations requires some extra care, and we provide details of the derivation
in Section 5.1 when we study XOS valuations. We first remind the readers the partition of type
space used in [14, 17].

Definition 6 (Partition of the Type Space for Constrained Additive Valuations [14, 17]). We parti-
tion the type space T into n regions, where Ri = {t ∈ T : i is the smallest index in argmaxi′∈[n] ti′}.
If t ∈ Ri, we call item i the favorite item of type t.

To handle the dependence across the items, we introduce some new notations to specify the
benchmark.

Definition 7 (Ironed Virtual Value). Let D be the type distribution. For any t ∈ Ri, we use φi(ti) to
denote the ironed Myerson’s virtual value for distribution Di, φi(ti | t−i) to denote the ironed
Myerson’s virtual value when we ironed Di|t−i over interval [maxj 6=i tj ,maxSupp(Di|t−i)].

If Di|t−i is a regular distribution and t′i = argmin{t̂ ∈ Supp(Di|t−i) : t̂ > ti},

φi(ti | t−i) = ti −
(t′i − ti) · Prt̂∼D

[
t̂i > ti ∧ t̂−i = t−i

]
f(t)

= ti −
(t′i − ti) · (1− Fi(ti | t−i))

fi(ti | t−i)
.

Moreover, φi(ti | t−i) always satisfies the following property:

max
p≥maxj 6=i tj

p · (1− Fi(p | t−i)) =
∑

ti: (ti,t−i)∈Ri

fi(ti | t−i) · φi(ti | t−i)+,

where x+ = max{x, 0}.

Lemma 4 contains the benchmark we use. See Appendix A for more details about Lemma 4.

7When maxi∈[n] gi(ti) is a discrete distribution, we may not be able to pick a τ∗ such that Pr[maxi∈[n] gi(ti) ≥
τ∗] = 1/2, but it is folklore that this can be resolved by carefully picking a tie-breaking rule. We do not include the
details here.
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Lemma 4 (Benchmark of Optimal Revenue for Constrained Additive Valuations). Given a dis-
tribution D over the type space T , and a mechanism M = (π, p), if the buyer’s valuation v is
constrained additive, then we have the following benchmark:

Rev(M,v,D) ≤
∑
t∈T

∑
i∈[n]

f(t) · πi(t) · φi(ti | t−i) · 1 [t ∈ Ri] (Single)

+
∑
t∈T

∑
i∈[n]

f(t) · πi(t) · ti · 1 [t /∈ Ri] (Non-Favorite)

≤
∑
t∈T

∑
i∈[n]

f(t) · πi(t) · φi(ti | t−i) · 1 [t ∈ Ri] (Single)

+
∑
i∈[n]

∑
ti>r

fi(ti) · ti · Pr
t′∼D

[
t′ /∈ Ri | t′i = ti

]
(Tail)

+
∑
i∈[n]

∑
ti≤r

fi(ti) · ti (Core),

where r = SRev(v,D).

Single-Dimensional Copies Setting: In the analysis of unit-demand bidders with indepen-
dent items [19, 14], the optimal revenue is upper bounded by the optimal revenue in the single-
dimensional copies setting defined in [19]. We make use of the same technique in our analysis.
There is a single item for sale, and we construct n agents, where agent i has value ti for winning
the item. Notice that this is a single-dimensional setting, as each agent’s type is specified by a
single number.

4.2 A Unit-Demand Buyer

In this section, we show that a simple posted price mechanism can extract O(exp(12∆(t))) fraction
of the optimal revenue when the type distribution D is a MRF. We first use the revenue of the
Ronen’s lookahead auction [40] to upper bound the benchmark from Lemma 4. 8 Ronen’s auction
first identifies the highest bidder, and offers a take it or leave it price to the highest bidder to
maximize the revenue conditioned on the other bidders’ types. The proof follows from the definition
of Ronen’s lookahead auction and basic properties of MRF presented in Lemma 1 and 2. We
postpone the proof to Appendix B.

Lemma 5. Let the type distribution D be represented by a MRF, M be any IC and IR mechanism
for a unit-demand buyer, and RonenCopies be revenue of the Ronen’s lookahead auction [40] in the
Copies settings with respect to D. The following inequalities hold:

max{Single,Non-Favorite} ≤ RonenCopies

RonenCopies ≤ exp(8∆(t))Et

[
max
i∈[n]

φi(ti)
+

]
.

Equipped with Lemma 5, we can apply the prophet inequality for MRF to show that a posted-

price mechanism can obtain expected revenue that is at least Ω
(
RonenCopies

exp(12∆(t))

)
. We delay the proof

to Appendix B.

8Ronen’s lookahead auction considers the setting where the seller is selling a single item to a set of buyers, whose
values for the item are correlated.
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Theorem 1. Let the type distribution D be represented by a MRF. If the buyer’s valuation is unit-
demand, then there exists a posted-price mechanism M with prices {pi}i∈[n] that obtains expected

revenue at least Rev(D)
8 exp(12∆(t)) .

Is it possible to improve the dependence on ∆? In Theorem 8, we show that if we use the
optimal revenue in the COPIES setting as a benchmark of the optimal revenue in the original
setting, then the exponential dependence on ∆(t) is unavoidable.

4.3 An Additive Buyer

In this section, we show that max{SRev,BRev} is a O(exp(4∆(t))) approximation of the optimal
revenue when the type distribution D is a MRF. We denote by ri the revenue of Myerson’s auction
for selling item i only. We use r =

∑
i∈[n] ri to denote SRev, as the revenue collected from item i

only depends on the marginal distribution Di. We first upper bound the terms Single and Tail by
exp(4∆(t)) · SRev. The proof follows from a combination of the standard analysis of the terms
Single and Tail from [14, 17] with properties of MRFs (Lemma 2). We postpone the proof to
Appendix C.

Lemma 6. Let the type distribution D be a MRF and M be any IC and IR mechanism for
an additive buyer. The following inequalities holds: Single ≤ exp(4∆(t)) · SRev and Tail ≤
exp(4∆(t)) · SRev.

Finally, we analyze the Core. We define new random variables Ci = ti · 1[ti ≤ r]. Let
C =

∑n
i=1Ci. Note that E[C] = Core. We first provide an upper bound on Var[C], and

show that if we sell the grand bundle at an appropriate price, its revenue is close to the Core.
Note that under the item-independence assumption, it is not hard to show that Var[C] is upper
bounded by 2r2 [4, 14]. However, this analysis does not extend to the case where the buyer type
is generated by a MRF. We first obtain a new upper bound of Var[C]. As C =

∑n
i=1Ci, we have

Var[C] =
∑

i∈[n] Var[Ci] +
∑

i 6=j Cov[Ci, Cj ]. We further bound
∑

i∈[n] Var[Ci] by 2r2 using the
standard analysis in [4, 14] and each covariance Cov[Ci, Cj ] using properties of MRF (Lemma 2).
The proof is postponed to Appendix C.

Lemma 7. Let the type distribution D be represented by a MRF. For any i, j ∈ [n], Cov[Ci, Cj ] ≤
(exp(4∆(t))− 1)E[Ci]E[Cj ]. Moreover, Var[C] ≤ 2r2 + (exp(4∆(t))− 1)E[C]2.

In the item-independence case, the standard analysis [4, 14] applies Chebyshev’s inequality to
show that the seller can sell the grand bundle at price E[C] − 2r with probability at least 1/2,
which implies that Core is O(BRev + SRev). As our upper bound on Var[C] is a lot larger,
Chebyshev’s inequality only gives a vacuous bound on the sell probability. 9 To show that selling
the grand bundling is a good approximation of the Core, we set the price of the grand bundle
differently and use the Paley-Zygmund inequality to prove that either the sell probability is high
or the Core is within a constant factor of r. The proof of Theorem 2 can be found in Appendix C.

Theorem 2. Let the type distribution D be represented by a MRF. If the buyer’s valuation is
additive, then (

2 exp(4∆(t)) +
√

2
)
· SRev + 8 (exp(4∆(t)) + 1) ·BRev ≥ Rev(D).

9In particular, if we set the price to be a · E[C] − κ · r for any constant a ∈ [0, 1] and κ, Chebyshev’s inequality

tells us that the probability that the buyer cannot afford the grand bundle is at most Var[C]

((1−a) E[C]+κ·r)2 . However, our

upper bound of Var[C] will be larger than ((1− a)E[C] + κ · r)2, if exp(4∆(t)) > 2 and E[C] is much larger than r.

In this case, Var[C]

((1−a) E[C]+κ·r)2 is larger than 1 making the bound useless.
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In the following theorem, we show that the approximation ratio must have polynomial depen-
dence on ∆(t). Our proof is based on a modification of the hard instance by Hart and Nisan [30].
They construct a joint distribution over two items with support size m and show that the optimal
revenue is at least m1/7 ·max{BRev,SRev}. Unfortunately, their construction requires ∆ to be
infinite. We show how to modify their construction so that the new distribution has maximum
weighted degree ∆ = O(m), and the gap between the optimal revenue and max{BRev,SRev} re-
mains to be m1/7. The key is to show that under the new distribution, no type shows up too rarely,
and the optimal revenue, SRev, and BRev remain roughly the same. The proof is postponed to
Appendix F.

Theorem 3. For any sufficiently large m ∈ N, there exists a type distribution over two items
represented by a MRF D such that (i) the maximum weighted degree ∆ is at most C ·m, where C
is an absolute constant; (ii) for an additive buyer whose type is sampled from D, there exists an
absolute constant C ′ > 0 such that Rev(D) ≥ C ′m1/7 ·max{BRev(D),SRev(D)}.

