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Abstract

We provide simple and approximately revenue-optimal mechanisms in the multi-item multi-bidder
settings. We unify and improve all previous results, as well as generalize the results to broader cases.
In particular, we prove that the better of the following two simple, deterministic and Dominant Strategy
Incentive Compatible mechanisms, a sequential posted price mechanism or an anonymous sequential
posted price mechanism with entry fee, achieves a constant fraction of the optimal revenue among all
randomized, Bayesian Incentive Compatible mechanisms, when buyers’ valuations are XOS over in-
dependent items. If the buyers’ valuations are subadditive over independent items, the approximation
factor degrades to O(logm), where m is the number of items. We obtain our results by first extending
the Cai-Devanur-Weinberg duality framework to derive an effective benchmark of the optimal revenue
for subadditive bidders, and then analyzing this upper bound with new techniques.



1 Introduction

In Mechanism Design, we aim to design a mechanism/system such that a group of strategic participants,
who are only interested in optimizing their own utilities, are incentivized to choose actions that also help
achieve the designer’s objective. Clearly, the quality of the solution with respect to the designer’s objective
is crucial. However, perhaps one should also pay equal attention to another criterion of a mechanism, that
is, its simplicity. When facing a complicated mechanism, participants may be confused by the rules and
thus unable to optimize their actions and react in unpredictable ways instead. This may lead to undesirable
outcomes and poor performance of the mechanism. An ideal mechanism would be optimal and simple.
However, such cases of simple mechanisms being optimal only exist in single-item auctions, with the sem-
inal examples of auctions by Vickrey [45] and Myerson [38], while none has been discovered in broader
settings. Indeed, we now know that even in fairly simple settings the optimal mechanisms suffer many un-
desirable properties including randomization, non-monotonicity, and others [40, 44, 39, 32, 33, 4, 18, 19].
To move forward, one has to compromise – either settle with optimal but somewhat complex mechanisms
or turn to simple but approximately optimal solutions.

Recently, there has been extensive research effort focusing on the latter approach, that is, studying the
performance of simple mechanisms through the lens of approximation. In particular, a central problem on
this front is how to design simple and approximately revenue-optimal mechanisms in multi-item settings.
For instance, when bidders have unit-demand valuations, we know sequential posted price mechanisms ap-
proximates the optimal revenue due to a line of work initiated by Chawla et al. [13, 14, 16, 10]. When
buyers have additive valuations, we know that either selling the items separately or running a VCG mech-
anism with per bidder entry fee approximates the optimal revenue due to a series of work initiated by Hart
and Nisan [31, 11, 36, 1, 46, 10]. Recently, Chawla and Miller [17] generalized the two lines of work de-
scribed above to matroid rank functions1. They show that a simple mechanism, the sequential two-part tariff
mechanism, suffices to extract a constant fraction of the optimal revenue. For subadditive valuations beyond
matroid rank functions, we only know how to handle a single buyer [41]2. It is a major open problem to
extend this result to multiple subadditive buyers.

In this paper, we unify and strengthen all the results mentioned above via an extension of the duality
framework proposed by Cai et al. [10]. Moreover, we show that even when there are multiple buyers with
XOS valuation functions, there exists a simple, deterministic and Dominant Strategy Incentive Compatible
(DSIC) mechanism that achieves a constant fraction of the optimal Bayesian Incentive Compatible (BIC)
revenue3. For subadditive valuations, our approximation ratio degrades to O(logm).

Informal Theorem 1. There exists a simple, deterministic and DSIC mechanism that achieves a constant
fraction of the optimal BIC revenue in multi-item settings, when the buyers’ valuation distributions are XOS
over independent items. When the buyers’ valuation distributions are subadditive over independent items,
our mechanism achieves at least Ω( 1

logm) of the optimal BIC revenue, where m is the number of items.

The original paper by Cai et al. [10] provided a unified treatment for additive and unit-demand valua-
1Here is a hierarchy of the valuation functions. additive & unit-demand ⊆ matroid rank ⊆ constrained additive & submodular

⊆ XOS ⊆ subadditive. A function is constrained additive if it is additive up to some downward closed feasibility constraints. The
class of submodular functions is neither a superset nor a subset of the class of constrained additive functions. See Definition 2 for
the formal definition.

2All results mentioned above assume that the buyers’ valuation distributions are over independent items. For additive and
unit-demand valuations, this means a bidder’s values for the items are independent. The definition is generalized to subadditive
valuations by Rubinstein and Weinberg [41]. See Definition 1.

3A mechanism is Bayesian Incentive Compatible (BIC) if it is in every bidder’s interest to tell the truth, assuming that all other
bidders’ reported their values. A mechanism is Dominant Strategy Incentive Compatible (DSIC) if it is in every bidder’s interest to
tell the truth no matter what reports the other bidders make.
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Additive or
Unit-demand Matroid-Rank

Constrained
Additive XOS Subadditive

Single
Buyer

Previous 6 [1] or 4 [16] 31.1* 31.1 [17] 338* 338 [41]
This Paper - 11* 11 40* 40

Multiple
Buyer

Previous 8 [10] or
24 [10]

133 [17] ? ? ?

This Paper - 70* 70 268 O(logm)
* The result is implied by another result for a more general setting.

Table 1: Comparison of approximation ratios between previous and current work.

tions. However, it is inadequate to provide an analyzable benchmark for even a single subadditive bidder. In
this paper, we show how to extend their duality framework to accommodate general subadditive valuations.
Using this extended framework, we substantially improve the approximation ratios for many of the settings
discussed above, and in the meantime generalize the results to broader cases. See Table 1 for the comparison
between the best ratios reported in the literature and the new ratios obtained in this work.

Our mechanism is either a rationed sequential posted price mechanism (RSPM) or an anonymous se-
quential posted price with entry fee mechanism (ASPE). In an RSPM, there is a price pij for buyer i if she
wants to buy item j, and she is allowed to purchase at most one item. We visit the buyers in some arbitrary
order and the buyer takes her favorite item among the available items given the item prices for her. Here we
allow personalized prices, that is, pij could be different from pkj if i 6= k. In an ASPE, every buyer faces
the same collection of item prices {pj}j∈[m]. Again, we visit the buyers in some arbitrary order. For each
buyer, we show her the available items and the associated price for each item. Then we ask her to pay the
entry fee to enter the mechanism, which may depend on what items are still available and the identity of the
buyer. If the buyer accepts the entry fee, she can proceed to purchase any item at the given prices; if she
rejects the entry fee, then she will leave the mechanism without receiving anything. Given the entry fee and
item prices, the decision making for the buyer is straightforward, as she only accepts the entry fee when the
surplus for winning her favorite bundle is larger than the entry fee. Therefore, both RSPM and ASPE are
DSIC and ex-post Individually Rational (ex-post IR).

1.1 Our Contributions

To obtain the new generalizations, we provide important extensions to the duality framework in [10], as well
as novel analytic techniques and new simple mechanisms.

1. Accommodating subadditive valuations: the original duality framework in [10] already unified the
additive case and unit-demand case by providing an approximately tight upper bound for the optimal revenue
using a single dual solution. A trivial upper bound for the revenue is the social welfare, which may be
arbitrarily bad in the worst case. The duality based upper bound in [10] improves this trivial upper bound,
the social welfare, by substituting the value of each buyer’s favorite item with the corresponding Myerson’s
virtual value. However, the substitution is viable only when the following condition holds – the buyer’s
marginal gain for adding an item solely depends on her value for that item (assuming it’s feasible to add
that item4), but not the set of items she has already received. This applies to valuations that are additive,
unit-demand and more generally constrained additive, but breaks under more general valuation functions,
e.g., submodular, XOS or subadditive valuations. As a consequence, the original dual solution from [10]
fails to provide a nice upper bound for more general valuations. To overcome this difficulty, we take a

4WLOG, we can reduce any constrained additive valuation to an additive valuation with a feasibility constraint (see Definition 2)
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different approach. Instead of directly studying the dual of the original problem, we first relax the valuations
and argue that the optimal revenue of the relaxed valuation is comparable to the original one. Then, since
we choose the relaxation in a particular way, by applying a dual solution similar to the one in [10] to the
relaxed valuation, we recover an upper bound of the optimal revenue for the relaxed valuation resembling the
appealing format of the one in [10]. Combining these two steps, we obtain an upper bound for subadditive
valuations that is easy to analyze. Indeed, we use our new upper bound to improve the approximation ratio
for a single subadditive buyer from 338 [41] to 40. See Section 5.1 for more details.

2. An adaptive dual: our second major change to the framework is that we choose the dual in an adap-
tive manner. In [10], a dual solution λ is chosen up front inducing a virtual value function Φ(·), then the
corresponding optimal virtual welfare is used as a benchmark for the optimal revenue. Finally, it is shown
that the revenue of some simple mechanism is within a constant factor of the optimal virtual welfare. Un-
fortunately, when the valuations are beyond additive and unit-demand, the optimal virtual welfare for this
particular choice of virtual value function becomes extremely complex and hard to analyze. Indeed, it is
already challenging to bound when the buyers’ valuations are k-demand. In this paper, we take a more flex-
ible approach. For any particular allocation rule σ, we tailor a special dual λ(σ) based on σ in a fashion that
is inspired by Chawla and Miller’s ex-ante relaxation [17]. Therefore, the induced virtual valuation Φ(σ)

also depends on σ. By duality, we can show that the optimal revenue obtainable by σ is still upper bounded
by the virtual welfare with respect to Φ(σ) under allocation rule σ. Since the virtual valuation is designed
specifically for allocation σ, the induced virtual welfare is much easier to analyze. Indeed, we manage to
prove that for any allocation σ the induced virtual welfare is within a constant factor of the revenue of some
simple mechanism, when bidders have XOS valuations. See Section 5.2 and 5.3 for more details.

3. A novel analysis and new mechanism: with the two contributions above, we manage to derive an
upper bound of the optimal revenue similar to the one in [10] but for subadditive bidders. The third major
contribution of this paper is a novel approach to analyzing this upper bound. The analysis in [10] essentially
breaks the upper bound into three different terms– SINGLE, TAIL and CORE, and bound them separately. All
three terms are relatively simple to bound for additive and unit-demand buyers, but for more general settings
the CORE becomes much more challenging to handle. Indeed, the analysis in [10] was insufficient to tackle
the CORE even when the buyers have k-demand valuations5– a very special case of matroid rank valuations,
which itself is a special case of XOS or subadditive valuations. Rubinstein and Weinberg [41] showed how
to approximate the CORE for a single subadditive bidder using grand bundling, but their approach does not
apply to multiple bidders. Yao [46] showed how to approximate the CORE for multiple additive bidders using
a VCG with per bidder entry fee mechanism, but again it is unclear how his approach can be extended to
multiple k-demand bidders. A recent paper by Chawla and Miller [17] finally broke the barrier of analyzing
the CORE for multiple k-demand buyers. They showed how to bound the CORE for matroid rank valuations
using a sequential posted price mechanism by applying the online contention resolution scheme (OCRS)
developed by Feldman et al. [26]. The connection with OCRS is an elegant observation, and one might
hope the same technique applies to more general valuations. Unfortunately, OCRS is only known to exist
for special cases of downward closed constraints, and as we show in Section 7.2.1, the approach by Chawla
and Miller cannot yield any constant factor approximation for general constrained additive valuations.

We take an entirely different approach to bound the CORE. Here we provide some intuition behind
our mechanism and analysis. The CORE is essentially the optimal social welfare induced by some truncated
valuation v′, and our goal is to design a mechanism that extracts a constant fraction of the welfare as revenue.
Let M be any sequential posted price mechanism. A key observation is that when bidder i’s valuation is

5The class of k-demand valuations is a generalization of unit-demand valuations, where the buyer’s value is additive up to k
items.
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subadditive over independent items, her utility in M , which is the largest surplus she can achieve from
the unsold items, is also subadditive over independent items. If we can argue that her utility function is
a-Lipschitz (Definition 6) with some small a, Talagrand’s concentration inequality [43, 42] allows us to set
an entry fee for the bidder so that we can extract a constant fraction of her utility just through the entry
fee. If we modify M by introducing an entry fee for every bidder, according to Talagrand’s concentration
inequality, the new mechanism M ′ should intuitively have revenue that is a constant fraction of the social
welfare obtained by M 6. Therefore, if there exists a sequential posted price mechanism M that achieves a
constant fraction of the optimal social welfare under the truncated valuation v′, the modified mechanism M ′

can obtain a constant fraction of CORE as revenue. Surprisingly, when the bidders have XOS valuations,
Feldman et al. [25] showed that there exists an anonymous sequential posted price mechanism that always
obtains at least half of the optimal social welfare. Hence, an anonymous sequential posted price with per
bidder entry fee mechanism should approximate the CORE well, and this is exactly the intuition behind our
ASPE mechanism.

To turn the intuition into a theorem, there are two technical difficulties that we need to address: (i) the
Lipschitz constants of the bidders’ utility functions turn out to be too large (ii) we deliberately neglected the
difference in bidders’ behavior under M and M ′ in hope to keep our discussion in the previous paragraph
intuitive. However, due to the entry fee, bidders may end up purchasing completely different items under
M and M ′, so it is not straightforward to see how one can relate the revenue of M ′ to the welfare obtained
by M . See Section 7.2.1 for a more detailed discussion on how we overcome these two difficulties.

1.2 Related Work

In recent years, we have witnessed several breakthroughs in designing (approximately) optimal mechanisms
in multi-dimensional settings. The black-box reduction by Cai et al. [6, 7, 8, 9] shows that we can reduce
any Bayesian mechanism design problem to a similar algorithm design problem via convex optimization.
Through their reduction, it is proved that all optimal mechanisms can be characterized as a distribution of
virtual welfare maximizers, where the virtual valuations are computed by an LP. Although this characteri-
zation provides important insights about the structure of the optimal mechanism, the optimal allocation rule
is unavoidably randomized and might still be complex as the virtual valuations are only a solution of an LP.

Another line of work considers the “Simple vs. Optimal” auction design problem. For instance, a se-
quence of results [13, 14, 15, 16] show that sequential posted price mechanism can achieve 1

33.75 of the
optimal revenue, whenever the buyers have unit-demand valuations over independent items. Another series
of results [31, 11, 36, 1, 46] show that the better of selling the items separately and running the VCG mech-
anism with per bidder entry fee achieves 1

69 of the optimal revenue, whenever the buyers’ valuations are
additive over independent items. Cai et al. [10] unified the two lines of results and improved the approxima-
tion ratios to 1

8 for the additive case and 1
24 for the unit-demand case using their duality framework.

Some recent works have shown that simple mechanisms can approximate the optimal revenue even when
buyers have more sophisticated valuations. For instance, Chawla and Miller [17] showed that the sequential
two-part tariff mechanism can approximate the optimal revenue when buyers have matroid rank valuation
functions over independent items. Their mechanism requires every buyer to pay an entry fee up front, and
then run a sequential posted price mechanism on buyers who have accepted the entry fee. Our ASPE is
similar to their mechanism, but with two major differences: (i) since buyers are asked to pay the entry fee
before the seller visits them, the buyers have to make their decisions based on the expected utility (assuming
every other buyer behaves truthfully) they can receive. Hence, the mechanism is only guaranteed to be BIC

6M ’s welfare is simply its revenue plus the sum of utilities of the bidders, andM ′ can extract some extra revenue from the entry
fee, which is a constant fraction of the total utility from the bidders.
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and interim IR. While in our mechanism, the buyers can see what items are still available before paying the
entry fee, therefore the decision making is straightforward and the ASPE is DSIC and ex-post IR; (ii) the
item prices in the ASPE are anonymous, while in the sequential two-part tariff mechanism, personalized
prices are allowed. For valuations beyond matroid rank functions, Rubinstein and Weinberg [41] showed
that for a single buyer whose valuation is subadditive over independent items, either grand bundling or
selling the items separately achieves at least 1

338 of the optimal revenue.
The Cai-Devanur-Weinberg duality framework [10] has been applied to other intriguing Mechanism

Design problems. For example, Eden et al. showed that the better of selling separately and bundling to-
gether gets an O(d)-approximation for a single bidder with “complementarity-d valuations over indepen-
dent items” [24]. The same authors also proved a Bulow-Klemperer result for regular i.i.d. and constrained
additive bidders [23]. Liu and Psomas provided a Bulow-Klemperer result for dynamic auctions [37]. Fi-
nally, Brustle et al. [5] extended the duality framework to two-sided markets and used it to design simple
mechanisms for approximating the Gains from Trade.

Strong duality frameworks have recently been developed for one additive buyer [18, 20, 27, 28, 29].
These frameworks show that the dual problem of revenue maximization can be viewed as an optimal trans-
port/bipartite matching problem. Hartline and Haghpanah provided an alternative duality framework in [30].
They showed that if certain paths exist, these paths provide a witness of the optimality of a certain Myerson-
type mechanism, but these paths are not guaranteed to exist in general. Similar to the Cai-Devanur-Weinberg
framework, Carroll [12] independently made use of a partial Lagrangian over incentive constraints. These
duality frameworks have been successfully provide conditions under which a certain type of mechanism is
optimal when there is a single unit-demand or additive bidder. However, none of these frameworks succeeds
in yielding any approximately optimal results in multi-buyer settings.

2 Preliminaries

We focus on revenue maximization in the combinatorial auction with n independent bidders andm heteroge-
nous items. Each bidder has a valuation that is subadditive over independent items (see Definition 1). We
denote bidder i’s type ti as 〈tij〉mj=1, where tij is bidder i’s private information about item j. For each i, j,
we assume tij is drawn independently from the distribution Dij . Let Di = ×mj=1Dij be the distribution of
bidder i’s type and D = ×ni=1Di be the distribution of the type profile. We use Tij (or Ti, T ) and fij (or
fi, f ) to denote the support and density function ofDij (orDi, D). For notational convenience, we let t−i to
be the types of all bidders except i and t<i (or t≤i) to be the types of the first i− 1 (or i) bidders. Similarly,
we define D−i, T−i and f−i for the corresponding distributions, support sets and density functions. When
bidder i’s type is ti, her valuation for a set of items S is denoted by vi(ti, S).