5 Simple Mechanisms for a XOS Buyer

5.1 Duality Framework for XOS Valuations

The benchmark is obtained using essentially the same approach as in [17]. Suppose the buyer has
a XOS valuation function v(t, S). We denote by Vi(t) = v(t, {i}). We abuse this notation and we
also define for ti ∈ Ti, Vi(ti) = v((0, . . . , ti, . . . ,0), {i}), where 0 is the all 0 vector. We summarize
the benchmark for a XOS buyer in the following Lemma. More details can be found in Appendix E.

Lemma 8. Partition the type space T into n regions, where

Ri := {t ∈ T : f(t) > 0 and i is the smallest index that belongs in argmaxi∈[n] Vi(t) }

Let r = SRev be the revenue of the optimal posted price mechanism that allows the buyer to
purchase at most one item. Let C(t) := {i : Vi(t) < 2r}. For any IC and IR Mechanism M , we
can bound its revenue by:

Rev(M,v,D) ≤2
∑
t∈T

f(t)
∑
i∈[n]

πi(t)φ(Vi(ti) | t−i)1[t ∈ Ri] (Single)

+ 4
∑
i∈[n]

∑
ti∈Ti

Vi(ti)≥2r

f(ti) · Vi(ti) Pr
t′∼D

[
t′ /∈ Ri | t′i = ti

]
(Tail)

+ 4
∑
t∈T

f(t)v(t, C(t)) (Core)

5.2 Approximating the Benchmark of a XOS Buyer

In this section, we show how to approximate the optimal revenue of a buyer with a XOS valuation.
We first upper bound the term Single and Tail . The analysis of both terms follows from the
combination of the analysis in [17] and Lemma 2.

Lemma 9. Let the type distribution D be represented by a MRF. If M is an IC and IR mechanism
for a buyer with a XOS valuation, then the following inequalities hold

Single ≤ 4 exp(12∆(t)) · SRev
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and
Tail ≤ exp(8∆(t)) · SRev,

where SRev is the revenue of the optimal posted price auction, in which the buyer is allowed to
purchase at most one item.

5.2.1 Bounding the Core using the Poincaré Inequality

In this section, we show how to bound the Core for a XOS buyer. The Core is the expectation
of the random variable v(t, C(t)). To show that bundling can achieve a good approximation of the
Core, we need to upper bound the variance of v(t, C(t)). This is the main task of this section.
As v(t, ·) is not additive across the items, our method for the additive valuation (see Lemma 7)
no longer applies. We provide a new approach that is based on the Poincaré Inequality and the
self-boundingness of XOS functions. We first state the Poincaré Inequality.

Lemma 10 (The Poincaré Inequality (adapted from Lemma 13.12 of [36])). Let P be a reversible
transition matrix on state space Ω with stationary distribution π. For any function g : Ω→ R, let

E(g) :=
1

2

∑
x,y∈Ω

[g(x)− g(y)]2π(x)P (x, y).

If Varx∼π[g(x)] > 0, then
E(g)

Varx∼π[g(x)]
≥ γ,

where γ is the spectral gap of P . 10 Moreover, there exists a function g∗ : Ω→ R, such that

E(g∗)

Varx∼π[g∗(x)]
= γ.

Next, we apply Lemma 10 to the Glauber dynamics of the MRF that generates the buyer’s
type.

Lemma 11. Let D be the joint distribution of random variables t = (t1, . . . , tn) and P be the
transition matrix of the Glauber dynamics for D. For any function g : T → R, we have

nγ ·Vart∼D[g(t)] ≤
∑
i∈[n]

Et∼D

[(
g(ti, t−i)− Et′i∼Di|t−i [g(t′i, t−i)]

)2
]
,

where γ is the spectral gap of P . Moreover, there exists a function g∗ : T → R, such that the
inequality is tight.

Remark 3. Lemma 11 is a generalization of the well-known Efron-Stein inequality to dependent
random variables. Indeed, when D is a product measure, γ is at least 1/n and we recover the Efron-
Stein inequality. As we demonstrate in Section 6, γ is at least Ω(1/n) under many well-studied
conditions of weak dependence, such as the Dobrushin uniqueness condition.

10It is well-known that the largest eigenvalue of P is 1, and the spectral gap of P is the difference between P ’s
largest and second largest eigenvalues.
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Proof of Lemma 11: According to the definition of the Glauber dynamics, P is a reversible transition
matrix on state space T with stationary distribution D. Lemma 10 states that

γ ·Vart∼D[g(x)] ≤ 1

2

∑
t,t′∈T

[g(t)− g(t′)]2 · f(t) · P (t, t′). (1)

By the definition of the Glauber dynamics, the RHS of Inequality (1) is equivalent to

1

2
Et∼D

 1

n

∑
i∈[n]

Et′i∼Di|t−i
[
g(t)− g(t′i, t−i)

]2
=

1

n

∑
i∈[n]

Et−i∼D−i

[
Eti,t′i∼Di|t−i

[
1

2

(
g(ti, t−i)− g(t′i, t−i)

)2]]

=
1

n

∑
i∈[n]

Et−i∼D−i

[
Eti∼Di|t−i

[(
g(ti, t−i)− Et′i∼Di|t−i [g(t′i, t−i)]

)2
]]

=
1

n

∑
i∈[n]

Et∼D

[(
g(ti, t−i)− Et′i∼Di|t−i [g(t′i, t−i)]

)2
]
.

The second equality is because ti and t′i are two i.i.d. samples from Di|t−i .
Hence,

nγ ·Vart∼D[g(t)] ≤
∑
i∈[n]

Et∼D

[(
g(ti, t−i)− Et′i∼Di|t−i [g(t′i, t−i)]

)2
]
.

Note that if we choose g(·) to be the function g∗(·) in Lemma 10, Inequality (1) becomes an
equality.

2

Recall that to bound the Core, we need to upper bound the variance of the random variable
v(t, C(t)). By choosing g(t) to be v(t, C(t)) and applying Lemma 11, we can instead upper bound
the RHS of the inequality in Lemma 11. A priori, it is not clear that the RHS would be easier to
bound. In the following sequence of Lemmas, we show that the RHS is indeed more amenable to
analysis. We first argue that the function v(t, C(t)) has a key property known as self-boundingness,
using which we then upper bound the RHS by O(SRev ·Core) and show that SRev and BRev
can approximate the Core.

Definition 8 (Self-Bounding Functions [7]). Let S be an arbitrary set and A be a subset of Sn. We
say that a function g(t) : A → R is C-self-bounding with some constant C ∈ R+ if there exists a
collection of functions gi : A−i → R for each i ∈ [n] with A−i := {t−i : ∃ti, (ti, t−i) ∈ A}, such that
for each t ∈ A the followings hold:

• 0 ≤ g(t)− gi(t−i) ≤ C for all i ∈ [n].

•
∑

i∈[n] (g(t)− gi(t−i)) ≤ g(t).

We next argue that for a self-bounding function, the RHS of the inequality in Lemma 11 is
upper bounded by its mean.

Lemma 12. Let D be the joint distribution of random variables t = (t1, . . . , tn). If g(·) is a
C-self-bounding function, then∑

i∈[n]

Et∼D

[(
g(t)− Et′i∼Di|t−i [g(t′i, t−i)]

)2
]
≤ C Et∼D [g(t)] .
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Proof. Recall the following property of the variance: For any real-value random variable X,
Var[X] = mina∈R E[(X − a)2]. In other words, Var[X] ≤ E[(X − a)2] for any a. Therefore,
for any t−i,

Eti∼Di|t−i

[(
g(t)− Et′i∼Di|t−i [g(t′i, t−i)]

)2
]

= Var[g(t) | t−i] ≤ Eti∼Di|t−i
[
(g(t)− gi(t−i))2

]
.

Using this relaxation, we proceed to prove the claim.∑
i∈[n]

Et∼D

[(
g(t)− Et′i∼Di|t−i [g(t′i, t−i)]

)2
]

≤
∑
i∈[n]

Et∼D

[
(g(t)− gi(t−i))2

]
≤C

∑
i∈[n]

Et∼D [(g(t)− gi(t−i))]

≤C Et∼D [g(t)]

The first inequality follows from the relaxation. The second and last inequality follow from the
first and second property of a self-bounding function respectively.

Combining Lemma 11 and 12, we have the following Lemma.

Lemma 13. Let D be the joint distribution of random variables t = (t1, . . . , tn) and P be the
transition matrix of the Glauber dynamics for D. For any C-self-bounding function g : T → R, we
have

nγ

C
·Vart∼D[g(t)] ≤ Et∼D [g(t)] ,

where γ is the spectral gap of P .

Definition 8 may seem obscure at first, but many natural functions are indeed self-bounding. For
example, if A is [0, 1]n and g(·) is the additive function, then g(·) is 1-self-bounding. We show that
the function g(t) := v(t, C(t)) is 2SRev-self-bounding and its variance is no more than 2SRev·Core

nγ .
Here, we first specialize our analysis to MRFs. The main difference is that the Glauber dynamics
for a MRF is irreducible, so the spectral gap is strictly positive (Lemma 12.1 of [36]). The proof is
postponed to Appendix D.

Lemma 14. Let C(t) := {j : Vj(t) < 2SRev}. The function g(t) := v(t, C(t)) is 2SRev-self-
bounding and Vart∼D[g(t)] ≤ 2SRev·Core

nγ , where γ > 0 is the spectral gap of the transition matrix
of the Glauber dynamics of the MRF that generates the buyer’s type.

Now, we show how to approximate Core using SRev and BRev.

Lemma 15. Let the buyer’s type distribution D be represented by a MRF, P be the transition
matrix of the Glauber dynamics of the MRF, and γ > 0 be the spectral gap of P . We have

Core ≤ max

(
4SRev
√
nγ

,

(
7 +

4
√
nγ

)
BRev

)
.
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Proof. According to Lemma 14, v(t, C(t)) is a 2SRev-self-bounding function and Var[v(t, C(t)] ≤
2SRev·Core

nγ . If Core ≤ 4SRev√
nγ , then the statement holds. If Core > 4SRev√

nγ , then Var[v(t, C(t))] ≤
2SRev·Core

nγ < (Core)2

2
√
nγ = E[v(t,C(t))]2

2
√
nγ . By Paley-Zygmund inequality we have that:

Pr

[
v(t, C(t)) ≥ Core

3

]
≥ 4

9

1

1 + Var[v(t,C(t))]
E[v(t,C(t))]2

≥ 4

9

1

1 + 1
2
√
nγ

.

Therefore we have that: Pr
[
v(t, C(t)) ≥ Core

3

]
· Core

3 ≤ BRev, which implies that the statement.

Finally, we combine our analysis of Single, Tail, and Core to obtain the approximation
guarantee for a XOS buyer.

Theorem 4. Let the buyer have a XOS valuation and her type distribution D be represented by
a MRF. We use γ to denote the spectral gap of matrix P – the transition matrix of the Glauber

dynamics of the MRF. Then Rev(D) ≤ 12 exp(12∆(t)) · SRev +
(

28 + 16√
nγ

)
max{SRev,BRev}.

Proof of Theorem 4: The statement follows from the combination of Lemma 8 , 9, and 15. 2

6 Connection to other Weak Dependence Conditions

A common way to measure the degree of dependence of a high-dimensional distribution is by
considering its Dobrushin Interdependence Matrix. In this section, we show that for several natural
sufficient conditions that guarantee weak dependence in the distribution, the spectral gap γ of the
Glauber dynamics transition matrix is Ω(1/n). We begin by defining the Dobrushin interdependence
matrix.

Definition 9 (d-Dobrushin Interdependence Matrix [44]). Let (E, d) be a metrical, complete and
separable space. For two distributions µ and ν supported on E, their L1-Wasserstein distance is
defined as: W1,d(µ, ν) = infπ∈Π

∫ ∫
E×E d(x, y)π(dx, dy), where Π is the set of valid coupling such

that its marginal distributions are µ and ν.
Let X = (x1, . . . , xn) be a n-dimensional random vector supported on En and µi(· | x−i) be the

conditional distribution of xi knowing x−i. Define the d-Dobrushin Interdependence Matrix
A = (αi,j)i,j∈[n] by

αi,j := sup
x−i−j=y−i−j

xj 6=yj

W1,d(µi(· | x−i), µi(· | y−i))
d(xj , yj)

for all i 6= j,

and αi,i = 0 for all i ∈ [n].

Remark 4. αi,j captures how strong the value of xj affects the conditional distribution of xi when
all other coordinates are fixed. Higher αi,j value implies stronger dependence between xi and xj.
When all the coordinates of X are independent, A is the all zero matrix.

Dobrushin uniqueness condition: If we choose d(x, y) to be the trivial metric 1x 6=y, then
W1,d(·, ·) is exactly the total variation distance. The influence matrix mentioned in Section 1 is
exactly the Dobrushin interdependence matrix with respect to the trivial metric. To remind the
audience, the Dobrushin Coefficient is defined as α(t) := ||A||∞ = maxi∈[n]

∑
j 6=i αi,j when A is
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the influence matrix. If α(t) < 1, we say t satisfies the Dobrushin uniqueness condition. As
||A||∞ is at least as large as A’s spectral radius ρd(t),

11 a weaker condition than the Dobrushin
uniqueness condition is that the spectral radius ρd(t) is strictly less than 1.

We argue that even the weaker condition that ρd(t) < 1 implies that the spectral gap of the
transition matrix of the Glauber dynamics γ = Ω(1/n).

Lemma 16. Let d(·, ·) be any metric, for any n-dimensional random vector t, nγ ≥ 1 − ρd(t),
where γ is the spectral gap of the transition matrix of the Glauber dynamics for t.

Proof. By Lemma 11, there exists a function g∗ : Ω→ R, such that

∑
i∈[n] Et∼D

[(
g∗(ti, t−i)− Et′i∼Di|t−i [g

∗(t′i, t−i)]
)2
]

Vart∼D[g∗(t)]
= nγ.

The following result by Wu [44] provides a generalization of the Efron-Stein inequality for weakly
dependent random variables.

Lemma 17 (Poincaré Inequality for Weakly Dependent Random Variables - Theorem 2.1 in [44]).
Let t = (t1, . . . , tn) be an n-dimensional random vector drawn from distribution D that is supported
on En. For any metric d(·, ·) on E, let A be the d-Dobrushin interdependence matrix for t. Let ρd(t)

be the spectral radius of A. If Et∼D

[∑
i∈[n] d(ti, yi)

2
]
< +∞ for some fixed y ∈ En and ρd(t) < 1,

then for any square integrable function g(·) w.r.t. distribution D, the following holds:

(1− ρd(t))Vart∼D[g(t)] ≤
∑
i∈[n]

Et∼D

[(
g(ti, t−i)− Et′i∼Di|t−i [g(ti, t−i)]

)2
]
.

If we choose g(·) to be g∗(·) in Lemma 17, we have that :

1− ρd(t) ≤

∑
i∈[n] Et∼D

[(
g∗(ti, t−i)− Et′i∼Di|t−i [g

∗(ti, t−i)]
)2
]

Vart∼D[g∗(t)]

Combining the two inequalities conclude the proof

Combining Lemma 16 with Theorem 4, we immediately have the following Theorem. 12

Theorem 5. Let the buyer have a XOS valuation, her type distribution D be represented by a MRF,
and ρd(t) be the spectral radius of the d-Dobrushin interdependence matrix of t under some metric

d(·, ·). If ρd(t) < 1, then Rev(D) ≤ 12 exp(12∆(t)) ·SRev+

(
28 + 16√

1−ρd(t)

)
max{SRev,BRev}.

Proof of Theorem 5: The statement follows from the combination of Lemma 16 and Theorem 4. 2

11ρd(t) is the dominant eigenvalue of A by the Perron-Frobenius Theorem.
12A major benefit of using ρd or the Dobrushin coefficient rather than γ is that these parameters are easier to

estimate than γ given the joint distribution.
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High Temperature MRFs. Using Theorem 5, we show that when the MRF is in the high
temperature regime, i.e., β(t) < 1 (see Definition 3), max{SRev,BRev} is a constant factor ap-
proximation to the optimal revenue. By the definition of β(t), it clear that ∆(t) ≤ β(t). Next, we
show that β(t) is also an upper bound of ρd(t) for the trivial metric d(x, y) = 1x 6=y.

Lemma 18. Let d(·, ·) be the trivial metric d(x, y) = 1x 6=y. For any MRF t, ρd(t) ≤ α(t) ≤ β(t).
Moreover, αi,j ≤ βi,j(t) for all i, j ∈ [n].

Proof. ρd(t) ≤ α(t) follows the elementary fact that the spectral radius is upper bounded by the
infinity norm. To prove α(t) ≤ β(t), we first need the following definition and lemma.

Definition 10. [22] Let x = (x1, . . . , xn) be a random variable over ×i∈[n]Σi, and Px denote its
probability distribution. Assume Px > 0 on all ×i∈[n]Σi. For any i 6= j ∈ [n], define the log
influence between i and j as

I log
i,j (x) =

1

4
max

x−i−j∈Σ−i−j
xi,x

′
i∈Σi

xj ,x
′
j∈Σj

log
Px(xixjx−i−j)Px(x′ix

′
jx−i−j)

Px(x′ixjx−i−j)Px(xix′jx−i−j)
.

Lemma 19 (Adapted from Lemma 5.2 of [23]). Let x = (x1, . . . , xn) be a random variable , for

any i, j ∈ [n], αi,j ≤ I log
i,j (x).

We only need to prove that I log
i,j (t) is no more than βi,j(t). Since random variable t is generated

by a MRF,

I log
i,j (t) =

1

4
max

t−i−j∈Σ−i−j
ti,t
′
i∈Σi

tj ,t
′
j∈Σj

∑
e∈E:
i,j∈e

ψe
(
(ti, tj , t−i−j)e

)
+
∑
e∈E:
i,j∈e

ψe

((
t′i, t
′
j , t−i−j

)
e

)

−
∑
e∈E:
i,j∈e

ψe
((
t′i, tj , t−i−j

)
e

)
−
∑
e∈E:
i,j∈e

ψe

((
ti, t
′
j , t−i−j

)
e

)
,

which is clearly no greater than βi,j(t).
Since for any i, j ∈ [n] αi,j ≤ βi,j(t), we have α(t) ≤ β(t).

Theorem 6. Let the buyer’s type distribution D be represented by a MRF. If the buyer’s a XOS
valuation and her type t is in the high temperature regime, i.e., β(t) < 1,

Rev(D) ≤ 12 exp(12β(t))·SRev+

(
28 +

16√
1− β(t)

)
max{SRev,BRev} = O

(
max{SRev,BRev}√

1− β(t)

)
.