Definition 1. [41] For every bidder i, whose type is drawn from a product distribution Fi =
∏
j Fij , her

distribution Vi of valuation function vi(ti, ·) is subadditive over independent items if:

• - vi(·, ·) has no externalities, i.e., for each ti ∈ Ti and S ⊆ [m], vi(ti, S) only depends on 〈tij〉j∈S ,
formally, for any t′i ∈ Ti such that t′ij = tij for all j ∈ S, vi(t′i, S) = vi(ti, S).

• - vi(·, ·) is monotone, i.e., for all ti ∈ Ti and U ⊆ V ⊆ [m], vi(ti, U) ≤ vi(ti, V ).

• - vi(·, ·) is subadditive, i.e., for all ti ∈ Ti and U, V ⊆ [m], vi(ti, U ∪ V ) ≤ vi(ti, U) + vi(ti, V ).

We use Vi(tij) to denote vi(ti, {j}), as it only depends on tij . When vi(ti, ·) is XOS (or constrained
additive) for all i and ti ∈ Ti, we say Vi is XOS (or constrained additive) over independent items.

5



We first formally define various valuation classes.

Definition 2. We define several classes of valuations formally. Let t be the type and v(t, S) be the value for
bundle S ∈ [m].

• Constrained Additive: v(t, S) = maxR⊆S,R∈I
∑

j∈R v(t, {j}), where I ⊆ 2[m] is a downward closed
set system over the items specifying the feasible bundles. In particular, when I = 2[m], the valuation is
an additive function; when I = {{j} | j ∈ [m]}, the valuation is a unit-demand function; when I is
a matroid, the valuation is a matroid-rank function. An equivalent way to represent any constrained
additive valuations is to view the function as additive but the bidder is only allowed to receive bundles
that are feasible, i.e., bundles in I. To ease notations, we interpret t as an m-dimensional vector
(t1, t2, · · · , tm) such that tj = v(t, {j}).

• XOS/Fractionally Subadditive: v(t, S) = maxi∈[K] v
(i)(t, S), where K is some finite number and

v(i)(t, ·) is an additive function for any i ∈ [K].

• Subadditive: v(t, S1 ∪ S2) ≤ v(t, S1) + v(t, S2) for any S1, S2 ⊆ [m].

The following are a few examples of various valuation distributions which are over independent items
(Definition 1):

Example 1. [41] t = {tj}j∈[m] where t is drawn from
∏
j Dj ,

• Additive: tj is the value of item j. v(t, S) =
∑

j∈S tj .

• Unit-demand: tj is the value of item j. v(t, S) = maxj∈S tj .

• Constrained Additive: tj is the value of item j. v(t, S) =
maxR⊆S,R∈I

∑
j∈R tj .

• XOS/Fractionally Subadditive: tj = {t(k)j }k∈[K] encodes all the possible values associated with item j,
and v(t, S) =

maxk∈[K]

∑
j∈S t

(k)
j .

Given D and v = {vi(·, ·)}i∈[n], we use REV(M, v,D) to denote the expected revenue of a BIC mech-
anism M . Throughout the paper, we use the following notations for the simple mechanisms we consider.

Single-Bidder Mechanisms:
- SREV(v,D) denotes the optimal expected revenue achievable by any posted price mechanism that only
allows the buyer to purchase at most one item, and we use SREV for short if there is no confusion7.
- BREV(v,D) denotes the optimal expected revenue achievable by selling a grand bundle and we use BREV

for short if there is no confusion.

Multi-Bidder Mechanisms:
- POSTREV(v,D) denotes the optimal expected revenue achievable by selling the items via an RSPM to
the bidders, and we use POSTREV for short when there is no confusion.
- APOSTENREV(v,D) denotes the optimal expected revenue achievable by selling the items via an ASPE
to the bidders, and we use APOSTENREV for short when there is no confusion.

7The mechanism is slightly different from selling separately, as we only allow the buyer to purchase at most one item.
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Single-Dimensional Copies Setting: In the analysis for unit-demand bidders in [14, 10], the optimal rev-
enue is upper bounded by the optimal revenue in the single-dimensional copies setting defined in [14]. We
use the same technique. We construct nm agents, where agent (i, j) has value Vi(tij) of being served with
tij ∼ Dij , and we are only allow to use matchings, that is, for each i at most one agent (i, k) is served and
for each j at most one agent (k, j) is served8. Notice that this is a single-dimensional setting, as each agent’s
type is specified by a single number. Let OPTCOPIES-UD be the optimal BIC revenue in this copies setting.

Continuous vs. Discrete Distributions: We explicitly assume that the input distributions are discrete.
Nevertheless, it is known that every D can be discretized into D+ such that the optimal revenue for D and
D+ are within (1± ε) of each other [10]. So our results also apply to continuous distributions.

2.1 Our Mechanisms

In this section, we introduce a class of mechanisms called Sequential Posted Price with Entry Fee. For
each bidder i, the mechanism first determines a posted price ξij for each item j and an entry fee function
δi(·) : 2[m] → R≥0 for each bidder i that maps the set of available items to a real value entry fee. The seller
visits the bidders sequentially in some arbitrary order. For simplicity, we assume the bidders are visited in
the lexicographical order. When bidder i is visited, let Si(t<i) be the set of items that are still available.
Clearly, this set only depends on the types of bidders who are visited before i. The mechanism shows the
set Si(t<i) to bidder i and asks her for an entry fee δi(Si(t<i)). If she accepts the entry fee, she can enter
the mechanism and take her favorite bundle S∗i by paying

∑
j∈S∗i

ξij .
If there exist multiple bundles with the same maximum surplus, the bidder can break ties arbitrarily.

Sometimes, there is a feasibility constraint F on what items a buyer can purchase. In particular, if we say
the mechanism is rationed, then F = {∅} ∪ {{j} | j ∈ [m]}, i.e., a buyer can purchase at most one item.
Formally, the favorite bundle S∗i is defined as follows: S∗i = argmaxS⊆Si(t<i)∧S∈Fvi(ti, S)−

∑
j∈S ξij .

Algorithm 1 Sequential Posted Price with Entry Fee Mechanism
Require: ξij is the price for bidder i to purchase item j and δi(·) is bidder i’s entry fee function.

1: S ← [m]
2: for i ∈ [n] do
3: Show bidder i the set of available items S, and define entry fee as δi(S).
4: if Bidder i pays the entry fee δi(S) then
5: i receives her favorite bundle S∗i , paying

∑
j∈S∗i

ξij .
6: S ← S\S∗i .
7: else
8: i gets nothing and pays 0.
9: end if

10: end for

See Algorithm 1 for the formal specification of the above mechanism. Notice that before the bidder
decides whether to pay the entry fee, she is aware of the set Si(t<i) which contains all available items.
Thus, she can compute her favorite bundle S∗i and the corresponding utility if she chooses to enter the
mechanism. She can then compare that utility with the entry fee and accept the entry fee if the former is
greater than the latter. The mechanism described above is therefore deterministic and DSIC. Throughout

8This is exactly the copies setting used in [14], if every bidder i is unit-demand and has value Vi(tij) with type ti. Notice that
this unit-demand multi-dimensional setting is equivalent as adding an extra constraint, each buyer can purchase at most one item,
to the original setting with subadditive bidders.
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this paper, we focus on the following two special cases of this class of mechanisms:

-Rationed Sequential Posted Price Mechanism (RSPM): Every buyer can purchase at most one item and
the mechanism always charges 0 entry fee, i.e., F = {∅} ∪ {{j} | j ∈ [m]} and δi(S) = 0 for all i and S.

-Anonymous Sequential Posted Price with Entry Fee Mechanism (ASPE): The mechanism uses anony-
mous posted prices, i.e., ξij = ξkj for any item j and bidders i 6= k, but may charge positive and personalized
entry fee. Also, any buyer can purchase any bundle available once she has paid the entry fee, i.e., F = 2[m].

3 Paper Organization

In this section, we provide the roadmap to our paper. In Section 4, we review the Duality framework of [10].
In Section 5, we derive an upper bound of the optimal revenue for subadditive bidders by combin-

ing the duality framework with our new techniques, i.e. valuation relaxation and adaptive dual variables.
Our main result in this section, Theorem 2, shows that the revenue can be upper bounded by two terms –
NON-FAVORITE and SINGLE defined in Lemma 4.

In Section 6, we use the single bidder case to familiarize the readers with some basic ideas and techniques
used to bound SINGLE and NON-FAVORITE. The main result of this section, Theorem 3, shows that the
optimal revenue for a single subadditive bidder is upper bounded by 24SREV and 16BREV.

Section 7 contains the main result of this paper. We show how to upper bound the optimal revenue
for XOS (or subadditive) bidders with a constant number of (or O(logm)) POSTREV (the optimal revenue
obtainable by an RSPM) and APOSTENREV ((the optimal revenue obtainable by an ASPE). In particular,
SINGLE can be upper bounded by the optimal revenue OPTCOPIES-UD in the copies setting which is again
upper bounded by 6POSTREV. We further decompose NON-FAVORITE into two terms TAIL and CORE, and
show how to bound TAIL in Section 7.1 and how to bound CORE in Section 7.2.

4 Duality

The focus of [10] was on additive and unit-demand valuations and their respective dual was derived from
an LP that is only meaningful for constrained additive valuations. In order to tackle general valuations, we
need to apply the duality framework to an LP that is meaningful for general valuations. Instead of using
the “implicit forms” LP from [9, 10], we choose a slightly different and more intuitive LP formulation (see
Figure 1). For all bidders i and types ti ∈ Ti, we use pi(ti) as the interim price paid by bidder i and σiS(ti)
as the interim probability of receiving the exact bundle S. To ease the notation, we use a special type ∅ to
represent the choice of not participating in the mechanism. More specifically, σiS(∅) = 0 for any S and
pi(∅) = 0. Now a Bayesian IR (BIR) constraint is simply another BIC constraint: for any type ti, bidder i
will not want to lie to type ∅. We let T+

i = Ti ∪ {∅}.
Following the recipe provided by [10], we take the partial Lagrangian dual of the LP in Figure 1 by la-

grangifying the BIC constraints. Let λi(ti, t′i) be the Lagrange multiplier associated with the BIC constraint
that if bidder i’s true type is ti she will not prefer to lie to type t′i (see Figure 2 and Definition 3). As shown
in [10], the dual solution has finite value if and only if the dual variables λi form a valid flow for every
bidder i. The reason is that the payments pi(ti) are unconstrained variables, therefore the corresponding co-
efficients must be 0 in order for the dual solution to have finite value. It turns out when all these coefficients
are 0, the dual variables λ can be interpreted as a flow described in Lemma 1. We refer the readers to [10]
for a complete proof. From now on, we only consider λ that corresponds to a flow.
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Variables:

• pi(ti), for all bidders i and types ti ∈ Ti, denoting the expected price paid by bidder i when reporting
type ti over the randomness of the mechanism and the other bidders’ types.

• σiS(ti), for all bidders i, all bundles of items S ⊆ [m], and types ti ∈ Ti, denoting the probability that
bidder i receives exactly the bundle S when reporting type ti over the randomness of the mechanism
and the other bidders’ types.

Constraints:

•
∑

S⊆[m] σiS(ti) · vi(ti, S) − pi(ti) ≥
∑

S⊆[m] σiS(t′i) · vi(ti, S) − pi(t′i), for all bidders i, and types
ti ∈ Ti, t′i ∈ T

+
i , guaranteeing that the reduced form mechanism (σ, p) is BIC and Bayesian IR.

• σ ∈ P (D), guaranteeing σ is feasible.

Objective:

• max
n∑
i=1

∑
ti∈Ti

fi(ti) · pi(ti), the expected revenue.

Figure 1: A Linear Program (LP) for Revenue Optimization.

Definition 3. Let L(λ, σ, p) be the partial Lagrangian defined as follows:

L(λ, σ, p)

=
n∑
i=1

∑
ti∈Ti

fi(ti) · pi(ti) +
∑

ti∈Ti,t′i∈T
+
i

λi(ti, t
′
i) ·

 ∑
S⊆[m]

vi(ti, S) ·
(
σiS(ti)− σiS(t′i)

)
−
(
(pi(ti)− pi(t′i)

)
(1)

=

n∑
i=1

∑
ti∈Ti

pi(ti) ·

fi(ti) +
∑
t′i∈Ti

λi(t
′
i, ti)−

∑
t′i∈T

+
i

λi(ti, t
′
i)


+

n∑
i=1

∑
ti∈Ti

∑
S⊆[m]

σiS(ti) ·

vi(ti, S) ·
∑
t′i∈T

+
i

λi(ti, t
′
i)−

∑
t′i∈Ti

(
vi(t
′
i, S) · λi(t′i, ti)

) (σi(∅) = 0, pi(∅) = 0)

(2)

Lemma 1 (Useful Dual Variables [10]). A set of feasible duals λ is useful if maxσ∈P (D),p L(λ, σ, p) <∞.
λ is useful iff for each bidder i, λi forms a valid flow, i.e., iff the following satisfies flow conservation at all
nodes except the source and the sink:
1. Nodes: A super source s and a super sink ∅, along with a node ti for every type ti ∈ Ti.
2. An edge from s to ti with flow fi(ti), for all ti ∈ Ti.
3. An edge from ti to t′i with flow λi(ti, t

′
i) for all ti ∈ Ti, and t′i ∈ T

+
i (including the sink).

Definition 4 (Virtual Value Function). For each flow λ, we define a corresponding virtual value function
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Variables:

• λi(ti, t′i) for all i, ti ∈ Ti, t′i ∈ T
+
i , the Lagrangian multipliers for Bayesian IC and IR constraints.

Constraints:

• λi(ti, t′i) ≥ 0 for all i, ti ∈ Ti, t′i ∈ T
+
i , guaranteeing that the Lagrangian multipliers are non-negative.

Objective:

• min
λ

max
σ∈P (D),p

L(λ, σ, p).

Figure 2: Partial Lagrangian of the Revenue Maximization LP.

Φ(·), such that for every bidder i, every type ti ∈ Ti and every set S ⊆ [m],

Φi(ti, S) = vi(ti, S)− 1

fi(ti)

∑
t′i∈Ti

λi(t
′
i, ti)

(
vi(t
′
i, S)− vi(ti, S)

)
.

The proof of Theorem 1 is essentially the same as in [10]. We include it in Appendix B for completeness.

Theorem 1 (Virtual Welfare ≥ Revenue [10]). For any flow λ and any BIC mechanism M = (σ, p), the
revenue of M is ≤ the virtual welfare of σ w.r.t. the virtual valuation Φ(·) corresponding to λ.

n∑
i=1

∑
ti∈Ti

fi(ti) · pi(ti) ≤
n∑
i=1

∑
ti∈Ti

fi(ti)
∑
S⊆[m]

σiS(ti) · Φi(ti, S)

Let λ∗ be the optimal dual variables and M∗ = (σ∗, p∗) be the revenue optimal BIC mechanism, then
the expected virtual welfare with respect to Φ∗ (induced by λ∗) under σ∗ equals to the expected revenue of
M∗.

5 Canonical Flow and Properties of the Virtual Valuations

In this section, we present a canonical way of setting the dual variables/flow that induces our benchmarks. A
recap of the flow for additive valuations and the appealing properties of the corresponding virtual valuation
functions can be found in Appendix C. We refer readers to that Section for more intuition about the flow.

Although any flow can provide a finite upper bound of the optimal revenue, we focus on a particular
class of flows, in which every flow λ(β) is parametrized by a set of parameters β = {βij}i∈[n],j∈[m] ∈ Rnm≥0 .

Based on β, we partition the type set Ti of each buyer i into m + 1 regions: (i) R(βi)
0 contains all types ti

such that Vi(tij) < βij for all j ∈ [m]. (ii) R(βi)
j contains all types ti such that Vi(tij) − βij ≥ 0 and j is

the smallest index in argmaxk{Vi(tik)− βik}. Intuitively, if we view βij as the price of item j for bidder i,
then R(βi)

0 contains all types in Ti that cannot afford any item, and any R(βi)
j with j > 0 contains all types

in Ti whose “favorite” item is j. We first provide a Partial Specification of the flow λ(β):
1. For every type ti in region R(βi)

0 , the flow goes directly to ∅ (the super sink).
2. For all j > 0, any flow entering R(βi)

j is from s (the super source) and any flow leaving R(βi)
j is to ∅.

3. For all ti and t′i in R(βi)
j (j > 0), λ(β)i (ti, t

′
i) > 0 only if ti and t′i only differ in the j-th coordinate.
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For additive valuations and any type ti ∈ R(βi)
j , the contribution to the virtual value function Φ(ti, S)

from any type t′i ∈ R
(βi)
j is either 0 if j /∈ S, or λ(β)i (t′i, ti)(vi(t

′
i, S)− vi(ti, S)) = λ

(β)
i (t′i, ti)(t

′
ij − tij) if

ti, t′i only differs on the j-th coordinate and j ∈ S. In either case, the contribution does not depend on tik
for any k 6= j. This is the key property that allows [10] to choose a flow such that the value of the favorite
item is replaced by the corresponding Myerson’s ironed virtual value in the virtual value function Φi(ti, ·).
Unfortunately, this property no longer holds for subadditive valuations. When j ∈ S and λ(β)i (t′i, ti) > 0,
the contribution λ(β)i (t′i, ti)(vi(t

′
i, S)− vi(ti, S)) heavily depends on tik of all the other item k ∈ S. All we

can conclude is that the contribution lies in the range [−λ(β)i (t′i, ti) ·Vi(tij), λ
(β)
i (t′i, ti) ·Vi(t′ij)]9, but this is

not sufficient for us to convert the value of item j into the corresponding Myerson’s ironed virtual value.