Proof of Theorem 6: The statement follows from Theorem 5 and Lemma 18. 2

7 Impossibility Results

In this section we present some of our impossibility results. In Section 7.1, we show that the
Dobrushin Uniqueness condition alone is insufficient to guarantee any multiplicative approximation
of the optimal revenue using SRev and BRev. In Section 7.2 we construct a MRF such that the
optimal revenue in the COPIES setting is exp(∆) times larger than max{SRev,BRev}.
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7.1 Inapproximability under Only the Dobrushin Uniqueness Condition

Readers may wonder whether it is possible to prove an approximation ratio that only relies on either
the spectral radius ρd(t), the Dobrushin coefficient α(t), or the spectral gap of the Glauber dynamics
γ, but independent of the maximum weighted degree ∆(t). We show that this is impossible. Indeed,
we prove that for any α < 1, and any ratio N , there exists a MRF with ρd(t) ≤ α(t) ≤ α such that
the ratio between the optimal revenue and max{BRev(D),SRev(D)} is at least α

2 ·N . Our result
is based on a modification of the Hart-Nisan construction [30].

Theorem 7. For any positive real number N and any choice of 0 < α < 1, there exists a type dis-
tribution D over 2 items generated by a MRF with Dobrushin coefficient α(t) = α and finite inverse

temperature, such that for an additive buyer whose type is sampled from D, Rev(D)
max{BRev(D),SRev(D)} >

α
2 ·N .

First we present the main building block of our construction.

Lemma 20. Let D′ be a correlated valuation distribution over 2 items with Dobrushin coefficient
α. Let D be a product distribution that has the same marginal distributions as D′. Then for any
0 ≤ α′ ≤ 1, we consider the distribution D′′ := α′ · D′ + (1 − α′) · D, that is, if we want to
sample from D′′, we can take a sample from D′ with probability α′ and take a sample from D with
probability 1−α′. Distribution D′′ can be modeled as a MRF with finite inverse temperature such that
∆ = β(t) ≤ | log((1−α)p2)|, where p = inft∈Supp(D′) Prt′∼D′ [t

′ = t]and D′′ has Dobrushin coefficient
α′ · α. Furthermore, D′′ has the same marginal distribution as D and Rev(D′′) ≥ α′Rev(D′).

Proof. Assume that D = D1×D2, where D1 and D2 are the marginals of D′. Let Ti = Supp(Di)and
T = T1 × T2. Let AD

′
= {αD′i,j }i,j∈[2] be the influence matrix of D′ and AD

′′
= {αD′′i,j }i,j∈[2] be the

influence matrix of D′′. Note that the diagonal entries of AD
′

and of AD
′′

are zero. We have that:

αD
′′

i,j = max
tj ,t
′
j∈Tj

dTV

(
D′′i|tj , D

′′
i|t′j

)
= α′ max

tj ,t′j∈Tj
dTV

(
D′i|tj , D

′
i|t′j

)
= α′αD

′
i,j

In the statement of the lemma, we assumed that α = ||AD′ ||∞ = max(αD
′

1,2, α
D′
2,1). We can easily

infer the following: ||AD′′ ||∞ = max(αD
′′

1,2 , α
D′′
2,1 ) = α′max(αD

′
1,2, α

D′
2,1) = α′ · α. This concludes the

fact that D′′ has α(t) = α′ · α.
Now we prove that D′′ can be modeled as a MRF with finite inverse temperature. We con-

sider a MRF with potential functions ψ1(t1) = 1, ∀t1 ∈ T1, ψ2(t2) = 1,∀t2 ∈ T2 and ψ1,2(t) =
ln (Prt′∼D′′(t

′ = t)). Since Distribution D′′ samples from the product distribution D with prob-
ability 1 − α, we have that for each t ∈ T , Prt′∼D′′(t

′ = t) ≥ (1 − α)p2. This is true because
with probability 1 − α we sample from the product distribution D, and with probability at least
p2 we sample the type t, therefore the MRF we just described has finite inverse temperature and
∆ = β(t) = maxt∈Supp(D′) | log (Prt′∼D′ [t

′ = t]) | ≤ | log
(
(1− α)p2

)
|. In the case where the distri-

bution is over two items, β(t) = maxt∈T |ψ1,2(t)|. Moreover we can easily verify that the MRF we
just described has the same joint distribution as D′′. Therefore D′′ can be modeled as a MRF with
finite inverse temperature.

We now prove that Rev(D′′) ≥ α′Rev(D′). This is true because we can simply use the optimal
mechanism that induces Rev(D′) on D′′. Since D′′ take a sample from D′ with probability α′, we
are guaranteed that this mechanism has revenue at least α′Rev(D′) on D′′.

The fact that D′′ has the same marginal distributions as D′ follows from the sampling procedure.
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We also need the following important result from [30].

Lemma 21 (Theorem A from [30]). For any positive number N , there exists a two item correlated

distribution D, such that for an additive buyer whose type is sampled from D, Rev(D)
max{BRev(D),SRev(D)} >

N .

Equipped with Lemma 20 and 21, we are ready to prove Theorem 7.
Proof of Theorem 7: Let D′ be the distribution over two items that is guaranteed to exist by
Lemma 21. Since D′ is a two dimensional distribution, its Dobrushin coefficient is at most 1.

Apply Lemma 20 to D′ with parameter α′ = α to create another distribution D which has
the same marginals as D′ but with a Dobrushin coefficient at most α. Moreover, D can be
expressed as a MRF with finite inverse temperature. Clearly, Rev(D) ≥ α · Rev(D′), as one
can simply achieve the RHS under distribution D using the optimal mechanism designed for
D′. Also, SRev(D′) = SRev(D) as the two distributions have the same marginals. Finally,
BRev(D′) ≤ 2SRev(D′). Suppose b is the optimal price for the bundle, then we can set the two
items separately each at price b/2. Clearly, whenever the bundle is sold, at least one item is sold.

To conclude, Rev(D)
max{BRev(D),SRev(D)} ≥

Rev(D)
2SRev(D) ≥

α·Rev(D′)
2SRev(D′) >

α
2 ·N .

2

7.2 Lower Bound for the Copies Setting

In this section, we show that if the analysis uses the optimal revenue in the COPIES setting as part
of the benchmark for the optimal revenue in the original setting (as in our analysis), the exponential
dependence on the maximum weighted degree ∆ in the approximation ratio is unavoidable. Note
that we also showed that the approximation ratio must have polynomial dependence on ∆ no matter
what approach is used (Theorem 3).

Theorem 8. For any value of n ∈ N and β ∈ R+ there exists a type distribution D over n+1 items,
such that D can be represented by a MRF with only pairwise potentials and maximum weighted
degree ∆ ≤ β · n. Moreover, for an additive or unit-demand buyer, the expected optimal revenue in
the COPIES settings w.r.t. D can be arbitrarily close to 1

2 exp(2βn), while max{BRev,SRev} < 2.

Proof of Theorem 8: We construct the MRF in the following way. The first item has support
T1 = {20, 21, 22, . . . , 2k

n−1}, where k ∈ N is going to be defined later. Let ε1, . . . , εk be some tiny
non-negative values, and the support of the other items’ distributions is R = {εi}i∈[k]. We consider
the following node potential for the first item:

ψ1(2i) =

{
ln( 1

2i+1 ) if 0 ≤ i ≤ kn − 2

ln( 1
2i

) if i = kn − 1

The node potentials for the other items is: ψi(a) = ln
(

1
exp(β)+(k−1) exp(−β)

)
for all i ∈ [2, n+ 1]

and a ∈ R.
Note that |T1| = kn and |Rn| = kn, therefore for each t1 ∈ T1, we can map it to a unique

t−1 ∈ Rn. Formally, we consider a bijective function c : T1 → Rn.
We define pair-wise potentials between the first item and the j-th item:

ψ1,j(2
i, ε`) =

{
β if ε` = c(2i)j

−β if ε` 6= c(2i)j
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It is easy to verify that ∆ ≤ β · n for the constructed MRF.
Let Z be the normalizing constant so that the MRF with potentials {ψi}i∈[n+1], {ψ1,i}2≤i≤n+1

is a valid distribution. That is Z =
∑

t∈Supp(D)

∏
i∈[n+1] exp(ψi(ti))

∏
2≤i≤n+1 exp(ψ1,i(t1, ti)). For

any t1 ∈ T1 we have that: Prt′∼D
[
t′1 = t1 ∧ t′−1 = c(t1)

]
= 1

Z exp(ψ1(t1)) exp (nβ)
(exp(β)+(k−1) exp(−β))n

.