5.1 Valuation Relaxation

This is the first major barrier for extending the duality framework to accommodate subadditive valuations.
We overcome it by considering a relaxation of the valuation functions. More specifically, for any β, we
construct another function v(βi)i (·, ·) : Ti× 2[m] 7→ R≥0 for every buyer i such that: (i) for any ti, v

(βi)
i (ti, ·)

is subadditive and monotone, and for every bundle S the new value v(βi)i (ti, S) is no smaller than the original
value vi(ti, S); (ii) for any BIC mechanism M with respect to the original valuations, there exists another
mechanismM (β) that is BIC with respect to the new valuations and its revenue is comparable to the revenue
of M ; (iii) for the new valuations v(β), there exists a flow whose induced virtual value functions have
properties similar to those in the additive case. Property (ii) implies that the optimal revenue with respect to
v(β) can serve as a proxy for the original optimal revenue. Moreover, due to Theorem 1, the optimal revenue
for v(β) is upper bounded by the partial Lagrangian dual with respect to v(β), which has an appealing format
similar to the additive case by property (iii). Thus, we obtain a benchmark for subadditive bidders that
resembles the benchmark for additive bidders in [10].

Definition 5 (Relaxed Valuation). Given β, for any buyer i, define v(βi)i (ti, S) = vi(ti, S\{j}) + Vi(tij), if
the “favorite” item is in S, i.e., ti ∈ R(βi)

j and j ∈ S. Otherwise, define v(βi)i (ti, S) = vi(ti, S).

In the next Lemma, we show that for any BIC mechanism M for v, there exists a BIC mechanism M (β)

for v(β) such that its revenue is comparable to the revenue of M (property (ii)). Moreover, the ex-ante
probability for any buyer i to receive any item j in M (β) is no greater than in M (property (i)). We will see
later that this is an important property for our analysis. The proof of Lemma 2 is similar to the ε-BIC to BIC
reduction in [34, 2, 21] and can be found in Appendix H.

Lemma 2. For any β and any BIC mechanism M for subadditive valuation {vi(ti, ·)}i∈[n] with ti ∼ Di for

all i, there exists a BIC mechanism M (β) for valuations {v(βi)i (ti, ·)}i∈[n] with ti ∼ Di for all i, such that

(i)
∑
ti∈Ti

fi(ti) ·
∑
S:j∈S

σ
(β)
iS (ti) ≤

∑
ti∈Ti

fi(ti) ·
∑
S:j∈S

σiS(ti), for all i and j,

(ii) REV(M,v,D) ≤ 2 ·REV(M (β), v(β), D)+2 ·
∑
i

∑
ti∈Ti

∑
S⊆[m]

fi(ti) ·σ(β)iS (ti) ·
(
v
(βi)
i (ti, S)− vi(ti, S)

)
.

REV(M, v,D) (or REV(M (β), v(β), D)) is the revenue of the mechanism M (or M (β)) while the buyers’
types are drawn from D and buyer i’s valuation is vi(ti, ·) (or v(βi)i (ti, ·)). σiS(ti) (or σ(β)iS (ti)) is the
probability of buyer i receiving exactly bundle S when her reported type is ti in mechanism M (or M (β)).

9vi(t, ·) is subadditive and monotone for every type t ∈ Ti, therefore vi(ti, S) ∈ [vi(ti, S\{j}), vi(ti, S\{j}) + Vi(tij)] and
vi(t
′
i, S) ∈ [vi(t

′
i, S\{j}), vi(t′i, S\{j}) + Vi(t

′
ij)].
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5.2 Virtual Valuation for the Relaxed Valuation

For any β, based on the same partition of the type sets as in the beginning of Section 5, we construct a flow
λ(β) that respects the partial specification, such that the corresponding virtual valuation function for v(β)

has the same appealing properties as in the additive case. For the relaxed valuation, as λ(β)i (ti, t
′
i) is only

positive for types ti, t′i ∈ R
(βi)
j that only differ in the j-th coordinate, the contribution from item j to the

virtual valuation solely depends on tij and t′ij but not tik for any other item k ∈ S . Notice that this property
does not hold for the original valuation, and it is the main reason why we choose the relaxed valuation as in
Definition 5. Moreover, we can choose λ(β)i carefully so that the virtual valuation of v(β) has the following
format:

Lemma 3. Let Fij be the distribution of Vi(tij) when tij is drawn from Dij . For any β, there exists a
flow λ

(β)
i such that the corresponding virtual value function Φ

(βi)
i (ti, ·) of valuation v(βi)i (ti, ·) satisfies the

following properties:

1. For any ti ∈ R(βi)
0 , Φ

(βi)
i (ti, S) = vi(ti, S).

2. For any j > 0, ti ∈ R(βi)
j , Φ

(βi)
i (ti, S) ≤ vi(ti, S) ·1[j /∈ S] + (vi(ti, S\{j}) + ϕ̃ij(Vi(tij))) ·1[j ∈ S],

where ϕ̃ij(Vi(tij)) is the Myerson’s ironed virtual value for Vi(tij) with respect to Fij .

The proof of Lemma 3 is postponed to Appendix D. Next, we use the virtual welfare of the allocation
σ(β) to bound the revenue of M (β).

Lemma 4. For any β,

REV(M (β), v(β), D) ≤
∑
i

∑
ti∈Ti

fi(ti)
∑
S⊆[m]

σ
(β)
iS (ti) · Φ(βi)

i (ti, S)

≤
∑
i

∑
ti∈Ti

fi(ti) · 1
[
ti ∈ R(βi)

0

]
·
∑
S⊆[m]

σ
(β)
iS (ti) · vi(ti, S)

+
∑
i

∑
ti∈Ti

fi(ti) ·
∑
j∈[m]

1
[
ti ∈ R(βi)

j

]
·

∑
S:j∈S

σ
(β)
iS (ti) · vi(ti, S\{j}) +

∑
S:j /∈S

σ
(β)
iS (ti) · vi(ti, S)


+
∑
i

∑
ti∈Ti

fi(ti) ·
∑
j∈[m]

1
[
ti ∈ R(βi)

j

]
· π(β)ij (ti) · ϕ̃ij(tij),

where π(β)ij (ti) =
∑

S:j∈S σ
(β)
iS (ti). NON-FAVORITE(M,β) denotes the sum of the first two terms. SIN-

GLE(M,β) denotes the last term.

Proof. The Lemma follows easily from the properties in Lemma 3 and Theorem 1.

We obtain Theorem 2 by combining Lemma 2 and 4.

Theorem 2. For any mechanism M and any β,

REV(M, v,D) ≤ 4 · NON-FAVORITE(M,β) + 2 · SINGLE(M,β).

Proof of Theorem 2: First, let’s look at the value of v(βi)i (ti, S) − vi(ti, S). When ti ∈ R
(βi)
j for some

j > 0 and j ∈ S, v(βi)i (ti, S) − vi(ti, S) = vi(ti, S\{j}) + Vi(tij) − vi(ti, S) ≤ vi(ti, S\{j}), because
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Vi(tij) ≤ vi(ti, S). For the other cases, v(βi)i (ti, S)− vi(ti, S) = 0. Therefore,∑
i

∑
ti∈Ti

∑
S⊆[m]

fi(ti) · σ(β)iS (ti) ·
(
v
(βi)
i (ti, S)− vi(ti, S)

)
≤
∑
i

∑
ti

fi(ti)
∑
j

1[ti ∈ R(βi)
j ]

∑
S:j∈S

σ
(β)
iS (ti) · vi(ti, S\{j})

≤NON-FAVORITE(M,β) (Definition of NON-FAVORITE(M,β))

Our statement follows from combining Lemma 2, Lemma 4 with the inequality above. 2

5.3 Upper Bound for the Revenue of Subadditive Buyers

In Section 5.1, we have argued that for any β, there exists a mechanism M (β) such that its revenue with
respect to the relaxed valuation v(β) is comparable to the revenue of M with respect to the original val-
uation. In Section 5.2, we have shown for any β how to choose a flow to obtain an upper bound for
REV(M (β), v(β), D) and also an upper bound for REV(M,v,D). Now we specify our choice of β.

In [10], the authors fixed a particular β, and shown that under any allocation rule, the corresponding
benchmark can be bounded by the sum of the revenue of a few simple mechanisms. However, for valuations
beyond additive and unit-demand, the benchmark becomes much more challenging to analyze10. We adopt
an alternative and more flexible approach to obtain a new upper bound. Instead of fixing a single β for all
mechanisms, we customize a different β for every different mechanism M . Next, we relax the valuation
and design the flow based on the chosen β as specified in Section 5.1 and 5.2. Then we upper bound the
revenue of M with the benchmark in Theorem 2 and argue that for any mechanism M , the corresponding
benchmark can be upper bounded by the sum of the revenue of a few simple mechanisms. As we allow β,
in other words the flow λ(β), to depend on the mechanism, our new approach may provide a better upper
bound. As it turns out, our new upper bound is indeed easier to analyze.

Lemma 5 specifies the two properties of our β that play the most crucial roles in our analysis. We
construct such a β in the proof of Lemma 5, however the construction is not necessarily unique and any β
satisfying these two properties suffices. Note that our construction heavily relies on property (i) of Lemma 2.

Lemma 5. For any constant b ∈ (0, 1) and any mechanismM , there exists a β such that: for the mechanism
M (β) constructed in Lemma 2 according to β, any i ∈ [n] and j ∈ [m],
(i)
∑

k 6=i Prtkj [Vk(tkj) ≥ βkj ] ≤ b;
(ii)
∑

ti∈Ti fi(ti) · π
(β)
ij (ti) ≤ Prtij [Vi(tij) ≥ βij ] /b, where π(β)ij (ti) =

∑
S:j∈S σ

(β)
iS (ti).

Before proving Lemma 5, we provide some intuition behind the two required properties. Property (i) is
used to guarantee that if item j’s price for bidder i is higher than βij for all i and j in an RSPM, for any
item j′ and any bidder i′, j′ is still available with probability at least (1 − b) when i′ is visited. As for any
bidder k 6= i′ to purchase item j′, Vk(tkj′) must be greater than her price for item j′. By the union bound,
the probability that there exists such a bidder is upper bounded by the LHS of property (i), and therefore
is at most b. With this guarantee, we can easily show that the RSPM achieves good revenue (Lemma 17).
Property (ii) states that the ex-ante probability for bidder i to receive an item j in M (β) is not much bigger
than the probability that bidder i’s value is larger than item j. This is crucial for proving our key Lemma 24,
in which we argue that two different valuations provide comparable welfare under the same allocation rule
σ(β). With Lemma 24, we can show that the ASPE obtains good revenue.

10Indeed, the difficulties already arise for valuations as simple as k-demand. A bidder’s valuation is k-demand if her valuation is
additive subject to a uniform matroid with rank k.
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Proof of Lemma 5: When there is only one buyer, we can simply set every βj to be 0 and both conditions
are satisfied. When there are multiple players, we let

βij := inf{x ≥ 0 : Pr
tij

[Vi(tij) ≥ x] ≤ b ·
∑
ti∈Ti

fi(ti) · πij(ti)},

where πij(ti) =
∑

S:j∈S σiS(ti). Clearly, when the distribution of Vi(tij) is continuous, then

Pr
tij

[Vi(tij) ≥ βij ] = b ·
∑
ti∈Ti

fi(ti) · πij(ti), (3)

and therefore for any j, ∑
i

Pr
tij

[Vi(tij) ≥ βij ] = b ·
∑
i

∑
ti∈Ti

fi(ti) · πij(ti) ≤ b.

So the first condition is satisfied. The second condition holds because by the first property in Lemma 2,∑
ti∈Ti fi(ti) · π

(β)
ij (ti) ≤

∑
ti∈Ti fi(ti) · πij(ti).

When the distribution for Vi(tij) is discrete, it is possible that Equation 3 does not hold, but this is
essentially a tie breaking issue and not hard to fix. Let ε > 0 be an extremely small constant that is smaller
than

∣∣∣Vi(tij)− Vi(t′ij)∣∣∣ for any tij , t′ij ∈ Tij , any i and any j. Let ζij be a random variable uniformly
distributed on [0, ε], and think of it as a random rebate that the seller gives to bidder i when she purchases
item j. Now we modify the definition of βij as βij := inf{x ≥ 0 : Prtij ,ζij [Vi(tij) + ζij ≥ x] ≤ b ·∑

ti∈Ti fi(ti) · πij(ti)}.
Both of the two properties in Lemma 5 hold if we replace Vi(tij) with Vi(tij) + ζij . The only change

we need to make in the mechanism is to actually give the bidders ζij as the corresponding rebate. Since we
can choose ε to be arbitrarily small, the sum of the rebate is also arbitrarily small. For the simplicity of the
presentation, we will omit ζij and ε in the rest of the paper. The random rebate indeed makes our mech-
anism randomized(according to the random variable ζij ∼ [0, ε]). However, the randomized mechanism
is a uniform distribution of deterministic DSIC mechanisms (after determining all ζij), and the expected
revenue of the randomized mechanism is simply the average revenue of all these deterministic mechanisms.
Therefore, there must be one realization of the rebates such that the corresponding deterministic mechanism
has revenue above the expectation, i.e., the expected revenue of the randomized one. Thus if the randomized
mechanism is proved to achieve some approximation ratio, there must exist a deterministic one that achieves
the same ratio. The deterministic mechanism will use a fixed value zij ∈ [0, ε] as the rebate.

Similarly, the same issue about discrete distributions arises when we define some other crucial parame-
ters later, e.g., in the Definition of c, ci and τi. We can resolve all of them together using the trick (adding a
random rebate) described above, and we will not include a detailed proof for those cases. 2

6 Warm Up: Single Bidder

To warm up, we first study the case where there is a single subadditive buyer and show how to improve
the approximation ratio from 338 to 40. Since there is only one buyer, we will drop the subscript i in the
notations. As specified in Section 5.3, we use a β that satisfies both properties in Lemma 5. For a single
buyer, we can simply set βj to be 0 for all j. We use SINGLE(M),NON-FAVORITE(M) in the following
proof to denote the corresponding terms in Theorem 2 for β = 0. Notice R(0)

0 = ∅. Theorem 3 shows that
the optimal revenue is within a constant factor of the better of selling separately and grand bundling.

14



Theorem 3. For a single buyer whose valuation distribution is subadditive over independent items,

REV(M,v,D) ≤ 24 · SREV + 16 · BREV

for any BIC mechanism M .

Recall that the revenue for mechanismM is upper bounded by 4·NON-FAVORITE(M)+2·SINGLE(M)

(Theorem 2). We first upper bound SINGLE(M) by OPTCOPIES-UD. Since σ(β)S (t) is a feasible allocation
in the original setting, 1[t ∈ R(β)

j ] · π(β)j (t) with π(β)j (t) =
∑

S:j∈S σ
(β)
S (t) is a feasible allocation in the

copies setting, and therefore SINGLE(M) is the Myerson Virtual Welfare of a certain allocation in the copies
setting, which is upper bounded by OPTCOPIES-UD. By [14], OPTCOPIES-UD is at most 2 · SREV.

Lemma 6. For any BIC mechanism M , SINGLE(M) ≤ OPTCOPIES-UD ≤ 2 · SREV.

For NON-FAVORITE(M), we first bound it by the social welfare from all non-favorite items. Then we
decompose the latter into two terms CORE(M) and TAIL(M), and bound them separately. For every t ∈ T ,
define C(t) = {j : V (tj) < c}, T (t) = [m]\C(t). Here the threshold c is chosen as

c := inf

x ≥ 0 :
∑
j

Pr
tj

[V (tj) ≥ x] ≤ 2

 . (4)

Since v(t, ·) is subadditive for all t ∈ T , we have for every S ⊆ [m], v(t, S) ≤ v (t, S ∩ C(t)) +∑
j∈S∩T (t) V (tj). We decompose NON-FAVORITE(M) based on the inequality above. Proof of Lemma 7

can be found in Appendix E.

Lemma 7.

NON-FAVORITE(M) ≤
∑
t∈T

f(t) ·
∑
j

1[t ∈ R(β)
j ] · v(t, [m]\{j})

≤
∑
t∈T

f(t) · v(t, C(t)) (CORE(M))

+
∑
j

∑
tj :V (tj)≥c

fj(tj) · V (tj) · Pr
t−j

[∃k 6= j, V (tk) ≥ V (tj)] (TAIL(M))

Using the definition of c and SREV, we can upper bound TAIL(M) with a similar argument as in [10].

Lemma 8. For any BIC mechanism M , TAIL(M) ≤ 2 · SREV.

Proof. Since TAIL(M) =
∑

j

∑
tj :V (tj)≥c fj(tj) · V (tj) · Prt−j [∃k 6= j, V (tk) ≥ V (tj)], for each type

tj ∈ Tj consider the mechanism that posts the same price V (tj) for each item but only allows the buyer to
purchase at most one. Notice if there exists k 6= j such that V (tk) ≥ V (tj), the mechanism is guaranteed
to sell one item obtaining revenue V (tj). Thus, the revenue obtained by this mechanism is at least V (tj) ·
Prt−j [∃k 6= j, V (tk) ≥ V (tj)]. By definition, this is no more than SREV.

TAIL(M) ≤
∑
j

∑
tj :V (tj)≥c

fj(tj) · SREV=2 · SREV (5)

The last equality is because by the definition of c,
∑

j Prtj [V (tj) ≥ c] = 2.11

11This clearly holds if V (tj) is drawn from a continuous distribution. When V (tj) is drawn from a discrete distribution, see the
proof of Lemma 5 for a simple fix.
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The CORE(M) is upper bounded by Et[v′(t, [m])] where v′(t, S) = v(t, S ∩ C(t)). We argue that
v′(t, ·) is drawn from a distribution that is subadditive over independent items and v′(·, ·) is c-Lipschitz (see
Definition 6). Using a concentration bound by Schechtman [42], we show Et[v′(t, [m])] is upper bounded by
the median of random variable v′(t, [m]) and c, which are upper bounded by BREV and SREV respectively.

Lemma 9. For any BIC mechanism M , CORE(M) ≤ 3 · SREV + 4 · BREV.

Recall that
CORE(M) =

∑
t∈T

f(t) · v(t, C(t)) (6)

We will bound CORE(M) with a concentration inequality from [42]. It requires the following definition:

Definition 6. A function v(·, ·) is a-Lipschitz if for any type t, t′ ∈ T , and set X,Y ⊆ [m],∣∣v(t,X)− v(t′, Y )
∣∣ ≤ a · (|X∆Y |+

∣∣{j ∈ X ∩ Y : tj 6= t′j}
∣∣) ,

where X∆Y = (X\Y ) ∪ (Y \X) is the symmetric difference between X and Y .