Pr
t′∼D

[
t′1 = t1 ∧ t′−1 6= c(t1)

]
=

1

Z
exp(ψ1(t1))

1

(exp(β) + (k − 1) exp(−β))n

∑
t−1∈T−1:
t−1 6=c(t1)

∏
i∈[2,n+1]

exp (ψ1,i(t1, {t−1}i))

=
1

Z
exp(ψ1(t1))

1

(exp(β) + (k − 1) exp(−β))n

∑
i∈[1,n]

(
n

i

)
(k − 1)i (exp(−β))i (exp(β))n−i

=
1

Z
exp(ψ1(t1))

(exp(β) + (k − 1) exp(−β))n − exp(nβ)

(exp(β) + (k − 1) exp(−β))n

Thus for any t1 ∈ T1, the marginal probability: f1(t1) = 1
Z exp(ψ1(t1)). Note that Z =∑

t1∈T1
exp(ψ1(t1)) =

∑kn−2
i=0

1
2i+1 + 1

2kn−1 = 1 and f1(t1) = exp(ψ1(t1)). Therefore the marginal
distribution of the first item is an Equal Revenue Distribution, which means that the revenue of
any posted price mechanism for the first item, cannot be more than 1. Moreover, if we choose
ε1, . . . , εk to be sufficiently small so that maxx∈R ≤ 1

2n , then any posted price mechanisms for the
rest n items has revenue less or equal than 1

2 . Thus SRev < 2.
Now we consider the following Mechanism in the copies settings. We first collect the values for

all buyers except the first one t−1, then let the first buyer decide whether she wants to purchase
the item at price c−1(t−1). This is essentially Ronen’s lookahead auction [40]. A lower bound on
the revenue of this mechanism in the COPIES settings is:∑

t1∈T1

t1 Pr
t′∼D

[
c−1(t′−1) = t1 ∧ t′1 = t1

]
=
∑
t1∈T1

t1 exp(ψ1(t1))
exp (nβ)

(exp(β) + (k − 1) exp(−β))n

=

(
1

1 + (k − 1) exp(−2β)

)n ∑
t1∈T1

t1 exp(ψ1(t1))

≥
(

1

1 + (k − 1) exp(−2β)

)n ∑
t1∈T1

1

2

=
1

2

(
1

1 + (k − 1) exp(−2β)

)n
|T1|

=
1

2

(
k

1 + (k − 1) exp(−2β)

)n
Where the last inequality follows from the definition of ψ1(t1).

Note that if we fix β and n, and let k →∞, then limk→∞

(
k

1+(k−1) exp(−2β)

)n
= exp(2βn).

Therefore as k → ∞, the lower bound of the revenue of the proposed mechanisms becomes
exp(2βn)

2 . Since we assumed that the value of the agent for each item except the first is less or equal
than 1

2n , then the value of the agent for all but the first item is less or equal than 1
2 . This implies

that if the agent buys the whole bundle at price p, then she also buys the first item at price p− 1
2 .

Let Rev1 be the revenue of the posted price mechanism on the first item. Since the marginal of the
fist item is the Equal Revenue Distribution, then Rev1 ≤ 1. Moreover by the argument described
above, we have that BRev ≤ Rev1 + 1

2 < 2. Thus max{SRev,BRev} < 2. 2
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A Missing Details of the Duality-base Benchmark

We provide the necessary information to derive the benchmark for XOS valuations in Appendix E.
Deriving a benchmark for a constrained additive valuation is a simpler task. We summarize the
benchmark for a constrained additive valuation in Definition 11.

Definition 11. The duality framework provide the following bound:

Rev(M,v,D) ≤
∑
t∈T

∑
i∈[n]

f(t) · πi(t) · (ti · 1 [t /∈ Ri] + φi(ti | t−i) · 1 [t ∈ Ri])

=
∑
t∈T

∑
i∈[n]

f(t) · πi(t) · φi(ti | t−i) · 1 [t ∈ Ri] (Single)

+
∑
t∈T

∑
i∈[n]

f(t) · πi(t) · ti · 1 [t /∈ Ri] (Non-Favorite)

Lemma 22. We can bound Non-Favorite by Core and Tail. More specifically,

Non-Favorite ≤
∑
i∈[n]

∑
ti>r

fi(ti) · ti · Pr
t′∼D

[
t′ /∈ Ri | t′i = ti

]
(Tail)

+
∑
i∈[n]

∑
ti≤r

fi(ti) · ti (Core)

Proof. ∑
t∈T

∑
i∈[n]

f(t) · πi(t) · ti · 1 [t /∈ Ri]

≤
∑
t∈T

∑
i∈[n]

f(t) · ti · 1 [t /∈ Ri]

=
∑
t∈T

∑
i∈[n]

fi(ti) · f−i(t−i | ti) · ti · 1 [t /∈ Ri]

=
∑
i∈[n]

∑
ti∈Ti

fi(ti) · ti
∑

t−i∈T−i

f−i(t−i | ti) · 1 [t /∈ Ri]

=
∑
i∈[n]

∑
ti>r

fi(ti) · ti
∑

t−i∈T−i

f−i(t−i | ti) · 1 [t /∈ Ri]

+
∑
i∈[n]

∑
ti≤r

fi(ti) · ti
∑

t−i∈T−i

f−i(t−i | ti) · 1 [t /∈ Ri]

≤
∑
i∈[n]

∑
ti>r

fi(ti) · ti · Pr
t′∼D

[
t′ /∈ Ri | t′i = ti

]
(Tail)

+
∑
i∈[n]

∑
ti≤r

fi(ti) · ti (Core)
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B Missing Proofs from Section 4.2

Proof of Lemma 5:
For the term Single we have that:

∑
t∈T

∑
i∈[n]

f(t) · πi(t) · φi(ti | t−i) · 1 [t ∈ Ri]

=
∑
i∈[n]

∑
t−i∈T−i

f−i(t−i) ·
∑
ti∈Ti

fi(ti | t−i) · πi(t) · φi(ti | t−i) · 1 [t ∈ Ri]

≤
∑
i∈[n]

∑
t−i∈T−i

f−i(t−i) ·
∑
ti∈Ti

fi(ti | t−i) · φi(ti | t−i)+ · 1 [t ∈ Ri]

=
∑
i∈[n]

∑
t−i∈T−i

f−i(t−i) ·
∑

ti: (ti,t−i)∈Ri

fi(ti | t−i) · φi(ti | t−i)+ (2)

According to Definition 7,
∑

ti: (ti,t−i)∈Ri fi(ti | t−i) · φi(ti | t−i)
+ = maxp≥maxj 6=i tj p · (1−Fi(p |

t−i)), which is exactly the revenue of Ronen’s auction when bidder i has the highest value and the
other bidders have value t−i. This completes the proof that Single ≤ RonenCopies.

As the buyer has unit-demand valuation, the Non-Favorite term is at most the revenue of the
second price auction in the Copies settings. The second price auction can be viewed as a special
case Ronen’s mechanism, in which the price is always set to be the same as the second highest bid.
Hence, Non-Favorite ≤ RonenCopies.

Recall that:

RonenCopies =
∑
i∈[n]

∑
t−i∈T−i

f−i(t−i) · max
p≥maxj 6=i tj

p · (1− Fi(p | t−i))

Due to Lemma 2,

RonenCopies ≤
∑
i∈[n]

∑
t−i∈T−i

f−i(t−i) · exp(4∆(t)) max
p≥maxj 6=i tj

p · (1− Fi(p))

≤
∑
i∈[n]

∑
t−i∈T−i

f−i(t−i) · exp(4∆(t))
∑

ti: (ti,t−i)∈Ri

fi(ti) · φi(ti)+

≤ exp(8∆(t))
∑
i∈[n]

∑
t∈Ri

f(t) · φi(ti)+

≤ exp(8∆(t))Et

[
max
i∈[n]

φi(ti)
+

]
2

Proof of Theorem 1: Let τ∗ = Mediant(maxi∈[n] φi(ti)
+) . We let price pi = min{p ∈ Ti : φi(p)

+ ≥
τ∗}. We first provide a lower bound of the revenue of the posted-price mechanism under the prices
{pi}i∈[n].

For each item i ∈ [n], let Ei denote the event {t ∈ T : ti ≥ pi} and E ′i denote the event
{t ∈ T : tj < pj , ∀j 6= i}. Clearly, the buyer buys item i in event Ei ∩ E ′i, so the revenue of the
posted-price mechanism is at least∑

i∈[n]

pi · Pr
t∼D

[
Ei ∩ E ′i

]
≥ exp(−4∆(t)) ·

∑
i∈[n]

pi · Pr
t∼D

[Ei] Pr
t∼D

[
E ′i
]
.
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Note that pi · Prt∼D [Ei] =
∑

ti∈Ti fi(ti) · φi(ti)
+ · 1 [φi(ti)

+ ≥ τ∗] = τ∗ · Prti∼Di [φi(ti)
+ ≥ τ∗] +

Eti∼Di [(φi(ti)+ − τ∗)+] and Prt∼D [E ′i] ≥ 1/2. Hence, the RHS of the inequality above is lower
bounded by

exp(−4∆(t))

2
·
∑
i∈[n]

τ∗ · Pr
ti∼Di

[φi(ti)
+ ≥ τ∗] + Eti∼Di [(φi(ti)

+ − τ∗)+]

≥ exp(−4∆(t))

2
·

τ∗
2

+
∑
i∈[n]

Eti∼Di [(φi(ti)
+ − τ∗)+]


The inequality is due to the union bound. By Lemma 3, the lower bound is at least exp(−4∆(t))

4 ·
Et

[
maxi∈[n] φi(ti)

+
]
. Combining this conclusion with Lemma 5, the revenue of the posted-price

mechanism is at least Rev(D)
8 exp(12∆(t)) .

2

C Missing Proofs from Section 4.3

Proof of Lemma 6:

Single =
∑
t∈T

∑
i∈[n]

f(t) · πi(t) · φi(ti | t−i) · 1 [t ∈ Ri]

≤
∑
i∈[n]

∑
t−i∈T−i

f−i(t−i) ·
∑

ti: (ti,t−i)∈Ri

fi(ti | t−i) · φi(ti | t−i)+

=
∑
i∈[n]

∑
t−i∈T−i

f−i(t−i) · max
p≥maxj 6=i tj

p · (1− Fi(p | t−i))

≤ exp(4∆(t)) ·
∑
i∈[n]

∑
t−i∈T−i

f−i(t−i) · max
p≥maxj 6=i tj

p · (1− Fi(p))

≤ exp(4∆(t)) ·
∑
i∈[n]

∑
t−i∈T−i

f−i(t−i) · ri

≤ exp(4∆(t)) · r

The first equality is due to the definition of φi(ti | t−i) (Definition 7). The second inequality
follows from Lemma 2. The third and last inequalities follow from the definition of ri and r.