Define a new valuation function for the bidder as v′(t, S) = v(t, S ∩ C(t)), for all t ∈ T and S ⊆ [m].
Then v′(·, ·) is c− Lipschitz, and when t is drawn from the product distributionD =

∏
j Dj , v′(t, ·) remains

to be a valuation drawn from a distribution that is subadditive over independent items. See Appendix E for
the proof of Lemma 10 and Lemma 11.

Lemma 10. For all t ∈ T , v′(t, ·) satisfies monotonicity, subadditivity and no externalities defined in
Definition 1.

Lemma 11. v′(·, ·) is c−Lipschitz.

Next, we apply the following concentration inequality to derive Corollary 1, which is useful to analyze
the CORE(M).

Lemma 12. [42] Let g(t, ·) with t ∼ D =
∏
j Dj be a function drawn from a distribution that is subadditive

over independent items of ground set I . If g(·, ·) is c-Lipschitz, then for all a > 0, k ∈ {1, 2, ..., |I|}, q ∈ N,

Pr
t

[g(t, I) ≥ (q + 1)a+ k · c] ≤ Pr
t

[g(t, I) ≤ a]−qq−k.

Corollary 1. Let g(t, ·) with t ∼ D =
∏
j Dj be a function drawn from a distribution that is subadditive

over independent items of ground set I . If g(·, ·) is c-Lipschitz, then if we let a be the median of the value of
the grand bundle g(t, I), i.e. a = inf

{
x ≥ 0 : Prt[g(t, I) ≤ x] ≥ 1

2

}
,

Et[g(t, I)] ≤ 2a+
5c

2
.

Proof. Let Y be g(t, I). If we apply Lemma 12 to the case where a is the median and q = 2, we have
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Pr
t

[Y ≥ 3a] · Et[Y |Y ≥ 3a] = 3a · Pr
t

[Y ≥ 3a] +

∫ ∞
y=0

Pr
t

[Y ≥ 3a+ y]dy

≤ 3a · Pr
t

[Y ≥ 3a] + c ·
|I|∑
k=0

Pr
t

[Y ≥ 3a+ k · c] (Y ≤ |I| · c)

≤ 3a · Pr
t

[Y ≥ 3a] + c ·
2∑

k=0

Pr
t

[Y > a] + c ·
|I|∑
k=3

4 · 2−k (Lemma 12)

≤ 3a · Pr
t

[Y ≥ 3a] +
5

2
c

With the inequality above, we can upper bound the expected value of Y .

Et[Y ] ≤ a · Pr
t

[Y ≤ a] + 3a · Pr
t

[Y ∈ (a, 3a)] + Pr
t

[Y ≥ 3a] · Et[Y |Y ≥ 3a]

≤ a · Pr
t

[Y ≤ a] + 3a · Pr
t

[Y ∈ (a, 3a)] + 3a · Pr
t

[Y ≥ 3a] +
5

2
c

= a+ 2a · Pr
t

[Y > a] +
5

2
c

≤ 2a+
5

2
c

Now, we are ready to prove Lemma 9.
Proof of Lemma 9: Let δ be the median of v′(t, [m]) when t is sampled from distribution D. Now consider
the mechanism that sells the grand bundle with price δ. Notice that the bidder’s valuation for the grand
bundle is v(t, [m]) ≥ v′(t, [m]). Thus with probability at least 1

2 , the bidder purchases the bundle. Thus,
BREV ≥ 1

2δ.
According to Corollary 1,

CORE(M) = Et∼D[v′(t, [m])] ≤ 2δ +
5c

2
(7)

It remains to argue that the Lipchitz constant c can be upper bounded using SREV. Notice that by
AM-GM Inequality,

Pr
t

[∃j ∈ [m], V (tj) ≥ c] = 1−
∏
j

Pr
tj

[V (tj) < c]

≥1− (

∑
j Prtj [V (tj) < c]

m
)m = 1− (1− 2

m
)m ≥ 1− e−2

Consider the mechanism that posts price c for each item but only allow the buyer to purchase one item.
Then with probability at least 1−e−2, the mechanism sells one item obtaining expected revenue (1−e−2)·c.
Thus c ≤ 1

1−e−2 · SREV. Inequality (7) becomes

CORE(M) ≤ 2δ +
5c

2
< 4 · BREV + 3 · SREV (8)
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2

Proof of Theorem 3: Since OPTCOPIES-UD ≤ 2SREV (Lemma 6) and NON-FAVORITE(M) ≤ 5SREV +
4BREV (Lemma 8 and 9), REV(M,v,D) ≤ 24 · SREV + 16 · BREV according to Theorem 2. 2

7 Multiple Bidders

In this section, we prove our main result – simple mechanisms can approximate the optimal BIC revenue
even when there are multiple XOS/subadditive bidders. First, we need the definition of supporting prices.

Definition 7 (Supporting Prices [22]). For any α ≥ 1, a type t and a subset S ⊆ [m], prices {pj}j∈S are
α-supporting prices for v(t, S) if (i) v(t, S′) ≥

∑
j∈S′ pj for all S′ ⊆ S and (ii)

∑
j∈S pj ≥

v(t,S)
α .

Theorem 4. If for any buyer i, any type ti ∈ Ti and any bundle S ∈ [m], vi(ti, S) has a set of α-supporting
prices {θSj (ti)}j∈S , then for any BIC mechanism M and any constant b ∈ (0, 1),

REV(M, v,D) ≤ 32α · APOSTENREV +

(
12 +

8

1− b
+ α ·

(
16

b(1− b)
+

96

1− b

))
· POSTREV

If vi(ti, ·) is an XOS valuation for all i and ti ∈ Ti, then α = 1. By setting b to 1
4 , we have

REV(M,v,D) ≤ 236 · POSTREV + 32 · APOSTENREV.

For general subadditive valuations, α = O(log(m)) by [3], hence

REV(M, v,D) ≤ O(log(m)) ·max{POSTREV,APOSTENREV}.

Here is a sketch of the proof for Theorem 4. We show how to upper bound SINGLE(M,β) in Lemma 13.
Then, we decompose NON-FAVORITE(M,β) into TAIL(M,β) and CORE(M,β) in Lemma 14. We show
how to construct a simple mechanism to approximate TAIL(M,β) in Section 7.1 and how to approximate
CORE(M,β) in Section 7.2.

Analysis of SINGLE(M,β):

Lemma 13. For any mechanism M ,

SINGLE(M,β) ≤ OPTCOPIES-UD ≤ 6 · POSTREV.

Proof. We construct a new mechanism M ′ in the copies setting based on M (β). Whenever M (β) allocates
item j to buyer i and ti ∈ R(β)

j , M ′ serves the agent (i, j). Since there is at most one R(β)
j that ti belongs

to, M ′ serves at most one agent (i, j) for each of buyer i. Hence, M ′ is feasible in the copies setting, and
SINGLE(M,β) is the expected Myerson’s ironed virtual welfare of M ′. Since every agent’s value is drawn
independently, the optimal revenue in the copies setting is the same as the maximum Myerson’s ironed
virtual welfare in the same setting. Therefore, OPTCOPIES-UD is no less than SINGLE(M,β).

As showed in [14, 35], a simple posted-price mechanism with the constraint that every buyer can only
purchase one item, i.e., an RSPM, achieves revenue at least OPTCOPIES-UD/6 in the original setting. Hence,
OPTCOPIES-UD ≤ 6 · POSTREV.
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Core-Tail Decomposition of NON-FAVORITE(M,β): we decompose NON-FAVORITE(M,β) into two
terms TAIL(M,β) and CORE(M,β)12. First, we need the following definition.

Definition 8. For every buyer i, let ci := inf
{
x ≥ 0 :

∑
j Prtij [Vi(tij) ≥ βij + x] ≤ 1

2

}
. For every

ti ∈ Ti, let Ti(ti) = {j | Vi(tij) ≥ βij + ci} and Ci(ti) = [m]\Ti(ti).

Since vi(ti, ·) is subadditive for all i and ti ∈ Ti, we have vi(ti, S) ≤ vi (ti, S ∩ Ci(ti))+
∑

j∈S∩Ti(ti) Vi(tij).
The term NON-FAVORITE(M,β) can be decomposed into TAIL(M,β) and CORE(M,β) based on the in-
equality above. The complete proof of Lemma 14 can be found in Appendix F.

Lemma 14.

NON-FAVORITE(M,β)

≤
∑
i

∑
ti

fi(ti)
∑
S⊆[m]

σ
(β)
iS (ti) · vi(ti, S ∩ Ci(ti)) (CORE(M,β))

+
∑
i

∑
j

∑
tij :Vi(tij)≥βij+ci

fij(tij) · Vi(tij) ·
∑
k 6=j

Pr
tik

[Vi(tik)− βik ≥ Vi(tij)− βij ] (TAIL(M,β))

7.1 Analyzing TAIL(M,β) in the Multi-Bidder Case

In this section we show how to bound TAIL(M,β) with the revenue of an RSPM.

Lemma 15. For any BIC mechanism M , TAIL(M,β) ≤ 2
1−b · POSTREV.

We first fix a few notations. Let

Pij ∈ argmaxx≥ci(x+ βij) · Pr
tij

[Vi(tij)− βij ≥ x],

rij = (Pij + βij) · Pr[Vi(tij)− βij ≥ Pij ] = max
x≥ci

(x+ βij) · Pr
tij

[Vi(tij)− βij ≥ x],

ri =
∑

j rij , and r =
∑

i ri. We show in the following Lemma that r is an upper bound of TAIL(M,β).

Lemma 16. For any BIC mechanism M , TAIL(M,β) ≤ r.
12In [10], NON-FAVORITE is decomposed into four different terms UNDER, OVER, CORE and TAIL. We essentially merge the

first three terms into CORE(M,β) in our decomposition.
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Proof.

TAIL(M,β) ≤
∑
i

∑
j

∑
tij :Vi(tij)≥βij+ci

fij(tij) · (βij + ci) ·
∑
k 6=j

Pr
tik

[Vi(tik)− βik ≥ Vi(tij)− βij ]

+
∑
i

∑
j

∑
tij :Vi(tij)≥βij+ci

fij(tij) · (Vi(tij)− βij) ·
∑
k 6=j

Pr
tik

[Vi(tik)− βik ≥ Vi(tij)− βij ]

≤1

2
·
∑
i

∑
j

∑
tij :Vi(tij)≥βij+ci

fij(tij) · (βij + ci) (Definition of ci and Vi(tij) ≥ βij + ci)

+
∑
i

∑
j

∑
tij :Vi(tij)≥βij+ci

fij(tij) ·
∑
k 6=j

rik (Definition of rik and Vi(tij) ≥ βij + ci)

≤1

2
·
∑
i

∑
j

Pr
tij

[Vi(tij) ≥ βij + ci] · (βij + ci) +
∑
i

ri ·
∑
j

Pr
tij

[Vi(tij) ≥ βij + ci]

≤1

2
·
∑
i

∑
j

rij +
1

2
·
∑
i

ri (Definition of rij and ci)

=r

In the second inequality, the first term is because Vi(tij)− βij ≥ ci, so∑
k 6=j

Pr
tik

[Vi(tik)− βik ≥ Vi(tij)− βij ] ≤
∑
k

Pr
tik

[Vi(tik)− βik ≥ ci] ≤ 1/2.

The second term is because for any tij such that Vi(tij) ≥ βij + ci,

(Vi(tij)− βij)·Pr
tik

[Vi(tik)− βik ≥ Vi(tij)− βij ] ≤ (βik + Vi(tij)− βij)·Pr
tik

[Vi(tik)− βik ≥ Vi(tij)− βij ] ≤ rik.

Next, we argue that r can be approximated by an RSPM. Indeed, we prove a stronger lemma, which is
also useful for analyzing CORE(M,β).

Lemma 17. Let {xij}i∈[n],j∈[m] be a collection of non-negative numbers, such that for any buyer i∑
j∈[m]

Pr
tij

[Vi(tij) ≥ xij + βij ] ≤ 1/2,

then ∑
i

∑
j

(xij + βij) · Pr
tij

[Vi(tij) ≥ xij + βij ] ≤
2

1− b
· POSTREV.

Proof. Consider a RSPM that sells item j to buyer i at price ξij = xij + βij . The mechanism visits the
buyers in some arbitrary order. Notice that when it is buyer i’s turn, she purchases exactly item j and pays
xij + βij if all of the following three conditions hold: (i) j is still available, (ii) Vi(tij) ≥ xij + βij and (iii)
∀k 6= j, Vi(tik) < xik + βik. The second condition means buyer i can afford item j. The third condition
means she cannot afford any other item k 6= j. Therefore, buyer i’s purchases exactly item j.

Now let us compute the probability that all three conditions hold. Since every buyer’s valuation is
subadditive over the items, item j is purchased by someone else only if there exists a buyer k 6= i who
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has Vk(tkj) ≥ ξkj . Because xkj ≥ 0 for all k, by the union bound, the event described above happens
with probability at most

∑
k 6=i Prtkj [Vk(tkj) ≥ βkj ], which is less than b by property (i) of Lemma 5.

Therefore, condition (i) holds with probability at least (1− b). Clearly, condition (ii) holds with probability
Prtij [Vi(tij) ≥ xij + βij ]. Finally, condition (iii) holds with at least probability 1/2, because according to
our assumption of the xijs, the probability that there exists any item k 6= j such that Vi(tik) ≥ xik + βik
is no more than 1/2. Since the three conditions are independent, buyer i purchases exactly item j with
probability at least (1−b)

2 · Prtij [Vi(tij) ≥ xij + βij ]. So the expected revenue of this mechanism is at least
(1−b)

2 ·
∑

i

∑
j(βij + xij) · Prtij [Vi(tij) ≥ xij + βij ].

Proof of Lemma 15: Since Pij ≥ ci, it satisfies the assumption in Lemma 17 due to the choice of ci .
Therefore,

r =
∑
i,j

(βij + Pij) · Pr
tij

[Vi(tij) ≥ Pij + βij ] ≤
2

1− b
· POSTREV. (9)

Our statement follows from the above inequality and Lemma 16.2

We have done the analysis for TAIL(M,β). Before starting the analysis for CORE(M,β), we show that
ri is within a constant factor of ci. This Lemma is useful for bounding CORE(M,β).

Lemma 18. For all i ∈ [n], ri ≥ 1
2 · ci and

∑
i ci/2 ≤

2
1−b · POSTREV.

Proof. By the definition of Pij ,

ri =
∑
j

(βij + Pij) · Pr[Vi(tij)− βij ≥ Pij ] ≥
∑
j

(βij + ci) · Pr[Vi(tij)− βij ≥ ci]

≥
∑
j

ci · Pr[Vi(tij)− βij ≥ ci] ≥
1

2
· ci

The last inequality is because when ci > 0,
∑

j Prtij [Vi(tij) ≥ βij + ci] is at least 1
2 . As

∑
i ci/2 ≤ r, by

Inequality (9),
∑

i ci/2 ≤
2

1−b · POSTREV.

7.2 Analyzing CORE(M,β) in the Multi-Bidder Case

In this section we upper bound CORE(M,β). Recall that

CORE(M,β) =
∑
i

∑
ti∈Ti

fi(ti) ·
∑
S⊆[m]

σ
(β)
iS (ti) · vi(ti, S ∩ Ci(ti))

We can view it as the welfare of another valuation function v′ under allocation σ(β) where v′i(ti, S) =
vi(ti, S ∩ Ci(ti)). In other words, we “truncate” the function at some threshold, i.e., only evaluate the items
whose value on its own is less than that threshold. The new function still satisfies monotonicity, subadditivity
and no externalities.

We first compare existing methods for analyzing the CORE with our approach before jumping into the
proofs.
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7.2.1 Comparison between the Existing Methods and Our Approach

As all results in the literature [14, 46, 10, 17] only study special cases of constrained additive valuations, we
restrict our attention to constrained additive valuations in the comparison, but our approach also applies to
XOS and subadditive valuations.

We compare our approach to the state of the art result by Chawla and Miller [17]. They separate
CORE(M,β) into two parts: (i) the welfare obtained from values below β, and (ii) the welfare obtained
from values between β and β + c13. It is not hard to show that the latter can be upper bounded by the
revenue of a sequential posted price with per bidder entry fee mechanism. Due to their choice of β (similar
to the second property of Lemma 5), the former is upper bounded by

∑
i,j βij · Prtij [tij ≥ βij ]. It turns

out when every bidder’s feasibility constraint is a matroid, one can use the OCRS from [26] to design a
sequential posted price mechanism to approximate this expression. However, as we show in Example 2,∑

i,j βij · Prtij [tij ≥ βij ] could be Ω
( √

m
logm

)
times larger than the optimal social welfare when the bid-

ders have general downward closed feasibility constraints. Hence, such approach cannot yield any constant
factor approximation for general constrained additive valuations.

As explained in the intro, we take an entirely different approach. We first construct the posted prices
{Qj}j∈[m] for our ASPE (Definition 9), Feldman et al. [25] showed that the anonymous posted price mecha-
nism with these prices achieves welfare Ω (CORE(M,β)). If all bidders have valuations that are subadditive
over independent items, for any bidder i and any set of available items S, i’s surplus for S under valua-
tion v′i(ti, ·) (maxS′⊆S v′i(ti, S

′) −
∑

j∈S′ Qj) is also subadditive over independent items. According to
Talagrand’s concentration inequality, the surplus concentrates and its expectation is upper bounded by its
median and its Lipschitz constant a. One can extract at least half of the median by setting the median of
the surplus as the entry fee. How about the Lipschitz constant a? Unfortunately, a could be as large as
1
2 maxj∈[m]{βij + ci}, which is too large to be bounded.

Here is how we overcome this difficulty. Instead of considering v′, we construct a new valuation v̂
that is always dominated by the true valuation v. We consider the social welfare induced by σ(β) under
v̂ and define it as ĈORE(M,β). In Section 7.2.2, we show that ĈORE(M,β) is not too far away from
CORE(M,β), so it suffices to approximate ĈORE(M,β) (Lemma 24). But why is ĈORE(M,β) easier to
approximate? The reason is two-fold. (i) For any bidder i and any set of available items S, bidder i’s surplus
for S under v̂i(ti, ·) (defined as µi(ti, S) in Definition 12, which is maxS′⊆S v̂i(ti, S′)−

∑
j∈S′ Qj), is not

only subadditive over independent items, but also has a small Lipschitz constant τi (Lemma 25). Indeed,
these Lipschitz constants are so small that

∑
i τi and can be upper bounded by POSTREV (Lemma 22). (ii)

If we set the entry fee of our ASPE to be the median of µi(ti, S) when ti is drawn from Di, using a proof
inspired by Feldman et al. [25], we can show that our ASPE’s revenue collected from the posted prices plus
the expected surplus of the bidders (over the randomness of all bidders’ types) approximates ĈORE(M,β)
(implied by Lemma 26). Again by Talagrand’s concentration inequality, we can bound bidder i’s expected
surplus by our entry fee and τi (Lemma 28). As v̂ is always smaller than the true valuation v, thus for any
type ti of bidder i and any available items S, the surplus for S under vi(ti, ·) must be larger than µi(ti, S),
and the entry fee is accepted with probability at least 1/2. Putting everything together, we demonstrate that
we can approximate CORE(M,β) with an ASPE or an RSPM (Lemma 29).

13In particular, if bidder i is awarded a bundle S that is feasible for her, the contribution for the first part is
∑
j∈S min {βij , tij} ·

1 [tij < βij + ci] and the contribution to the second part is
∑
j∈S (tij − βij)+ · 1 [tij < βij + ci]
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7.2.2 Construction of ĈORE(M,β)

We first show that if for any i and ti ∈ Ti there is a set of α-supporting prices for vi(ti, ·), then there is a set
of α-supporting prices for v′i(ti, ·).

Lemma 19. If for any type ti and any set S, there exists a set of α-supporting prices {θSj (ti)}j∈S for vi(ti, ·),
then for any ti and S there also exists a set of α-supporting prices {γSj (ti)}j∈S for v′i(ti, ·). In particular,

γSj (ti) = θ
S∩Ci(ti)
j (ti) if j ∈ S ∩ Ci(ti) and γSj (ti) = 0 otherwise. Moreover, γSj (ti) ≤ Vi(tij) · 1[Vi(tij) <

βij + ci] for all i, ti, j and S.

Proof. It suffices to verify that {γSj (ti)}j∈S satisfies the two properties of α-supporting prices. For any
S′ ⊆ S, S′ ∩ Ci(ti) ⊆ S ∩ Ci(ti). Therefore,

v′i(ti, S
′) = vi(ti, S

′ ∩ Ci(ti)) ≥
∑

j∈S′∩Ci(ti)

θ
S∩Ci(ti)
j (ti) =

∑
j∈S′∩Ci(ti)

γSj (ti) =
∑
j∈S′

γSj (ti)

The last equality is because γSj (ti) = 0 for j ∈ S\Ci(ti). Also, we have∑
j∈S

γSj (ti) =
∑

j∈S∩Ci(ti)

θ
S∩Ci(ti)
j (ti) ≥

vi(ti, S ∩ Ci(ti))
α

=
v′i(ti, S)

α

Thus, {γSj (ti)}j∈S defined above is a set of α-supporting prices for v′i(ti, ·). Next, we argue that
γSj (ti) ≤ Vi(tij) · 1[Vi(tij) < βij + ci] for all i, ti, j ∈ S. If Vi(tij) ≥ βij + ci, j 6∈ Ci(ti), by definition
γSj (ti) = 0. Otherwise if Vi(tij) < βij + ci, then {j} ⊆ S ∩ Ci(ti), by the first property of α-supporting
prices, γSj (ti) ≤ v′i(ti, {j}) = Vi(tij).

Next, we define the prices of our ASPE.

Definition 9. We define a price Qj for each item j as follows,

Qj =
1

2
·
∑
i

∑
ti∈Ti

fi(ti) ·
∑
S:j∈S

σ
(β)
iS (ti) · γSj (ti),

where {γSj (ti)}j∈S are the α-supporting prices of v′i(ti, ·) and set S for any bidder i and type ti ∈ Ti.

CORE(M,β) can be upper bounded by
∑

j∈[m]Qj . The proof follows from the definition ofα-supporting
prices (Definition 7) and the definition of Qj (Definition 9).

Lemma 20. 2α ·
∑

j∈[m]Qj ≥ CORE(M,β).

Proof.
CORE(M,β) =

∑
i

∑
ti∈Ti

fi(ti) ·
∑
S⊆[m]

σ
(β)
iS (ti) · v′i(ti, S)

≤ α ·
∑
i

∑
ti∈Ti

fi(ti) ·
∑
S⊆[m]

σ
(β)
iS (ti) ·

∑
j∈S

γSj (ti)

= α ·
∑
j∈[m]

∑
i

∑
ti∈Ti

fi(ti) ·
∑
S:j∈S

σ
(β)
iS (ti) · γSj (ti)

= 2α ·
∑
j∈[m]

Qj
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In the following definitions, we define ĈORE(M,β) which is the welfare of another function v̂ under
the same allocation σ(β).

Definition 10. Let

τi := inf{x ≥ 0 :
∑
j

Pr
tij

[Vi(tij) ≥ max{βij , Qj + x}] ≤ 1

2
}.

and define Ai to be {j | βij ≤ Qj + τi}.

Definition 11. For every buyer i and type ti ∈ Ti, let Yi(ti) = {j | Vi(tij) < Qj + τi},

v̂i(ti, S) = vi (ti, S ∩ Yi(ti))

and
γ̂Sj (ti) = γSj (ti) · 1[Vi(tij) < Qj + τi]

for any set S ∈ [m]. Moreover, let

ĈORE(M,β) =
∑
i

∑
ti∈Ti

fi(ti) ·
∑
S⊆[m]

σ
(β)
iS (ti) · v̂i(ti, S).

In the next two Lemmas, we prove some useful properties of τi. In particular, we argue that
∑

i∈[n] τi

can be upper bounded by 4
1−b · POSTREV (Lemma 22).

Lemma 21.∑
i

∑
j

max {βij , Qj + τi} · Pr
tij

[Vi(tij) ≥ max {βij , Qj + τi}] ≤
2

1− b
· POSTREV

Proof. According to the definition of τi, for every buyer i,
∑

j Prtij [Vi(tij) ≥ max{βij , Qj + τi}] = 1
2 ,

and max{βij , Qj + τi} ≥ βij . Our statement follows directly from Lemma 17.

Lemma 22. ∑
i∈[n]

τi ≤
4

1− b
· POSTREV.

Proof. Since Qj is nonnegative,∑
i

∑
j

max {βij , Qj + τi} · Pr [Vi(tij) ≥ max{βij , Qj + τi}] ≥
∑
i

τi ·
∑
j

Pr [Vi(tij) ≥ max{βij , Qj + τi}] .

According to the definition of τi, when τi > 0,∑
j

Pr [Vi(tij) ≥ max{βij , Qj + τi}] =
1

2
.

Therefore,
∑

i∈[n] τi ≤
4

1−b · POSTREV due to Lemma 21.

In the following two Lemmas, we compare ĈORE(M,β) with CORE(M,β). The proof of Lemma 23 is
postponed to Appendix F.
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Lemma 23. For every buyer i, type ti ∈ Ti, v̂i(ti, ·) satisfies monotonicity, subadditivity and no externalities.
Furthermore, for every set S ⊆ [m] and every subset S′ of S, v̂i(ti, S′) ≥

∑
j∈S′ γ̂

S
j (ti).

Lemma 24. Let
Q̂j =

1

2
·
∑
i

∑
ti∈Ti

fi(ti) ·
∑
S:j∈S

σ
(β)
iS (ti) · γ̂Sj (ti).

Then,
Qj ≥ Q̂j , for all j ∈ [m] and∑

j∈[m]

Qj ≤
∑
j∈[m]

Q̂j +
(b+ 1)

b · (1− b)
· POSTREV.

Proof. From the definition of Q̂j , it is easy to see that Qj ≥ Q̂j for every j. So we only need to argue that∑
j∈[m]Qj ≤

∑
j∈[m] Q̂j + (b+1)

b·(1−b) · POSTREV.

∑
j

(
Qj − Q̂j

)
=

1

2
·
∑
i

∑
j

∑
ti∈Ti

fi(ti) ·
∑
S:j∈S

σ
(β)
iS (ti) ·

(
γSj (ti)− γ̂Sj (ti)

)
≤1

2
·
∑
i

∑
j

∑
ti∈Ti

fi(ti) ·
∑
S:j∈S

σ
(β)
iS (ti) · (βij · 1 [Vi(tij) ≥ Qj + τi] + ci · 1 [Vi(tij) ≥ max{Qj + τi, βij}])

=
1

2
·
∑
i

∑
j

∑
ti∈Ti

fi(ti) · π(β)ij (ti) · (βij · 1 [Vi(tij) ≥ Qj + τi] + ci · 1 [Vi(tij) ≥ max{Qj + τi, βij}])

(10)
This first inequality is because γSj (ti) − γ̂Sj (ti) is non-zero only when Vi(tij) ≥ Qj + τi, and the

difference is upper bounded by βij when Vi(tij) ≤ βij and upper bounded by βij + ci when Vi(tij) > βij .
We first bound

∑
i

∑
j

∑
ti∈Ti fi(ti) · π

(β)
ij (ti) · βij · 1[Vi(tij) ≥ Qj + τi].∑

i

∑
j

∑
ti∈Ti

fi(ti) · π(β)ij (ti) · βij · 1[Vi(tij) ≥ Qj + τi]

≤
∑
i

∑
j∈Ai

βij ·
∑
ti∈Ti

fi(ti) · 1[Vi(tij) ≥ Qj + τi] +
∑
i

∑
j /∈Ai

βij ·
∑
ti∈Ti

fi(ti) · π(β)ij (ti)

≤
∑
i

∑
j∈Ai

βij · Pr
tij

[Vi(tij) ≥ Qj + τi] +
∑
i

∑
j /∈Ai

βij · Pr
tij

[Vi(tij) ≥ βij ]/b

≤(1/b) ·
∑
i

∑
j

max{βij , Qj + τi} · Pr
tij

[Vi(tij) ≥ max{βij , Qj + τi}]

≤ 2

b · (1− b)
· POSTREV

(11)

The set Ai in the first inequality is defined in Definition 10. The second inequality is due to property (ii) in
Lemma 5. The third inequality is due to Definition 10 and the last inequality is due to Lemma 21.

Next, we bound
∑

i

∑
j

∑
ti∈Ti fi(ti) · π

(β)
ij (ti) · ci · 1[Vi(tij) ≥ max{Qj + τi, βij}].
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∑
i

∑
j

∑
ti∈Ti

fi(ti) · π(β)ij (ti) · ci · 1[Vi(tij) ≥ max{Qj + τi, βij}]

≤
∑
i

ci
∑
j

∑
ti

fi(ti) · 1[Vi(tij) ≥ max{Qj + τi, βij}]

≤
∑
i

ci
∑
j

Pr
tij

[Vi(tij) ≥ max{Qj + τi, βij}]

≤
∑
i

ci/2

≤ 2

(1− b)
· POSTREV

(12)

The last inequality is due to Lemma 18. Combining Inequality (10), (11) and (12), we have proved our
claim.

By Lemma 20,
∑

j∈[m]Qj ≤ CORE(M,β)/2α. Hence, Lemma 24 shows that to approximate CORE(M,β),

it suffices to approximate ĈORE(M,β). Indeed, we will use
∑

j∈[m] Q̂j as an proxy for CORE(M,β) in our
analysis of the ASPE.

7.2.3 Design and Analysis of Our ASPE

Consider the sequential post-price mechanism with anonymous posted price Qj for item j. We visit the
buyers in the alphabetical order14 and charge every bidder an entry fee. We define the entry fee here.

Definition 12 (Entry Fee). For any bidder i, any type ti ∈ Ti and any set S, let

µi(ti, S) = max
S′⊆S

(
v̂i(ti, S

′)−
∑
j∈S′

Qj
)
.

For any type profile t ∈ T and any bidder i, let the entry fee for bidder i be

δi(Si(t<i)) = MEDIANti [µi (ti, Si(t<i))]
15,

where S1(t<1) = [m] and Si(t<i) is the set of items that are not purchased by the first i − 1 buyers in the
ASPE, when buyer `’s valuation is v`(t`, ·) for all ` < i. Notice that even though the seller does not know
t<i, she can compute the entry fee δi(Si(t<i)), as she observes Si(t<i) after visiting the first i− 1 bidders.

In Lemma 25, we show that τi is the Lipschitz constant for µi(·, ·) and the proof is postponed to Ap-
pendix F. Moreover,

∑
i τi is upper bounded by 4

1−b · POSTREV due to Lemma 22.

Lemma 25. For any i, the function µi(·, ·) is τi-Lipschitz. Moreover, for any type ti ∈ Ti, µi(ti, ·) satisfies
monotonicity, subadditivity and no externalities.

The following Lemma is crucial for our proof. We show that in expectation over all type profiles, we can
lower bound of the sum of µi(ti, Si(t<i)) for all bidders. In particular, this lower bound plus our ASPE’s
revenue from the posted prices already approximates ĈORE(M,β). The proof is inspired by Feldman et

14We can visit the buyers in an arbitrary order. We use the the alphabetical order here just to ease the notations in the proof.
15Here MEDIANx[h(x)] denotes the median of a non-negative function h(x) on random variable x, i.e. MEDIANx[h(x)] =

inf{a ≥ 0 : Prx[h(x) ≤ a] ≥ 1
2
}.
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al. [25]. Note that µi(ti, Si(t<i)) is a lower bound of the real surplus of buyer i for set Si(t<i). We choose
to analyze the sum of µi(ti, Si(t<i)) because µi(·, ·) has a small Lipschitz constant, which allows us to
approximate µi(ti, Si(t<i)) with buyer i’s entry fee µi(Si(t<i)) and τi.

Lemma 26. For all j, let Qj (Definition 9) be the price for item j and every bidder’s entry fee be described
as in Definition 12. For every type profile t ∈ T , let SOLD(t) be the set of items sold in the corresponding
ASPE when buyer i’s valuation is vi(ti, ·). Then

Et

∑
i∈[n]

µi (ti, Si(t<i))

 ≥∑
j

Pr
t

[j /∈ SOLD(t)] · (2Q̂j −Qj)

≥
∑
j∈[m]

Pr
t

[j /∈ SOLD(t)] ·Qj −
(2b+ 2)

b · (1− b)
· POSTREV

Proof.

Et

[∑
i

µi (ti, Si(t<i))

]
≥
∑
i

Eti,t−i,t′−i
[
µi

(
ti, Si(t<i) ∩M (β)

i (ti, t
′
−i)
)]

≥
∑
i

Eti,t−i,t′−i

 ∑
j∈M(β)

i (ti,t′−i)

1 [j ∈ Si(t<i)] ·
(
γ̂
M

(β)
i (ti,t

′
−i)

j (ti)−Qj
)+


=
∑
i

Eti,t′−i

 ∑
j∈M(β)

i (ti,t′−i)

Pr
t<i

[j ∈ Si(t<i)] ·
(
γ̂
M

(β)
i (ti,t

′
−i)

j (ti)−Qj
)+


=
∑
i

Eti

 ∑
S⊆[m]

σ
(β)
iS (ti) ·

∑
j∈S

Pr
t<i

[j ∈ Si(t<i)] ·
(
γ̂Sj (ti)−Qj

)+
=
∑
i

Eti

∑
j∈[m]

Pr
t<i

[j ∈ Si(t<i)] ·
∑
S:j∈S

σ
(β)
iS (ti) ·

(
γ̂Sj (ti)−Qj

)+
=
∑
i

∑
j

Pr
t<i

[j ∈ Si(t<i)] · Eti

 ∑
S:j∈S

σ
(β)
iS (ti) ·

(
γ̂Sj (ti)−Qj

)+
≥
∑
i

∑
j

Pr
t

[j /∈ SOLD(t)] · Eti

 ∑
S:j∈S

σ
(β)
iS (ti) ·

(
γ̂Sj (ti)−Qj

)+
≥
∑
j

Pr
t

[j /∈ SOLD(t)]
∑
i

∑
ti

fi(ti) ·
∑
S:j∈S

σ
(β)
iS (ti) ·

(
γ̂Sj (ti)−Qj

)
t′−i are fresh samples drawn fromD−i. The first inequality is because the µi(ti, S) function is monotone

in set S for any i and type ti ∈ Ti. We use
(
γ̂
M

(β)
i (ti,t

′
−i)

j (ti)−Qj
)+

to denote max

{
γ̂
M

(β)
i (ti,t

′
−i)

j (ti)−Qj , 0
}

.
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If we let S be the set of items that are in Si(t<i)∩M (β)
i (ti, t

′
−i) and satisfy that γ̂

M
(β)
i (ti,t

′
−i)

j (ti)−Qj ≥ 0,

then µi
(
ti, Si(t<i) ∩M (β)

i (ti, t
′
−i)
)
≥ v̂i(ti, S) −

∑
j∈S Qj ≥

∑
j∈S

(
γ̂
M

(β)
i (ti,t

′
−i)

j (ti)−Qj
)

due to

the definition of µi(ti, ·) and Lemma 23. This inequality is exactly the second inequality above. The next
equality is because Si(t<i) only depends on the types of bidders other than i. The second last inequality is
because Prt<i [j ∈ Si(t<i)] ≥ Prt[j /∈ SOLD(t)] for all j and i, as the LHS is the probability that the item is
not sold after the seller has visited the first i−1 bidders and the RHS is the probability that the item remains
unsold till the end of the mechanism. Now, observe that

∑
i

∑
ti
fi(ti) ·

∑
S:j∈S σ

(β)
iS (ti) · γ̂Sj (ti) = 2Q̂j for

any j according to the definition in Lemma 24. Therefore,

∑
j

Pr
t

[j /∈ SOLD(t)]
∑
i

∑
ti

fi(ti) ·
∑
S:j∈S

σ
(β)
iS (ti) ·

(
γ̂Sj (ti)−Qj

)
≥
∑
j

Pr
t

[j /∈ SOLD(t)] · (2Q̂j −Qj)

=
∑
j

Pr
t

[j /∈ SOLD(t)] ·Qj −
∑
j

Pr
t

[j /∈ SOLD(t)] · 2(Qj − Q̂j)

≥
∑
j

Pr
t

[j /∈ SOLD(t)] ·Qj −
∑
j

2(Qj − Q̂j) (Due to Lemma 24, Qj − Q̂j ≥ 0 for all j)

≥
∑
j

Pr
t

[j /∈ SOLD(t)] ·Qj −
(2b+ 2)

b · (1− b)
· POSTREV (Lemma 24)

Since entry fee in the ASPE for every bidder as the median of her utility over the available items under
v̂. Clearly, bidders accept the entry fee with probability at least 1/2, as their true utilities (under v) are
always higher than their utilities under v̂. Combining the concentration property of the utility under v̂ and
Lemma 26, we can argue that the total revenue from our ASPE is comparable to ĈORE(M,β), and therefore
is comparable to CORE(M,β).