Similarly, we can bound the term Tail=
∑

i∈[n]

∑
ti>r

fi(ti) · ti · Prt′∼D [t′ /∈ Ri | t′i = ti].

First, note that Prt′∼D [t′ /∈ Ri | t′i = ti] ≤ Prt′∼D [∃k 6= i : t′k ≥ ti | t′i = ti]. Therefore
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Tail ≤
∑
i∈[n]

∑
ti>r

fi(ti) · ti · Pr
t′∼D

[
∃k 6= i : t′k ≥ ti | t′i = ti

]
≤ exp(4∆(t)) ·

∑
i∈[n]

∑
ti>r

fi(ti) · ti · Pr
t′−i∼D−i

[
∃k 6= i : t′k ≥ ti

]

≤ exp(4∆(t)) ·
∑
i∈[n]

∑
ti>r

fi(ti) · ti ·

∑
k 6=i

Pr
t′k∼Dk

[
t′k ≥ ti

]
≤ exp(4∆(t)) ·

∑
i∈[n]

∑
ti>r

fi(ti) ·
∑
k 6=i

rk

≤ exp(4∆(t)) ·
∑
i∈[n]

r ·
∑
ti>r

fi(ti)

≤ exp(4∆(t)) ·
∑
i∈[n]

ri

= exp(4∆(t)) · r

The second inequality is due to Lemma 2. The third inequality follows from the union bound.
The fourth and sixth inequalities hold because rk ≥ ti · Prt′k∼Dk [t′k ≥ ti] and ri ≥ r · (1− Fi(r)).

2

Proof of Lemma 7: We have that:∑
ci≤r
cj≤r

cicj Pr
t∼D

[ti = ci ∧ tj = cj ] ≤ exp(4∆(t)) ·
∑
ci≤r
cj≤r

cifi(ci) · cjfj(cj) = exp(4∆(t))E[Ci]E[Cj ]

The inequality follows from Lemma 2. Therefore, Cov[Ci, Cj ] ≤ (exp(4∆(t))− 1)E[Ci]E[Cj ].
Note that Var[C] =

∑
i∈[n] Var[C2

i ] +
∑

i 6=j Cov(Ci, Cj) ≤
∑

i∈[n] E[C2
i ] +

∑
i 6=j Cov(Ci, Cj).

Using Lemma 9 from [14], we can bound
∑

i∈[n]E[C2
i ] by 2r2. Hence,

Var[C] ≤2r2 + (exp(4∆(t))− 1)
∑
i 6=j

E[Ci]E[Cj ]

≤2r2 + (exp(4∆(t))− 1)

∑
i∈[n]

E[Ci]

2

=2r2 + (exp(4∆(t))− 1)E[C]2

2

Proof of Theorem 2: First we present the Paley-Zygmund inequality. For a non-negative random
variable X, Paley-Zygmund inequality implies that for θ ∈ [0, 1] we have that:

Pr [X > θE[X]] ≥ (1− θ)2 1

1 + Var[X]
E[X]2
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By the Paley-Zygmund inequality and Lemma 7, we derive the following inequality:

Pr

[
C ≥ E[C]

2

]
≥ 1

4
· 1

1 + Var[C]/E[C]2
≥ 1

4 (exp(4∆(t)) + 2r2/E[C]2)
. (3)

If E[C] ≤
√

2r, then according to Lemma 6,

Rev(D) ≤ Core + Tail + Single ≤
(

2 exp(4∆(t)) +
√

2
)
· SRev.

Otherwise, Equation (3) implies that

Pr
t∼D

∑
i∈[n]

ti ≥
E[C]

2

 ≥ Pr

[
C ≥ E[C]

2

]
≥ 1

4 (exp(4∆(t)) + 1)
.

Therefore, if we sell the grand bundle at price E[C]
2 = Core

2 , it will be sold with probability at least
1

4(exp(4∆(t))+1) . Thus 8 (exp(4∆(t)) + 1) ·BRev ≥ Core.

Combining everything, we have
(
2 exp(4∆(t)) +

√
2
)
· SRev + 8 (exp(4∆(t)) + 1) · BRev ≥

Rev(D). 2

D Missing Proofs from Section 5

Proof of Lemma 9:
We use r to denote SRev. We remind the readers that we use r to denote SRev, which is the

revenue of the optimal posted price auction, in which we only allow the buyer to purchase at most
one item.

We note that Single term in the XOS case, is the same as the the Single term in the Unit-
Demand case in Section 4.2, if we consider that the buyer has valuation Vi(t) for the i-th item.
In section 4.2, using Lemma 5 we proved that Single ≤ RonenCopies. Therefore it is enough to
prove that there exists a posted price mechanism that allows the buyer to only pick her favorite
item such that its revenue is at least RonenCopies

4 exp(12∆(t)) . A corollary of Theorem 1 is that there exists a

posted price Mechanism Mp such that RonenCopies ≤ 4 exp(12∆(t)Rev(Mp), which concludes the
proof for the term Single.

Next, we consider the term Tail. We remind the readers that 2r is a cutoff we use to separate
the (Core) and the (Tail) term. The reason we chose this specific value is that we can bound the
sum of the marginal probability that any item has value greater or equal than 2r.

Lemma 23. We have that: ∑
i∈[n]

Pr
ti∼Di

[Vi(ti) ≥ 2r] ≤ exp(4∆(t))

Proof. We can lower bound Prt∼D[∃i : Vi(ti) ≥ 2r] as the sum of the following disjoint events:

Pr
t∼D

[∃i : Vi(ti) ≥ 2r]

≥
∑
i∈[n]

Pr
t∼D

[Vi(ti) ≥ 2r ∧max
j 6=i
{Vj(tj)} < 2r]
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Using Lemma 2 with sets E = {ti ∈ Ti : Vi(ti) ≥ 2r} and E ′ = {t−i ∈ T−i : maxj 6=i{Vj(tj)} <
2r}, we have that:

∑
i∈[n]

Pr
t∼D

[Vi(ti) ≥ 2r ∧max
j 6=i
{Vj(tj)} < 2r]

≥
∑
i∈[n]

Pr
ti∼Di

[Vi(ti) ≥ 2r] exp(−4∆(t)) Pr
t∼D

[max
j 6=i
{Vj(tj)} < 2r]

≥ exp(−4∆(t)) Pr
t∼D

[max
j
{Vj(tj)} < 2r]

∑
i∈[n]

Pr
ti∼Di

[Vi(ti) ≥ 2r]

Note that Prt∼D[∃i : Vi(ti) ≥ 2r] ≤ 1
2 . This is true because if we set the price of every item at

2r, then if any item is bought with probability greater than 1
2 , we have revenue greater than r, a

contradiction. Moreover Prt∼D[maxj{Vj(tj)} < 2r] = 1 − Prt∼D[∃i : Vi(ti) ≥ 2r] ≥ 1
2 . By these

observations, we can conclude that:

1

2
≥ Pr

t∼D
[∃i : Vi(ti) ≥ 2r]

≥ exp(−4∆(t)) Pr
t∼D

[max
j
{Vj(tj)} < 2r]

∑
i∈[n]

Pr
ti∼Di

[Vi(ti) ≥ 2r]

≥ exp(−4∆(t))
1

2

∑
i∈[n]

Pr
ti∼Di

[Vi(ti) ≥ 2r],

which implies that
∑

i∈[n] Prti∼Di [Vi(ti) ≥ 2r] ≤ exp(4∆(t)).

Now we are going to bound the term Tail.
For any fixed ti ∈ Ti, using Lemma 2 on sets E = {ti} and E ′ = {t−i ∈ T−i : ∃j 6= i, Vj(t

′
j) ≥

Vi(t
′
i)} we have that:

Tail =
∑
i∈[n]

∑
ti∈Ti

Vi(ti)≥2r

f(ti) · Vi(ti) Pr
t′∼D

[
t′ /∈ Ri | t′i = ti

]
≤
∑
i∈[n]

∑
ti∈Ti

Vi(ti)≥2r

f(ti) · Vi(ti) Pr
t′∼D

[∃j 6= i : Vj(t
′
j) ≥ Vi(ti) | t′i = ti]

≤
∑
i∈[n]

∑
ti∈Ti

Vi(ti)≥2r

f(ti) · Vi(ti) exp(4∆(t)) Pr
t′∼D

[∃j 6= i : Vj(t
′
j) ≥ Vi(ti)]

We consider the mechanism that posts price Vi(ti) at each item except item i, and allows the
buyer to get her favorite item. The expected revenue of this mechanisms is exactly Vi(ti) Pr[∃j 6=
i : Vj(tj) ≥ Vi(ti)], which is at most r. This implies that:
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exp(4∆(t))
∑
i∈[n]

∑
ti∈Ti:

Vi(ti)≥2r

f(ti)Vi(ti) Pr
t−i∼D−i

[∃j 6= i : Vj(tj) ≥ Vi(ti)]

≤ exp(4∆(t))
∑
i∈[n]

∑
ti∈Ti:

Vi(ti)≥2r

fi(ti)r

= exp(4∆(t))r
∑
i∈[n]

Pr
ti∼Di

[Vi(ti) ≥ 2r]

≤ exp(4∆(t)) exp(4∆(t))r

= exp(8∆(t)) · r

Where the last inequality follows from Lemma 23.
2

Proof of Lemma 14: Define gi(t−i) = v(t−i, C(t−i)), where C(t−i) = {j : Vj(t−i) < 2SRev}.
When i /∈ C(t), g(t) − gi(t−i) = 0. When i ∈ C(t), C(t) = C(t−i) ∪ {i}. Additionally, g(t) −
gi(t−i) ≥ 0 and g(t) − gi(t−i) ≤ Vi(t) ≤ 2SRev. Since v(·, ·) is a XOS function, there exists non-
negative numbers {x`}`∈C(t) such that g(t) =

∑
`∈C(t) x` and gi(t−i) ≥

∑
`∈C(t−i)

x`. Therefore,∑
i∈[n] (g(t)− gi(t−i)) ≤ {x`}`∈C(t) = g(t).
Combining Lemma 11, 12, and the fact that g(·) is 2SRev-self-bounding, we derive the stated

upper bound of the variance of g(t).
2

E Missing Details of the Revenue Benchmark for a XOS Buyer

Similar to [17], we are going to apply the duality framework on a relaxed version of the valuation
function.