Lemma 27. For all i and t<i, bidder i accepts δi(t<i) with probability at least 1/2 when ti is drawn from
Di. Moreover,

APOSTENREV ≥ 1

4
·
∑
j

Qj −
(

5

2(1− b)
+

(b+ 1)

2b · (1− b)

)
· POSTREV.

Proof. For any bidder i, type ti ∈ Ti and any set S, define bidder i’s utility as ui(ti, S) = maxS′⊆S
(
vi(ti, S

′)−∑
j∈S′ Qj

)
. Clearly, ui(ti, S) ≥ µi(ti, S) for any type ti and set S. For any t<i, as long as ui(ti, Si(t<i)) ≥

δi(Si(t<i)), buyer i accepts the entry fee. Since δi(Si(t<i)) is the median of µi(ti, t<i), ui(ti, Si(t<i)) ≥
δi(Si(t<i)) with probability at least 1/2 when ti is drawn from Di. So the revenue from entry fee is at least
1
2 ·
∑

i Et<i [δi (Si(t<i))] .
For any i and t<i, by Lemma 25 and Corollary 1, we are able to derive a lower bound for δi (Si(t<i)),

as shown in Lemma 28.

Lemma 28. For all i and t<i,

2δi (Si(t<i)) +
5τi
2
≥ Eti [µi (ti, Si(t<i))] .
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Proof. It directly follows from Lemma 25 and Corollary 1. For any i and t<i, let Si(t<i) be the ground set I .
Therefore, µi(ti, ·) with ti ∼ Di is a function drawn from a distribution that is subadditive over independent
items. Since, µi(·, ·) is τi-Lipschitz and δi(Si(t<i)) = MEDIANti [µi (ti, Si(t<i))],

2δi (Si(t<i)) +
5τi
2
≥ Eti [µi (ti, Si(t<i))] .

Back to the proof of Lemma 27. According to Lemma 28, the revenue from the entry fee is at least
1
4 ·
∑

i Et<i,ti [µi(ti, Si(t<i))]− 5
8 ·
∑

i τi, which is equal to 1
4 ·
∑

i Et [µi(ti, Si(t<i))]− 5
8 ·
∑

i τi. Combining
Lemma 22 and Lemma 26, we can further show that the revenue from the entry fee is at least 1

4

∑
j Prt[j /∈

SOLD(t)]·Qj−( 5
2(1−b)+

(b+1)
2b(1−b))POSTREV. Since the revenue from the posted prices is exactly

∑
j Prt[j ∈

SOLD(t)] ·Qj , the total revenue of the ASPE is at least 1
4 ·
∑

j Qj −
(

5
2(1−b) + (b+1)

2b·(1−b)

)
· POSTREV.

Combining everything together, we have the main result of Section 7.2.

Lemma 29. For any BIC mechanismM , CORE(M,β) ≤ 8α·APOSTENREV+4α
(

6
1−b + 1

b(1−b)

)
POSTREV.

Proof. It follows directly from Lemma 20 and 27.

Now, we have upper bounded SINGLE(M,β), TAIL(M,β) and CORE(M,β) using the sum of the rev-
enue of simple mechanisms (RSPM and ASPE). Combining these bounds, we complete the proof of Theo-
rem 4.

Proof of Theorem 4: The proof follows from combining Theorem 2, Lemma 13, 14, 15 and 29. 2

7.2.4 Bad Example for Chawla and Miller’s Approach

Let bidders be constrained additive and Fi be bidder i feasibility constraint. We use PFi = conv({1S |S ∈
Fi}) to denote the feasibility polytope of bidder i. Let {qij}i∈[n],j∈[m] be a collection of probabilities that
satisfy

∑
i qij ≤ 1/2 for all item j and qi = (qi1, . . . , qim) ∈ b · PFi . Let βij = F−1ij (qij). The analysis

by Chawla and Miller [17] needs to upper bound
∑

i,j βij · qij using the revenue of some BIC mechanism.
When Fi is a matroid for every bidder i, this expression can be upper bounded by the revenue of a sequential
posted price mechanism constructed using OCRS from [26]. Here we show that if the bidders have general
downward closed feasibility constraints, this expression is gigantic. More specifically, we prove that even
when there is only one bidder, the expression could be Ω

( √
m

logm

)
times larger than the optimal social welfare.

Consider the following example.

Example 2. The seller is selling m = k2 items to a single bidder. The bidder’s value for each item is drawn
i.i.d. from distribution F , which is the equal revenue distribution truncated at k, i.e.,

F (x) =

{
1− 1

x , if x < k

1, if x = k

Items are divided into k disjoint setsA1, ..., Ak, each with size k. The bidder is additive subject to feasibility
constraint F = {S ⊆ [m]|∃i ∈ [k], S ⊆ Ai}.
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Lemma 30. Let PF = conv({1S |S ∈ F}) be the feasibility polytope for the bidder in Example 2. Let SW
be the optimal social welfare. Then for any constant b > 0, there exists q ∈ b · PF such that for sufficiently
large k, ∑

j∈[m]

qj · F−1(1− qj) = Θ(
k

log k
) · SW

Proof. For any b > 0, consider the following feasible allocation rule: w.p. (1− b), don’t allocate anything,
and w.p. b, give the buyer one of the sets Ai uniformly at random. The corresponding ex-ante probability
vector q satisfies qj = b

k , ∀j ∈ [m]. Thus q ∈ b · PF . Since qj < 1
k , F−1(1 − qj) = k for all j ∈ [m]. We

have
∑

j∈[m] qj ·F−1(1− qj) = k2 · bk · k = b · k2. We use Vi to denote the random variable of the bidder’s
value for set Ai. It is not hard to see that SW = E[maxi∈[k] Vi].

Lemma 31. For any i ∈ [k],
Pr [Vi > 3 · k log(k)] ≤ k−3

Proof. Let X be random variable with cdf F . Notice E[X] = log(k), E[X2] = 2k, and |X| ≤ k. For every
i, by the Bernstein concentration inequality, for any t > 0,

Pr [Vi − k log(k) > t] ≤ exp

(
−

1
2 t

2

2k2 + 1
3kt

)

Choose t = 2k log(k), we have

Pr [Vi > 3k log(k)] ≤ exp(−3 log(k)) = k−3

By the union bound, Pr[maxi∈[k] Vi > 3 · k log(k)] ≤ k−2. Therefore, E[maxi∈[k] Vi] ≤ 3k log k+ k2 ·
k−2 ≤ 4k log k.
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Appendix
A Improved Analysis for Constrained Additive Valuation

In this section, we show that for constrained additive bidders, we do not need to relax the valuations, as
applying directly the flow in Section 5 already gives an upper bound with the right format. So we can take
M (β) to simply be M . In particular, we can derive the following improved upper bound for REV(M, v,D)
using essentially the same proof as in Section 5.

Theorem 5. If for any bidder i any type ti ∈ T , vi(ti, ·) is a constrained additive valuation, then for any
mechanism M and any β = {βij}i∈[n],j∈[m],

REV(M, v,D) ≤ NON-FAVORITE(M,β) + SINGLE(M,β).

Combining the same upper bounds we obtained for
NON-FAVORITE(M,β) and SINGLE(M,β) and the improved upper bound in Theorem 5, we can improve
the approximation ratio when the bidder(s) have constrained additive valuations.

Theorem 6. For a single buyer whose valuation is constrained additive,

REV(M,v,D) ≤ 7 · SREV + 4 · BREV,

for any BIC mechanism M .

Theorem 7. For multiple buyers whose valuations are constrained additive,

REV(M, v,D) ≤ 8 · APOSTENREV

+

(
6 +

22

1− b
+

4(b+ 1)

(1− b)b

)
· POSTREV

(13)

for any BIC mechanism M . In particular, if we set b to be 1
4 , then

REV(M, v,D) ≤ 8 · APOSTENREV + 62 · POSTREV.

B Proof of Theorem 1

Proof of Theorem 1: When λ is useful, we can simplify function L(λ, σ, p) by removing the term associated
with p and replacing

∑
t′i∈T

+
i
λ(ti, t

′
i) with fi(ti) +

∑
t′i∈Ti

λ(t′i, ti). After the simplification, we have

L(λ, σ, p) =

n∑
i=1

∑
ti∈Ti

fi(ti) ·
∑
S⊆[m]

σiS(ti)·vi(ti, S)− 1

fi(ti)

∑
t′i∈Ti

λi(t
′
i, ti)

(
vi(t
′
i, S)− vi(ti, S)

)
=

n∑
i=1

∑
ti∈Ti

fi(ti) ·
∑
S⊆[m]

σiS(ti) · Φi(ti, S),
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which is exactly the virtual welfare of σ with respect to λ. Now, we only need to prove that L(λ, σ, p) is
greater than the revenue ofM . Let us think ofL(λ, σ, p) using Expression (1). SinceM is a BIC mechanism,∑

S⊆[m]

vi(ti, S) ·
(
σiS(ti)− σiS(t′i)

)
−
(
(pi(ti)− pi(t′i)

)
≥ 0

for any i, ti ∈ Ti and t′i ∈ T
+
i . Also, all the dual variables λ are nonnegative. Therefore, it is clear that

L(λ, σ, p) is at least as large as the revenue of M .
When λ∗ is the optimal dual variable, by strong duality, we know maxσ∈P (D),p L(λ∗, σ, p) equals to the

revenue of M∗ = (σ∗, p∗). But we also know that L(λ∗, σ∗, p∗) is at least as large as the revenue of M∗,
therefore σ∗ maximizes the virtual welfare. 2

C Recap: Flow for Additive Valuations

When the valuations are additive, we simply view tij as bidder i’s value for receiving item j. Although there
are many possible ways to define a flow, we focus on a class of simple ones. Every flow in this class λ(β)

is parametrized by a set of parameters β = {βij}i∈[n],j∈[m] ∈ Rnm. Based on βi = {βij}j∈[m], we first
partition the type space Ti for each bidder i into m+ 1 regions:

• R(βi)
0 contains all types ti such that tij < βij for all j ∈ [m].

• R(βi)
j contains all types ti such that tij − βij ≥ 0 and j is the smallest index in argmaxk{tik − βik}.

We use essentially the same flow as in [10]. Here we provide a partial specification and state some
desirable properties of the flow. See Figure 4 for an example with 2 items and [10] for a complete description
of the flow.

Partial Specification of the flow λ(β):

1. For every type ti in region R(βi)
0 , the flow goes directly to ∅ (the super sink).

2. For all j > 0, any flow entering R(βi)
j is from s (the super source) and any flow leaving R(βi)

j is to ∅.

3. For all ti and t′i in R(βi)
j (j > 0), λ(β)i (ti, t

′
i) > 0 only if ti and t′i only differ in the j-th coordinate.

Figure 3: Partial Specification of the flow λ(β).

Lemma 32 ([10]16). For any β, there exists a flow λ
(β)
i such that the corresponding virtual value function

Φi(ti, ·) satisfies the following properties:

• For any ti ∈ R(βi)
0 , Φi(ti, S) =

∑
k∈S tik.

• For any j > 0, ti ∈ R(βi)
j ,

Φi(ti, S) ≤
∑

k∈S∧k 6=j
tik + ϕ̃ij(tij) · 1[j ∈ S],

where ϕ̃ij(·) is Myerson’s ironed virtual value function for Dij .
16Note that this Lemma is a special case of Lemma 3 in [10] when the valuations are additive.
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Figure 4: An example of λ(β)i for additive bidders with two items.

The properties above are crucial for showing the approximation results for simple mechanisms in [10].
One of the key challenges in approximating the optimal revenue is how to provide a tight upper bound. A
trivial upper bound is the social welfare, which may be arbitrarily bad in the worst case. By plugging the
virtual value functions in Lemma 32 into the partial Lagrangian, we obtain a new upper bound that replaces
the value of the buyer’s favorite item with the corresponding Myerson’s ironed virtual value. As demon-
strated in [10], this new upper bound is at most 8 times larger than the optimal revenue when the buyers are
additive, and its appealing structure allows the authors to compare the revenue of simple mechanisms to it.
In Section 5, we identify some difficulties in directly applying this flow to subadditive valuations. Then we
show how to overcome these difficulties by relaxing the subadditive valuations and obtain a similar upper
bound.

D Proof of Lemma 3

Lemma 33. For any flow λ
(β)
i that respects the partial specification in Figure 3, the corresponding virtual

valuation function Φ
(βi)
i of v(βi)i for any buyer i is:

• vi(ti, S\{j}) + Vi(tij)− 1
fi(ti)

∑
t′i∈Ti

λ(t′i, ti) ·
(
Vi(t

′
ij)− Vi(tij)

)
, if ti ∈ R(βi)

j and j ∈ S.

• vi(ti, S), otherwise.

Proof of Lemma 33: The proof follows the definitions of the virtual valuation function (Definition 4) and
relaxed valuation (Definition 5). We use ti,−j = 〈tij′〉j′ 6=j to denote bidder i’s information for all items
except item j. If ti ∈ R(βi)

j and j ∈ S, v(βi)i (ti, S) = vi(ti, S\{j}) +Vi(tij). Since λ(ti, t
′
i) > 0 only when
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ti,−j = t′i,−j and t′i ∈ R
(βi)
j , v(βi)i (t′i, S) = vi(t

′
i, S\{j}) + Vi(t

′
ij) = vi(ti, S\{j}) + Vi(t

′
ij). Therefore,

Φ
(βi)
i (ti, S) = vi(ti, S\{j}) + Vi(tij)−

1

fi(ti)

∑
t′i∈Ti

λ(t′i, ti) ·
(
Vi(t

′
ij)− Vi(tij)

)
If ti ∈ R(βi)

j and j /∈ S or ti ∈ R(βi)
0 , then v(βi)i (ti, S) = vi(ti, S). If ti ∈ R(βi)

0 , there is no flow entering

ti except from the source, so clearly Φ
(βi)
i (ti, S) = vi(ti, S). If ti ∈ R(βi)

j , then for any t′i that only differs

from ti in the j-th coordinate, we have vi(t′i, S) = vi(ti, S), because j 6∈ S. Hence, Φ
(βi)
i (ti, S) = vi(ti, S).

2

Proof of Lemma 3:
Let Ψ

(βi)
ij (ti) = Vi(tij)− 1

fi(ti)

∑
t′i∈Ti

λ(t′i, ti)·
(
Vi(t

′
ij)− Vi(tij)

)
. According to Lemma 33, it suffices

to prove that for any j > 0, any ti ∈ R(βi)
j , Ψ

(βi)
ij (ti) ≤ ϕ̃ij(Vi(tij)).

Claim 1. For any type ti ∈ R(βi)
j , if we only allow flow from type t′i to ti, where tik = t′ik for all k 6= j and

t′ij ∈ argmins∈Tij∧Vi(s)>Vi(tij) Vi(s), and the flow λ(t′i, ti) equals fij(tij)
Prv∼Fij [v=Vi(tij)]

fraction of the total in

flow to t′i, then there exists a flow λ such that

Ψ
(βi)
ij (ti) = ϕij(Vi(tij)) = Vi(tij)−

(
Vi(t

′
ij)− Vi(tij)

)
· Prv∼Fij [v > Vi(tij)]

Prv∼Fij [v = Vi(tij)]
,

where ϕij(Vi(tij)) is the Myerson virtual value for Vi(tij) with respect to Fij .

Proof. As the flow only goes from t′i and ti, where t′i and ti only differs in the j-th coordinate, and
tij ∈ argmaxs∈Tij∧Vi(s)<Vi(t′ij) Vi(s). If tij is a type with the largest Vi(tij) value in Tij , then there is no

flow coming into it except the one from the source, so Ψ
(βi)
ij (ti) = Vi(tij). For every other value of tij , the

in flow is exactly

fij(tij)

Prv∼Fij [v = Vi(tij)]

∏
k 6=j

fik(tik) ·
∑

x∈Tij :Vi(x)>Vi(tij)

fij(x) =
∏
k

fik(tik) ·
Prv∼Fij [v > Vi(tij)]

Prv∼Fij [v = Vi(tij)]
.

This is because each type of the form (x, ti,−j) with Vi(x) > Vi(tij) is also in R(βi)
j . So fij(tij)

Prv∼Fij [v=Vi(tij)]

of all flow that enters these types will be passed down to ti (and possibly further, before going to the
sink), and the total amount of flow entering all of these types from the source is exactly

∏
k 6=j fik(tik) ·∑

x∈Tij :Vi(x)>Vi(tij) fij(x). Therefore, Ψ
(βi)
ij (ti) = ϕij(Vi(tij)). Whenever there is no more type ti ∈ R(βi)

j

with smaller Vi(tij) value, we push all the flow to the sink.

If Fij is regular, this completes our proof. When Fij is not regular, we can iron the virtual value function
in the same way as in [10]. Basically, for two types ti, t′i ∈ R

(βi)
j that only differ in the j-th coordinate,

if Ψ
(βi)
ij (ti) > Ψ

(βi)
ij (t′i) but Vi(tij) < Vi(t

′
ij), add a loop between ti and t′i with a proper weight to make

Ψ
(βi)
ij (ti) = Ψ

(βi)
ij (t′i).

Lemma 34. [10] For any β and i, there exists a flow λi(β) such that for any ti ∈ R
(βi)
j , Ψ

(βi)
ij (ti) ≤

ϕ̃ij(Vi(tij)).

2
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E Analysis for the Single-Bidder Case

Proof of lemma 7: In NON-FAVORITE, since Rβ0 = ∅, the corresponding term is simply 0. Notice v(t, ·) is
a monotone valuation for every t ∈ T ,

NON-FAVORITE(M) =
∑
t∈T

f(t) ·
∑
j∈[m]

1
[
t ∈ R(β)

j

]
·

∑
S:j∈S

σ
(β)
S (t) · v(t, S\{j}) +

∑
S:j /∈S

σ
(β)
S (t) · v(t, S)


≤
∑
t∈T

f(t) ·
∑
j∈[m]

1
[
t ∈ R(β)

j

]∑
S

σ
(β)
S (t) · v(t, [m]\{j})

≤
∑
t∈T

f(t) ·
∑
j∈[m]

1
[
t ∈ R(β)

j

]
· v(t, [m]\{j}) (

∑
S

σ
(β)
S (t) ≤ 1)

Recall that for all t ∈ T and S ⊆ [m], v(t, S) ≤ v (t, S ∩ C(t)) +
∑

j∈S∩T (t) V (tj). We will replace
v(t, [m]\{j}) above with v (t, ([m]\{j}) ∩ C(t)) +

∑
k∈([m]\{j})∩T (t) V (tk). First, the contribution from

v (t, ([m]\{j}) ∩ C(t)) is upper bounded by the CORE(M).

∑
t∈T

f(t) ·
∑
j∈[m]

1
[
t ∈ R(β)

j

]
· v (t, ([m]\{j}) ∩ C(t))

≤
∑
t∈T

f(t) ·
∑
j∈[m]

1
[
t ∈ R(β)

j

]
· v (t, C(t)) =

∑
t∈T

f(t) · v (t, C(t)) (CORE(M))

The inequality comes from the monotonicity of v(t, ·) and the fact that for every t only stays in one
region R(β)

j .
Next, we upper bound the contribution from

∑
k∈([m]\{j})∩T (t) V (tk) by the TAIL(M).∑

t∈T
f(t) ·

∑
j∈[m]

1
[
t ∈ R(β)

j

]
·

∑
k∈([m]\{j})∩T (t)

V (tk)

=
∑
t∈T

f(t) ·
∑
j∈T (t)

V (tj) · 1
[
t 6∈ R(β)

j

]
≤
∑
t∈T

f(t) ·
∑
j∈T (t)

V (tj) · 1 [∃k 6= j, V (tk) ≥ V (tj)] (Definition of R(β)
j )

=
∑
j

∑
tj :V (tj)≥c

fj(tj) · V (tj) · Pr
t−j

[∃k 6= j, V (tk) ≥ V (tj)] (TAIL(M))

2

Proof of Lemma 10: We argue the three properties one by one.

• Monotonicity: For all t ∈ T and U ⊆ V ⊆ [m], U ∩ C(t) ⊆ V ∩ C(t). Since v(t, ·) is monotone,

v′(t, U) = v (t, U ∩ C(t)) ≤ v (t, V ∩ C(t)) = v′(t, V ).

Thus, v′(t, ·) is monotone.
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• Subadditivity: For all t ∈ T and U, V ⊆ [m], notice (U ∪ V ) ∩ C(t) = (U ∩ C(t)) ∪ (V ∩ C(t)), we
have

v′(t, U∪V ) = v ((t, (U ∩ C(t)) ∪ (V ∩ C(t))) ≤ v (t, U ∩ C(t))+v (t, V ∩ C(t)) = v′(t, U)+v′(t, V ).

• No externalities: For any t ∈ T , S ⊆ [m], and any t′ ∈ T such that tj = t′j for all j ∈ S, to prove
v′(t, S) = v′(t′, S), it is enough to show S ∩ C(t) = S ∩ C(t′). Since V (tj) = V (t′j) for any j ∈ S,
j ∈ S ∩ C(t) if and only if j ∈ S ∩ C(t′).

2

Proof of Lemma 11: For any t, t′ ∈ T , and set X,Y ⊆ [m], define set H =
{
j ∈ X ∩ Y : tj = t′j

}
. Since

v′(·, ·) has no externalities, v′(t′, H) = v′(t,H). Therefore,

|v′(t,X)− v′(t′, Y )| = max
{
v′(t,X)− v′(t′, Y ), v′(t′, Y )− v′(t,X)

}
≤ max

{
v′(t,X)− v′(t′, H), v′(t′, Y )− v′(t,H)

}
(Monotonicity)

≤ max
{
v′(t,X\H), v′(t′, Y \H)

}
(Subadditivity)

= max
{
v (t, (X\H) ∩ C(t)) , v

(
t′, (Y \H) ∩ C(t)

)}
(Definition of v′(·, ·))

≤ c ·max {|X\H|, |Y \H|}
≤ c · (|X∆Y |+ |X ∩ Y | − |H|)

The second last inequality is because both v(t, ·) and v(t′, ·) are subadditive and for any item j ∈ C(t)
(C(t′)) the single-item valuation V (tj) (V (t′j)) is less than c. 2

F Missing Proofs for the Multi-Bidder Case

Proof of Lemma 14: We replace every vi(ti, S) in NON-FAVORITE(M,β) with vi (ti, S ∩ Ci(ti)) +∑
j∈S∩Ti(ti) Vi(tij). Let the contribution from vi (ti, S ∩ Ci(ti)) be the first term and the contribution from∑
j∈S∩Ti(ti) Vi(tij) be the second term.∑

i

∑
ti∈Ti

fi(ti) · 1
[
ti ∈ R(βi)

0

]
·
∑
S⊆[m]

σ
(β)
iS (ti) · vi(ti, S ∩ Ci(ti))+

∑
i

∑
ti∈Ti

fi(ti) ·
∑
j∈[m]

1
[
ti ∈ R(βi)

j

]
·

∑
S:j∈S

σ
(β)
iS (ti) · vi (ti, (S\{j}) ∩ Ci(ti)) +

∑
S:j 6∈S

σ
(β)
iS (ti) · vi (ti, S ∩ Ci(ti))


≤
∑
i

∑
ti∈Ti

fi(ti) ·
∑
S⊆[m]

σ
(β)
iS (ti) · vi(ti, S ∩ Ci(ti)) (CORE(M,β))

The inequality comes from the Monotonicity of vi(ti, ·) by replacing vi (ti, (S\{j}) ∩ Ci(ti)) with
vi(ti, S ∩ Ci(ti)).
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For the second term, notice that when ti ∈ R(βi)
0 , Ti(ti) = ∅. It can be rewritten as:

∑
i

∑
ti∈Ti

fi(ti) ·
∑
j∈[m]

1
[
ti ∈ R(βi)

j

]
·

∑
S:j∈S

σ
(β)
iS (ti) ·

∑
k∈(S\{j})∩Ti(ti)

Vi(tik) +
∑
S:j 6∈S

σ
(β)
iS (ti) ·

∑
k∈S∩Ti(ti)

Vi(tik)


=
∑
i

∑
ti∈Ti

fi(ti) ·
∑

j∈Ti(ti)

Vi(tij) · 1
[
ti 6∈ R(βi)

j

]
· π(β)ij (ti) (Recall π(β)ij (ti) =

∑
S:j∈S

σ
(β)
iS (ti))

≤
∑
i

∑
ti∈Ti

fi(ti) ·
∑

j∈Ti(ti)

Vi(tij) · 1
[
ti 6∈ R(βi)

j

]
(πβij(ti) ≤ 1)

=
∑
i

∑
ti∈Ti

fi(ti) ·
∑

j∈Ti(ti)

Vi(tij) ·
∑
k 6=j

1
[
ti ∈ R(βi)

k

]
(ti /∈ R(βi)

0 )

≤
∑
i

∑
j

∑
tij :Vi(tij)≥βij+ci

fij(tij) · Vi(tij) ·
∑
k 6=j

Pr
tik

[Vi(tik)− βik ≥ Vi(tij)− βij ] (TAIL(M,β))

2

Lemma 35. Let {xij}i∈[n],j∈[m] be a set of nonnegative numbers. For any buyer i, any type ti ∈ Ti, let
Xi(ti) = {j | Vi(tij) < xij}, and let

v̄i(ti, S) = vi(ti, S ∩Xi(ti)),

for any set S ⊆ [m]. Then for any bidder i, any type ti ∈ Ti, v̄i(ti, ·), satisfies monotonicity, subadditivity
and no externalities.

Proof of Lemma 35: We will argue these three properties one by one.

• Monotonicity: For all ti ∈ Ti and U ⊆ V ⊆ [m], since vi(ti, ·) is monotone,

v̄i(ti, U) = vi(ti, U ∩Xi(ti)) ≤ vi(ti, V ∩Xi(ti)) = v̄(ti, V )

Thus v̄i(ti, ·) is monotone.

• Subadditivity: For all ti ∈ Ti and U, V ⊆ [m], (U ∪ V ) ∩ Xi(ti) = (U ∩ Xi(ti)) ∪ (V ∩ Xi(ti)).
Since vi(ti, ·) is subadditive, we have

v̄i(ti, U ∪ V ) = vi(ti, (U ∩Xi(ti)) ∪ (V ∩Xi(ti)))

≤ vi(ti, U ∩Xi(ti)) + vi(ti, V ∩Xi(ti)) = v̄i(ti, U) + v̄i(ti, V ).

• No externalities: For any ti ∈ Ti, S ⊆ [m], and any t′i ∈ Ti such that tij = t′ij for all j ∈ S, to prove
v̄i(ti, S) = v̄i(t

′
i, S), it suffices to show S ∩ Xi(ti) = S ∩ Xi(t

′
i). Since Vi(tij) = Vi(t

′
ij), for any

item j ∈ S, j ∈ S ∩Xi(ti) if and only if j ∈ S ∩Xi(t
′
i).

2

Proof of Lemma 23: By Lemma 35 and Definition 11, v̂i(ti, ·) satisfies monotonicity, subadditivity and no
externalities.

v̂i(ti, S
′) = vi

(
ti, S

′ ∩ Yi(ti)
)
≥ vi

(
ti,
(
S′ ∩ Yi(ti)

)
∩ Ci(ti)

)
= v′i

(
ti, S

′ ∩ Yi(ti)
)
.
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Since S′ ∩ Yi(ti) ⊆ S,

v′i
(
ti, S

′ ∩ Yi(ti)
)
≥

∑
j∈S′∩Yi(ti)

γSj (ti) =
∑
j∈S′

γ̂Sj (ti).

for all j ∈ S, we have min{t(k)ij , Qj + τi} ≥ γ̂Sj (ti). Therefore, v̂i(ti, S) ≥
∑

j∈S γ̂
S
j (ti). 2

Proof of Lemma 25: We first prove that µi(·, ·) is τi-Lipschitz. For any ti, t′i ∈ Ti and set X,Y ∈ [m],

let X∗ ∈ argmaxS⊆X

(
v̂i(ti, S)−

∑
j∈S Qj

)
, Y ∗ ∈ argmaxS⊆Y

(
v̂i(t
′
i, S)−

∑
j∈S Qj

)
. Recall that

v̂i(ti, X
∗) = vi (ti, {j | (j ∈ X∗) ∧ (Vi(tij) < Qj + τi)}). This means that for every k ∈ X∗, Vi(tik) must

be less than Qk + τi, because otherwise µi(ti, X∗) < µi(ti, X
∗\{k}). Therefore, v̂i(ti, S) = vi(ti, S) for

all S ⊆ X∗. Since vi(ti, ·) is subadditive, vi(ti, X∗) ≤ vi(ti, X
∗\{k}) + Vi(tik). So by the optimality

of X∗, it must be that Vi(tik) ≥ Qk for all k ∈ X∗. Similarly, we can show that for every k ∈ Y ∗,
Vi(t

′
ik) ∈ [Qk, Qk + τi].
Now let set H = {j | j ∈ X ∩ Y ∧ tij = t′ij}, if µi(ti, X) > µi(t

′
i, Y ).

∣∣µi(ti, X)− µi(t′i, Y )
∣∣ =

v̂i(ti, X∗)− ∑
j∈X∗

Qj

−
v̂i(t′i, Y ∗)− ∑

j∈Y ∗
Qj


≤

v̂i(ti, X∗)− ∑
j∈X∗

Qj

−
v̂i(t′i, X∗ ∩H)−

∑
j∈X∗∩H

Qj

 (Optimality of Y ∗ and X∗ ∩H ⊆ Y )

≤v̂i(ti, X∗)− v̂i(ti, X∗ ∩H)−
∑

j∈X∗\H

Qj (No externalities of v̂i(ti, ·))

≤v̂i(ti, X∗\H)−
∑

j∈X∗\H

Qj (Subadditivity of v̂i(ti, ·))

≤τi · |X∗\H| (Vi(tij) ∈ [Qj , Qj + τi] for all j ∈ X∗)
≤τi · |X\H|

Similarly, if µi(ti, X) ≤ µi(t′i, Y ), |µi(ti, X)− µi(t′i, Y )| ≤ τi · |Y \H|. Thus, µi(·, ·) is τi-Lipschitz as∣∣µi(ti, X)− µi(t′i, Y )
∣∣ ≤ τi ·max {|X\H|, |Y \H|} ≤ τi · (|X∆Y |+ |X ∩ Y | − |H|).

Monotonicity follows directly from the definition of µi(ti, ·). Next, we argue subadditivity. For all
U, V ⊆ [m], let S∗ ∈ argmaxS⊆U∪V

(
v̂i(ti, S)−

∑
j∈S Qj

)
, X = S∗ ∩ U ⊆ U , Y = S∗\X ⊆ V . Since

v̂i(ti, ·) is a subadditive valuation,

µi(ti, U∪V ) = v̂i(ti, S
∗)−

∑
j∈S∗

Qj ≤

v̂i(ti, X)−
∑
j∈X

Qj

+

v̂i(ti, Y )−
∑
j∈Y

Qj

 ≤ µi(ti, U)+µi(ti, V )

Finally, we argue that µi(ti, ·) has no externalities. Consider a set S, and types ti, t′i ∈ Ti such that
t′ij = tij for all j ∈ S. For any S′ ⊆ S, since v̂i(ti, ·) has no externalities, v̂i(ti, S′) −

∑
j∈S′ Qj =

v̂i(t
′
i, S
′)−

∑
j∈S′ Qj . Thus, µi(ti, S) = µi(t

′
i, S). 2
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G Efficient Approximation for Symmetric Bidders

In this section, we sketch how to compute the RSPM and ASPE to approximate the optimal revenue in
polynomial time for symmetric bidders17. For any given BIC mechanism M , one can follow our proof to
construct in polynomial time an RSPM and an ASPE such that the better of the two achieves a constant
fraction of M ’s revenue. We will describe the construction of the RSPM and the ASPE separately in this
section. The difficulty of applying the method described above to construct the desired simple mechanisms
is that we need to know an (approximately) revenue-maximizing mechanism M∗. We will show how to
circumvent this difficulty when the bidders are symmetric.

Indeed, we can directly construct an RSPM that approximates the POSTREV. As we have restricted the
buyers to purchase at most one item in an RSPM, the POSTREV is upper bounded by the optimal revenue of
the unit-demand setting where buyer i has value Vi(tij) for item j when her type is ti. By [10], we know that
the optimal revenue in this unit-demand setting is upper bounded by 4OPTCOPIES-UD, so one can simply use
the RSPM constructed in [14] to extract revenue at least POSTREV

24 . Note that the construction is independent
of M .

Unlike the RSPM, our construction for the ASPE heavily relies on β which depends on M (Lemma 5).
Given β, we first compute cis according to Definition 8. Next, we compute the Qjs (Definition 9). Finally,
we compute the τis (Defintion 10) and use them to compute the entry fee (Definition 12). A few steps
of the algorithm above requires sampling from the type distributions, but it is not hard to argue that a
polynomial number of samples suffices. The main reason that the information about M is necessary is
because our construction crucially relies on the choice of β. Next, we argue that for symmetric bidders, we
can essentially choose a β that satisfies all requirements in Lemma 5 for all mechanisms.

When bidders are symmetric, the important observation is that the optimal mechanism must also be
symmetric, and for any symmetric mechanism we can directly construct a β that satisfies all the requirements
in Lemma 5. For every i ∈ [n], j ∈ [m], choose βij such that Prtij [Vi(tij) ≥ βij ] = b

n . Clearly, this choice
satisfies property (i) in Lemma 5. Furthermore, the ex-ante probability for any bidder i to win item j is the
same in any symmetric mechanism, and therefore is no more than 1/n. Hence, property (ii) in Lemma 5 is
also satisfied. Given this β, we can essentially follow the algorithm mentioned above to construct the ASPE.
The only difference is that we no longer know the σ, which is required when computing the Qjs. This
can be resolved by considering the welfare maximizing mechanism M ′ with respect to v′. We compute the
prices Qj using the allocation rule of M ′ and construct our ASPE. As M ′ is also symmetric, our β satisfies
all requirements in Lemma 5 with respect to M ′. Therefore, Lemma 29 implies that either this ASPE or the
RSPM constructed above has at least a constant fraction of CORE(M ′, β) as revenue. Since M ′ is welfare
maximizing, CORE(M ′, β) ≥ CORE(M∗, β), where M∗ is the revenue optimal mechanism. Therefore, we
construct in polynomial time a simple mechanism whose revenue is a constant fraction of the optimal BIC
revenue.

H Proof of Lemma 2

We first prove some properties of v(β), which will be useful for proving Lemma 2.

Lemma 36. For any βi, ti ∈ Ti and S ∈ [m], v(βi)i (ti, S) ≥ vi(ti, S).

Proof. This follows from the fact that vi(ti, ·) is a subadditive function over bundles of items for all ti.

Lemma 37. For any βi and ti ∈ Ti, v(βi)i (ti, ·) is a monotone, subadditive function over the items.
17Bidders are symmetric if for any two bidders i and i′, we have vi(·, ·) = vi′(·, ·) and Dij = Di′j for all j.
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Proof. Monotonicity follows directly from the monotonicity of vi(ti, ·). We only argue subadditivity here.
If ti belongs to R(βi)

0 , v(βi)i (ti, ·) = vi(ti, ·). So it is clearly a subadditive function. If ti belongs to R(βi)
j for

some j > 0 and j is not in either U or V , then clearly v(βi)i (ti, U ∪ V ) ≤ v(βi)i (ti, U) + v
(βi)
i (ti, V ). If j is

in one of the two sets, without loss of generality let’s assume it is in U . Then v(βi)i (ti, U) + v
(βi)
i (ti, V ) =

vi(ti, U\{j}) + Vi(tij) + vi(ti, V ) ≥ vi(ti, V ∪ (U\{j})) + Vi(tij) = v
(βi)
i (ti, U ∪ V ).