Definition 12 (Relaxed Valuation (Definition 5 from [16])). We define the relaxed subadditive
valuation vr(t, S) the following way:

vr(t, S) =

{
v(t, S\{i}) + Vi(ti) if t ∈ Ri and i ∈ S
v(t, S) Otherwise

The reason that we consider the relaxed valuation function is because that vr is “additive”
across the favorite item and the rest of the items, and this “additivity” plays a crucial role in
obtaining an analyzable dual. Due to the non-monotonicity of the optimal revenue in multi-item
auctions, it is not clear that the optimal revenue w.r.t. the relaxed valuation is higher than the
original optimal revenue. The following Lemma shows that the optimal revenue under vr is not too
much smaller than the original optimal revenue, so it suffices to apply the Cai-Devanur-Weinberg
duality [14, 17] on the relaxed valuation vr.

Lemma 24 (Lemma 2 from [16]). We define by σS(t) the probability that the buyer with type t
receives exactly the set S in Mechanism M . Then:

Rev(M, v,D) ≤ 2Rev(vr, D) + 2
∑
t∈T

∑
S⊆2[n]

f(t)σS(t) (vr(t, S)− v(t, S)) ,
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where Rev(vr, D) is the optimal revenue under the relaxed valuation vr

Now we are going to show how to upper bound the Rev(vr, D) with terms similar to the ones
we studied in the cases where the valuation function was additive.

Lemma 25 (Theorem 1 and Lemma 33 from [16]). For a Mechanism M = (σS , p) and a flow
λ : T × T → R that satisfied the partial specification (See Figure 3 from [16]), we have that:

Rev(M,vr, D) ≤
∑
t∈T

f(t)
∑
S⊆2[n]

σS(t)Φr(t, S)

Where Φr(·, ·) : T × 2[n] → R is the virtual valuation function, defined as:

Φr(t, S) =

{
v(t, S\{i}) + Vi(ti)− 1

f(t)

∑
t′∈T λ(t′, t) (Vi(t

′
i)− Vi(ti)) if t ∈ Ri and i ∈ S

v(t, S) Otherwise

For t ∈ Ri, we set Ψr
i (t) = Vi(ti)− 1

f(t)

∑
t′∈T λ(t′, t) (Vi(t

′
i)− Vi(ti)). So we have that:

Φr(t, S) ≤

{
vi(ti, S\{i}) + Ψr

i (t) if t ∈ Ri and i ∈ S
v(t, S) Otherwise

The following lemma provides a way to set a flow that satisfies the partial specifications (See
Figure 3 from [16]).

Lemma 26 (Adapted Claim 1 from [16]). There exists a flow that satisfies the partial specifications
(See Figure 3 by [16]) such that:

Ψr
i (t) ≤ φi(Vi(ti) | t−i)

Where by φi(Vi(t) | t−i) we denote the ironed virtual value of Vi(ti), when ti is sampled from
Di|t−i.

Proof. First we are going to describe how to set a flow that satisfies the partial specification
requirements such that for t ∈ Ri it holds that Ψr

i (t) ≤ φNi (Vi(ti) | t−i), where by φNi (Vi(ti) | t−i) we
denote the non-ironed virtual value of Vi(ti), when ti is sampled from Di|t−i . Then the way to set a
flow that satisfies the partial specifications such that for t ∈ Ri it holds that Ψr

i (t) ≤ φi(Vi(ti) | t−i)
is similar to the ironing procedure of Section 4 by [14].

For any two types t, t′, λ(t′, t) > 0 only if there exists i ∈ [n] such that t, t′ ∈ Ri, t−i = t−i and
ti = argmax{t̂i ∈ Ti : Vi(t

′
i) > Vi(t̂i)}. Let t′ ∈ Ri, and V = max{Vi(ti) : Vi(t

′
i) > Vi(ti)}, we define

D(t′) = {t ∈ T : Vi(ti) = V ∧ t−i = t′−i}. Note that λ(t′, t) > 0 only if t ∈ D(t′). For any t′ ∈ Ri
and t ∈ D(t′) ∩Ri, we set λ(t′, t) to be equal to f(t)

Prt′
i
∼Di

[Vi(t′i)=Vi(ti)∧t′−i=t−i]
fraction of the total in

flow at t′. We note that for any type t′ ∈ T , the sum of fractions of flows that it pushes to other
types is at most one: ∑

t∈D(t′)

f(t)

Prt′i∼Di [Vi(t
′
i) = Vi(ti) ∧ t′−i = t−i]

= 1
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Therefore if
∑

t∈T λ(t′, t) < 1, we can dump any remaining flow in the sink. It is clear that this
flow satisfies the partial specifications.

Moreover for any t ∈ Ri, the total in flow of t is:

∑
t′∈T

λ(t′, t) =
f(t)

Prt′∼D[Vi(t′i) = Vi(ti) ∧ t′−i = t−i]
Pr
t′∼D

[Vi(t
′
i) > Vi(ti) ∧ t′−i = t−i]

Therefore we have that:

Ψr
i (t) =Vi(t)−

1

f(t)

f(t)

Prt′∼D[{Vi(t′i) = Vi(ti) ∧ t′−i = t−i]
Pr
t′∼D

[Vi(t
′
i) > Vi(ti) ∧ t′−i = t−i]

(
Vi(t

′
i)− Vi(ti)

)
=Vi(t)−

Prt′∼D[Vi(t
′
i) > Vi(ti) ∧ t′−i = t−i]

Prt′∼D[Vi(t′i) = Vi(ti) ∧ t′−i = t−i]

(
Vi(t

′
i)− Vi(ti)

)
=Vi(t)−

Prt′∼D[Vi(t
′
i) > Vi(ti) | t′−i = t−i]

Prt′∼D[Vi(t′i) = Vi(ti) | t′−i = t−i]

(
Vi(t

′
i)− Vi(ti)

)
Therefore, Ψr

i (t) is equal to the non-ironed virtual valuation of Vi(ti), when ti is sampled from
Di|t−i .

Combining Lemma 24, Lemma 25 and Lemma 26 we get the following lemma.

Lemma 27 (Adapted version of Theorem 2 from [17]).

Rev(M,v,D) ≤2
∑
t∈T

f(t)
∑
i∈[n]

πi(t)φ(Vi(ti) | t−i)1[t ∈ Ri] (Single)

+ 4
∑
t∈T

f(t)
∑
i∈[n]

v(t, [n]\{i})1[t ∈ Ri](Non-Favorite)

We further decompose the (Non-Favorite) term the following way:
We note that in the case where the buyer is XOS, we chose 2SRev as the value that separates

the (Core) and the (Tail) term. We sum up in the following lemma.
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Proof of Lemma 8:

(Non-Favorite) ≤
∑
t∈T

f(t)
∑
i∈[n]

v(t, [n]/i)1[t ∈ Ri]

≤
∑
t∈T

f(t)

v(t, C(t)) +
∑
i∈[n]

Vi(ti)1[Vi(ti) ≥ 2r ∧ t 6∈ Ri]


≤
∑
t∈T

f(t) · v(t, C(t))

+
∑
i∈[n]

∑
ti∈Ti

Vi(ti)≥2r

∑
t−i∈T−i

f((ti, t−i)) · Vi(ti)1[(ti, t−i) 6∈ Ri]

≤
∑
t∈T

f(t) · v(t, C(t))

+
∑
i∈[n]

∑
ti∈Ti

Vi(ti)≥2r

∑
t−i∈T−i

f(ti)f(t−i | ti) · Vi(ti)1[(ti, t−i) 6∈ Ri]

≤
∑
t∈T

f(t) · v(t, C(t))

+
∑
i∈[n]

∑
ti∈Ti

Vi(ti)≥2r

f(ti) · Vi(ti)
∑

t−i∈T−i

f(t−i | ti)1[(ti, t−i) 6∈ Ri]

≤
∑
t∈T

f(t) · v(t, C(t))(Core)

+
∑
i∈[n]

∑
ti∈Ti

Vi(ti)≥2r

f(ti) · Vi(ti) Pr
t′∼D

[
t′ /∈ Ri | t′i = ti

]
(Tail)

The claim follows from the inequality above and Lemma 27. 2

F Lower Bound: Polynomial Dependence on ∆

In this section, we prove that for sufficiently large values m ∈ N, there exists an type distribution
represented by a MRF with maximum weighted degree O(m), such that the optimal revenue is at
least Ω(m1/7) times the maximum revenue achieved by simple mechanisms.

To prove this statement, we first modify the construction of Hart and Nisan [30], where they
prove the following Theorem. We present a high-level idea of the proofs in this section.

Lemma 28 (Theorem C from [30]). There exists a two item correlated distribution D and a
constant c > 0, such that for any m ∈ N, when a buyer with additive valuation is sampled from D,
Rev(D)
BRev(D) ≥ c ·m

1/7.

Their construction, relies on the following lemma.

Lemma 29 (Proposition 7.5. from [30]). Let {gi}0≤i≤m ∈ [0, 1]n and {yi}0≤i≤m ∈ Rn+ be two
sequences of m+ 1 points, such that g0 = (0, . . . , 0). For i ≥ 1 we define:

gapi := min
0≤j<i

(gi − gj) · yi
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For any m ∈ N, there exists a sequence {gi}0≤i≤m in [0, 1]2 such that g0 = (0, 0) and for each
1 ≤ i ≤ m, ||gi||2 ≤ 1. Moreover, if we set yi = gi for all 0 ≤ i ≤ m, then gapi = Ω

(
i−6/7

)
.

Their construction is developed inductively, by placing points on “shells” of fixed radius. More

specifically, in the N -th shell, whose radius is
∑N
i=1 i

−3/2∑∞
i=1 i

−3/2 , they place N3/4 points so that the angle

between any pair of points in the same shell is Ω(N−3/4). They observed that for all points (except
g0), ||gi||2 = Θ(1), since

∑∞
i=1 i

−3/2 = Θ(1) and min1≤i≤m ||gi||2 = ||g1||2 = Θ(1). In their proof,
they only needed a lower bound for each gapi, but we also need an upper bound. Lemma 30
provides us with that bound.

Lemma 30. In the construction of the set of points {gi}0≤i≤m in Proposition 7.5 in [30], if:

• we place the first point of each shell in the same line that passes through the origin (0, 0)

• for the N -th shell, whose radius is
∑N
i=1 i

−3/2∑∞
i=1 i

−3/2 , and any point i in that shell (except the first

point of that shell), there exists another point j < i in that shell such that the angle between
them is Θ(N−3/4),

then if we consider {yi}0≤i≤m = {gi}0≤i≤m, for each point i that is in the N -th shell, we have that
gapi = Θ(N−3/2) = Θ(i−6/7).

Proof. First we note that there is no restriction that prevents us from placing the first point of
each shell in the same line. This is because different shells, have different radius so there is no way
two points coincide. It is also trivial to ensure that the for point i in the N -th shell, which is not
the first point in the shell, there exists a point j < i in the N -th shell such that the angle between
them is Θ(N−3/4). We note that the only assumption about the set of points that was made in
the proof of Proposition 7.5 in [30] (Lemma 29), was that for the N -th shell, the points are placed
in a semicircle of the radius we described above and that the angle between any pair of points is
Ω(N−3/4). Therefore the result of Lemma 29 applies to this point set too.

Now we are going to prove that for the first point i∗ in the N -th shell, it holds that gapi∗ =
Θ(N−3/2). Let j∗ be the first point of the N − 1 shell and i∗ be the first point of the N -th shell,

then gapi∗ ≤ (gi∗ − gj∗) · gi∗ = (||gi∗ ||2 − ||gj∗ ||2)||gi∗ ||2 = N−3/2∑∞
i=1 i

−3/2 ||gi∗ ||2 = O(N−3/2), where the

first equality holds because point i∗ and point j∗ lie in the same line that passes through the origin.
Since the results of Lemma 29 holds here, we have that gapi∗ = Θ(N−3/2).

Next, we deal with the case where point i is not the first point of the N -th shell. In the proof
of Proposition 7.5 in [30], they noted that for two points that have angle θ between them, it holds
that cos(θ) = 1 − Ω(θ2). We note that for θ < π

2 , we can similarly prove that cos(θ) = 1 − Θ(θ2)
using the Taylor expansion of cos(θ). For any point j that is not the first point in the shell, there is
another point i < j such that the two point have an angle θ = Θ(N−3/4). Since ||gj ||2 = Θ(1), we
can conclude that gapi ≤ (gi − gj) · gi = ||gi||22 − ||gj ||2||gi||2 cos(θ) = ||gi||22Θ(N−3/2) = Θ(N−3/2).
Finally, since the N -th shell contains N3/4 points, if point i belongs to the N -th shell, then i =
Θ(N7/4). Hence, gapi = Θ(i−6/7).

Lemma 31 (Modified version of Theorem C from [30]). For any sufficiently large m ∈ N, there
exists a two item correlated distribution D with support T = Supp(D) and an absolute constant
C > 2 such that inft∈Supp(D) f(t) ≥ C−m. Moreover, when a buyer with additive valuation is

sampled from D, then there exists another absolute constant c > 0 such that Rev(D)
BRev(D) ≥ c ·m

1/7.
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Proof. Given any sequences {gi}0≤i≤m and {yi}0≤m and a target value ε, Proposition 7.1 in [30]
constructs the following distribution D: (i) Construct a sequence of positive numbers {ti}1≤i≤m
that increases fast enough, so that (a) ξi := ||xi||1 is increasing, where xi := tiyi

gapi
and (b) ti+1

ti
≥ 1

ε ;

(ii) The buyer has type xi with probability ξ1
ξi
− ξ1

ξi+1
. Proposition 7.1 shows that for any choice

of {ti}1≤i≤m that satisfies property (a) and (b) in step (1) of the construction, the corresponding

distribution D has Rev(D)
BRev(D) ≥ (1− ε)

∑m
i=1

gapi
||yi||1 .

If we choose {gi}1≤i≤m and yi = gi for all i ∈ [m] as in Lemma 30 and {ti}1≤i≤m that satisfies
property (a) and (b), it is not hard to verify that

∑m
i=1

gapi
||yi||1 = Ω(m1/7). Hence, the gap between

Rev(D) and BRev(D) is as stated in the claim. The problem with this construction is that we
cannot lower bound the probability that the rarest type shows up, as ξi and ξi+1 can be very
close to each other. To fix this issue, we modify the construction by replacing property (a) with a
strengthened property (a*) ξi

ξi−1
∈ [2, C] for all i > 1, where C is an absolute constant that will be

determined later.
We first argue that if (a*) is satisfied, then the rarest type shows with sufficiently large proba-

bility. More specifically, type xi shows up with probability

ξ1

ξi
− ξ1

ξi+1
≥ ξ1

ξi+1
≥ C−i.

Next, we argue that for the sequences {gi}1≤i≤m and {yi}1≤i≤m as described in Lemma 30,
there exists a sequence {ti}1≤i≤m that satisfies (a*) and (b). Note that

ξi
ξi−1

=
ti
ti−1

||gi||1
||gi−1||1

gapi−1

gapi

By the definition of {gi}1≤i≤m, each point gi is placed in a shell of radius at least 1∑∞
i=1 i

−3/2 ,

so ||gi||2 = Θ(1) and ||gi||2
||gi−1||2 = Θ(1). Since gi ∈ [0, 1]2, ||gi||1 = Θ(||gi||2), which implies that

||gi||1
||gi−1||1 = Θ(1). According to Lemma 30, gapi = Θ(N−3/2) if i belongs to the N -th shell, so
gapi−1

gapi
= Θ(1). Hence, there exists two positive absolute constants C1 and C2 such that C1 · ti

ti−1
≤

ξi
ξi−1
≤ C2 · ti

ti−1
. For the rest of the proof, we take ε to be 1/2. If we choose {ti}1≤i≤m such that ti

ti−1

to be max{2/C1, 2} for all i > 1, ξi
ξi−1
∈ [2, C] for some absolute constant C. As the construction

above satisfies both property (a*) and (b), we have

Rev(D)

BRev(D)
≥ 1

2

m∑
i=1

gapi
||yi||1

= Ω(m1/7)

for the induced distribution D.

Proof of Theorem 3: By Lemma 31, there exists a type distribution D and constants c > 0, c′ > 0
such that inft∈Supp(D) Prt′∼D[t′ = t] ≥ cm and when a buyer has an additive valuation sampled

from D, then Rev(D)
BRev(D) ≥ c

′ ·m1/7.

Using Lemma 20 on D with parameters α′ = 1
2 , we get a MRF D′, such that its maximum

weighted degree is bounded by ∆ ≤
∣∣∣log

(
c2m

2

)∣∣∣ = |2m · log(c) − log(2)| = O(m) for sufficiently

large m > 0. Moreover Rev(D′) ≥ 1
2Rev(D).
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Since the marginal distributions of D and D′ are the same, we have that SRev(D′) = SRev(D).
We now prove that SRev(D) ≤ 2BRev(D). Let rev1 be the optimal revenue when we only sell the
first item, and rev2 to be the optimal revenue when we only sell the second item. We can easily see
that BRev ≥ max(rev1, rev2). Since SRev = rev1 + rev2, we can conclude that SRev ≤ 2BRev.

At this moment, we prove that BRev(D) ≤ 2SRev(D). Let p∗ be the price induced by the
optimal grand bundle mechanism. The revenue achieved by posting each item at price p∗/2 is a
lower bound on SRev(D). Moreover, if we sell each item at price p∗/2, then we are guaranteed to
achieve at least half the revenue induced by BRev(D) and our claim holds.

Thus Rev(D′)
max{BRev(D′),SRev(D′)} ≥

1
2

Rev(D′)
SRev(D′) ≥

1
4

Rev(D)
SRev(D) ≥

1
8

Rev(D)
BRev(D) ≥

c·m1/7

8 , which concludes
the proof. 2
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