Here we prove a stronger version of Lemma 2.

Lemma 38. For any β, any absolute constant η ∈ (0, 1) and any BIC mechanism M for subadditive valua-
tions {vi(ti, ·)}i∈[n] with ti ∼ Di for all i, there exists a BIC mechanismM (β) for valuations {v(βi)i (ti, ·)}i∈[n]
with ti ∼ Di for all i, such that

1.
∑

ti∈Ti fi(ti) ·
∑

S:j∈S σ
(β)
iS (ti) ≤

∑
ti∈Ti fi(ti) ·

∑
S:j∈S σiS(ti), for all i and j,

2. REV(M,v,D) ≤
1

1−η · REV(M (β), v(β), D) + 1
η ·
∑

i

∑
ti∈Ti

∑
S⊆[m] fi(ti) · σ

(β)
iS (ti) ·

(
v
(βi)
i (ti, S)− vi(ti, S)

)
.

REV(M,v,D) (or REV(M (β), v(β), D)) is the revenue of the mechanism M (or M (β)) while the buyers’
types are drawn from D and buyer i’s valuation is vi(ti, ·) (or v(βi)i (ti, ·)). σiS(ti) (or σ(β)iS (ti)) is the
probability of buyer i receiving exactly bundle S when her reported type is ti in mechanism M (or M (β)).

Proof of lemma 38: Readers who are familiar with the ε-BIC to BIC reduction [34, 2, 21] might have already
realized that the problem here is quite similar. Our proof will follow essentially the same approach.

First, we construct mechanism M (β), which has two phases:

Phase 1: Surrogate Sale

1. For each buyer i, create `− 1 replicas and ` surrogates sampled i.i.d. from Di. The value of ` will be
specified later.

2. Ask each buyer to report her type ti.

3. For each buyer i, create a weighted bipartite graph with the replicas and the buyer i on the left and the
surrogates on the right. The edge weight between a replica (or buyer i) with type ri and a surrogate
with type si is the expected value for a bidder with valuation v(βi)i (ri, ·) to receive buyer i’s interim
allocation in M when she reported si as her type subtract the interim payment of buyer i multiplied
by (1 − η). Formally, the weight is

∑
S σiS(si) · v(βi)i (ri, S) − (1 − η)pi(si), where pi(si) is the

interim payment for buyer i if she reported si.

4. Compute the VCG matching and prices on the bipartite graph created for each buyer i. If a replica
(or bidder i) is unmatched in the VCG matching, match her to a random unmatched surrogate. The
surrogate selected for buyer i is whoever she is matched to.

Phase 2: Surrogate Competition

1. Apply mechanism M on the type profiles of the selected surrogates ~s. Let Mi(~s) and Pi(~s) be the
corresponding allocated bundle and payment of buyer i.
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2. If buyer i is matched to her surrogate in the VCG matching, give her bundle Mi(~s) and charge her
(1 − η) · Pi(~s) plus the VCG price. If buyer i is not matched in the VCG matching, award them
nothing and charge them nothing.

Lemma 39 ([34]). If all buyers play M (β) truthfully, then the distribution of types of the surrogate chosen
by buyer i is exactly Di.

Proof. In the mechanism, first the buyer i’s type is sampled from the distribution, then we sampled ` − 1
replicas and ` surrogates i.i.d. from the same distribution. Now, imagine a different order of sampling. We
first sample the ` replicas and ` surrogates, then we pick one replica to be buyer i uniformly at random. The
two different orders above provide exactly the same joint distribution over the replicas, surrogates and buyer
i. So we only need to argue that in the second order of sampling, the distribution of types of the surrogate
chosen by buyer i is exactly Di. Note that the perfect matching (VCG matching plus the uniform random
matching with the leftover replicas/surrogates) only depends on the types but not the identity of the node
(replica or buyer i). So we can decide who is buyer i after we have decided the perfect matching. Since
buyer i is chosen uniformly at random among the replicas, the chosen surrogate is also uniformly at random.
Clearly, the distribution of the types of a surrogate chosen uniformly at random is also Di. The assumption
that buyer i is reporting truthfully is crucial, because otherwise the distribution of buyer i’s reported type
will be different from the type of a replica, and in that case, we cannot use the second sampling order.

Lemma 40. M (β) is a BIC mechanism with respect to valuation v(β).

Proof. We need to argue that for every buyer i reporting truthfully is a best response, if every other buyer is
truthful. In the VCG mechanism, buyer i faces a competition with the replicas to win a surrogate. If buyer
i has type ti, then her value for winning a surrogate with type si in the VCG mechanism is

∑
S σiS(si) ·

v
(βi)
i (ti, S)− (1− η)pi(si) due to Lemma 39. Clearly, if buyer i reports truthfully, the weights on the edges

between her and all the surrogates will be exactly her value for winning those surrogates. Since buyer i is
in a VCG mechanism, reporting the true edge weights is a dominant strategy for her, therefore reporting
truthfully is also a best response for her assuming the other buyers are truthful. It is critical that the other
buyers are reporting truthfully, otherwise we cannot invoke Lemma 39 and buyer i’s value for winning a
surrogate with type si may be different from the weight on the corresponding edge.

Lemma 41. For any i and j,
∑

ti∈Ti fi(ti) ·
∑

S:j∈S σ
(β)
iS (ti) ≤

∑
ti∈Ti fi(ti) ·

∑
S:j∈S σiS(ti).

Proof. The LHS is the ex-ante probability for buyer i to win item j in M (β), and the RHS is the corre-
sponding probability in M . By Lemma 39, we know the surrogate selected by buyer i is participating in
M against all other surrogates whose types are drawn from D−i. Therefore, the ex-ante probability for
the surrogate chosen by buyer i to win item j is the same as RHS. Clearly, the chosen surrogate’s ex-ante
probability for winning any item should be at least as large as the ex-ante probability for buyer i to win the
item in M (β).

Next, we want to compare REV(M (β), v(β), D) with REV(M,v,D). The following simple Lemma
relates both quantities to the expected prices charged to the surrogates by mechanism M . As in the proof
of Lemma 39, we change the order of the sampling. We first sample ` replicas and ` surrogates then select
a replica uniformly at random to be buyer i. Let ski and rki be the type of the k-th surrogate and replica,
si = (s1i , . . . , s

`
i), ri = (r1i , . . . , r

`
i ) and V (si, ri) be the VCG matching between surrogates and replicas

with types si and ri. We will slightly abuse notation by using ski (or rji ) ∈ V (si, ri) to denote that ski (or rji )
is matched in the VCG matching V (si, ri).
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Lemma 42. For every buyer i, her expected payments in M (β) is at least

(1− η) · Esi,ri

 ∑
ski ∈V (si,ri)

pi(s
k
i )

`

 ,
and her expected payments in M is

Esi

∑
k∈[`]

pi(s
k
i )

`

 .
Proof. The revenue ofM (β) contains two parts – the prices paid by the chosen surrogates and the revenue of
the VCG mechanism. Let’s compute the first part. For buyer i and each realization of ri and si only when the
buyer i’s chosen surrogate is in V (si, ri), she pays the surrogate price. Since each surrogate is selected with

probability 1/`, the expected surrogate price paid by buyer i is exactly (1− η) ·Esi,ri

[∑
ski ∈V (si,ri)

pi(s
k
i )
`

]
.

Since the VCG payments are nonnegative, we have proved our first statement.
The expected payment from buyer i inM is Eti∼Di [pi(ti)]. Since all ski is drawn fromDi, this is exactly

the same as Esi

[∑
k∈[`]

pi(s
k
i )
`

]
.

If the VCG matching is always perfect, then Lemma 42 already shows that the revenue of M (β) is at
least (1 − η) fraction of the revenue of M . But since the VCG matching may not be perfect, we need to
show that the total expected price from surrogates who are not in the VCG matching is small. We prove
this in two steps. First, we consider another matching X(si, ri) – a maximal matching that only matches
replicas and surrogates that have the same type, and show that the expected cardinality of X(si, ri) is close
to `. Then we argue that for any realization ri and si the total payments from surrogates that are in X(si, ri)
but not in V (si, ri) is small.

Lemma 43 ([34]). For every buyer i, the expected cardinality of a maximal matching that only matches
replicas and surrogates with the same type is at least `−

√
|Ti| · `.

The proof can be found in Hartline et al. [34].

Corollary 2. LetR = maxi,ti∈Ti maxS∈[m] vi(ti, S), then

Esi,ri

 ∑
ski ∈X(si,ri)

pi(s
k
i )

`

 ≥ Esi

∑
k∈[`]

pi(s
k
i )

`

−√ |Ti|
`
· R.

Proof. Since M is a IR mechanism when the buyers’ valuations are v, R ≥ pi(ti) for any buyer i and any
type ti of i. Our claim follows from Lemma 43.

Now we implement the second step of our argument. The plan is to show the total prices from surro-
gates that are unmatched by going from X(si, ri) to V (si, ri). For any si, ri, V (si, ri) ∪ X(si, ri) can be
decompose into a disjoint collection augmenting paths and cycles. If a surrogate is matched in X(si, ri)
but not in V (si, ri), then it must be the starting point of an augmenting path. The following Lemma upper
bounds the price of this surrogate.

Lemma 44 (Adapted from [21]). For any buyer i and any realization of si and ri, let P be an augmenting
path that starts with a surrogate that is matched in X(si, ri) but not in V (si, ri). It has the form of either
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(a)
(
s
ρ(1)
i , r

θ(1)
i , s

ρ(2)
i , r

θ(2)
i , . . . , s

ρ(k)
i

)
when the path ends with a surrogate, or

(b)
(
s
ρ(1)
i , r

θ(1)
i , s

ρ(2)
i , r

θ(2)
i , . . . , s

ρ(k)
i , r

θ(k)
i

)
when the path ends with a replica, where rθ(j)i is matched to

s
ρ(j)
i in X(si, ri) and matched to sρ(j+1)

i in V (si, ri) (whenever sρ(j+1)
i exists) for any j.∑

s
ρ(j)
i ∈P∩X(si,ri)

pi

(
s
ρ(j)
i

)
−

∑
s
ρ(j)
i ∈P∩V (si,ri)

pi

(
s
ρ(j)
i

)
≤

1

η
·
k−1∑
j=1

∑
S

σiS

(
s
ρ(j+1)
i

)
·
(
v
(βi)
i (r

θ(j)
i , S)− vi(rθ(j)i , S)

)
.

Proof. Since rθ(j)i is matched to sρ(j)i in X(si, ri), rθ(j)i must be equal to sρ(j)i . M is a BIC mechanism
when buyers valuations are v, therefore the expected utility for reporting the true type is better than lying.
Hence, the following holds for all j:∑

S

σiS

(
s
ρ(j)
i

)
· vi
(
r
θ(j)
i , S

)
− pi

(
s
ρ(j)
i

)
≥
∑
S

σiS

(
s
ρ(j+1)
i

)
· vi
(
r
θ(j)
i , S

)
− pi

(
s
ρ(j+1)
i

)
(14)

The VCG matching finds the maximum weight matching, so the total edge weights in path P ∩V (si, ri)
is at least as large as the total edge weights in path P ∩ X(si, ri). Mathematically, it is the following
inequalities.

• If P has format (a):

k−1∑
j=1

(∑
S

σiS

(
s
ρ(j+1)
i

)
· v(βi)i

(
r
θ(j)
i , S

)
− (1− η) · pi

(
s
ρ(j+1)
i

))
≥ (15)

k−1∑
j=1

(∑
S

σiS

(
s
ρ(j)
i

)
· v(βi)i

(
r
θ(j)
i , S

)
− (1− η) · pi

(
s
ρ(j)
i

))

• If P has format (b):

k−1∑
j=1

(∑
S

σiS

(
s
ρ(j+1)
i

)
· v(βi)i

(
r
θ(j)
i , S

)
− (1− η) · pi

(
s
ρ(j+1)
i

))
≥ (16)

k∑
j=1

(∑
S

σiS

(
s
ρ(j)
i

)
· v(βi)i

(
r
θ(j)
i , S

)
− (1− η) · pi

(
s
ρ(j)
i

))

Next, we further relax the RHS of inequality (15) using inequality (14).

RHS of inequality (15)

≥
k−1∑
j=1

(∑
S

σiS

(
s
ρ(j)
i

)
· vi
(
r
θ(j)
i , S

)
− pi

(
s
ρ(j)
i

))
+ η ·

k−1∑
j=1

pi

(
s
ρ(j)
i

)
(Lemma 36)

≥
k−1∑
j=1

(∑
S

σiS

(
s
ρ(j+1)
i

)
· vi
(
r
θ(j)
i , S

)
− pi

(
s
ρ(j+1)
i

))
+ η ·

k−1∑
j=1

pi

(
s
ρ(j)
i

)
(Inequality 14)
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We can obtain the following inequality by combining the relaxation above with the LHS of inequality (15)
and rearrange the terms.

1

η
·
k−1∑
j=1

∑
S

σiS

(
s
ρ(j+1)
i

)
·
(
v
(βi)
i

(
r
θ(j)
i , S

)
− vi

(
r
θ(j)
i , S

))
≥ pi

(
s
ρ(1)
i

)
− pi

(
s
ρ(k)
i

)
.

The inequality above is exactly the inequality in the statement of this Lemma when P has format (a).
Similarly, we have the following relaxation when P has format (b):

RHS of inequality (16)

≥
k∑
j=1

(∑
S

σiS

(
s
ρ(j)
i

)
· vi
(
r
θ(j)
i , S

)
− pi

(
s
ρ(j)
i

))
+ η ·

k∑
j=1

pi

(
s
ρ(j)
i

)
(Lemma 36)

≥
k−1∑
j=1

(∑
S

σiS

(
s
ρ(j+1)
i

)
· vi
(
r
θ(j)
i , S

)
− pi

(
s
ρ(j+1)
i

))
+ η ·

k∑
j=1

pi

(
s
ρ(j)
i

)
(Inequality 14 and M is IR)

Again, by combining the relaxation with the LHS of inequality (16), we can prove our claim when P has
format (b).

1

η
·
k−1∑
j=1

∑
S

σiS

(
s
ρ(j+1)
i

)
·
(
v
(βi)
i

(
r
θ(j)
i , S

)
− vi

(
r
θ(j)
i , S

))
≥ pi

(
s
ρ(1)
i

)
.

Lemma 45. For any β,

Esi,ri

 ∑
ski ∈X(si,ri)

pi(s
k
i )

`

 ≤
Esi,ri

 ∑
ski ∈V (si,ri)

pi(s
k
i )

`

+
1

η
·
∑
ti∈Ti

∑
S⊆[m]

fi(ti) · σ(β)iS (ti) ·
(
v
(βi)
i (ti, S)− vi(ti, S)

)
.

Proof. Due to Lemma 44, for any buyer i and any realization of ri and si, we have∑
ski ∈X(si,ri)

pi(s
k
i )

`
−

∑
ski ∈V (si,ri)

pi(s
k
i )

`
≤ 1

η · `
·

∑
ski ∈V (si,ri)

∑
S

σiS

(
ski

)
·
(
v
(βi)
i (r

ω(k)
i , S)− vi(rω(k)i , S)

)
,

where rω(k)i is the replica that is matched to ski in V (si, ri). If we take expectation over ri and si on
the RHS, the expectation means whenever mechanism M (β) awards buyer i (with type ti) bundle S, 1

η ·(
v
(βi)
i (ti, S)− vi(ti, S)

)
is contributed to the expectation. Therefore, the expectation of the RHS is the

same as
1

η
·

∑
ti∈Ti

∑
S⊆[m]

fi(ti) · σ(β)iS (ti) ·
(
v
(βi)
i (ti, S)− vi(ti, S)

) .

This completes the proof of the Lemma.

44



Now, we are ready to prove Lemma 38.

REV(M, v,D)

=
∑
i

Esi

∑
k∈[`]

pi(s
k
i )

`

 (Lemma 42)

≤
∑
i

Esi,ri

 ∑
ski ∈X(si,ri)

pi(s
k
i )

`

+

√
|Ti|
`
· R

 (Corollary 2)

≤
∑
i

Esi,ri

 ∑
ski ∈V (si,ri)

pi(s
k
i )

`


+

1

η
·
∑
i

∑
ti∈Ti

∑
S⊆[m]

fi(ti) · σ(β)iS (ti) ·
(
v
(βi)
i (ti, S)− vi(ti, S)

)
+
∑
i

√
|Ti|
`
· R (Lemma 45)

≤ 1

1− η
· REV(M (β), v(β), D)

+
1

η
·
∑
i

∑
ti∈Ti

∑
S⊆[m]

fi(ti) · σ(β)iS (ti) ·
(
v
(βi)
i (ti, S)− vi(ti, S)

)
+
∑
i

√
|Ti|
`
· R (Lemma 42)

Since |Ti| andR are finite numbers, we can take ` to be sufficiently large, so that
∑

i

√
|Ti|
` · R < ε for

any ε. Let P (β) be the set of all BIC mechanisms that satisfy the first condition in Lemma 38. Clearly, P (β)

is a compact set and contains all M (β) we constructed (by choosing different values for `). Notice that both
REV(M (β), v(β), D) and

∑
i

∑
ti∈Ti

∑
S⊆[m] fi(ti) ·σ

(β)
iS (ti) ·

(
v
(βi)
i (ti, S)− vi(ti, S)

)
are linear functions

over the allocation/price rules of mechanism M (β). Therefore,

REV(M, v,D)

≤ max
M(β)∈P (β)

 1

1− η
· REV(M (β), v(β), D) +

1

η
·
∑
i

∑
ti∈Ti

∑
S⊆[m]

fi(ti) · σ(β)iS (ti) ·
(
v
(βi)
i (ti, S)− vi(ti, S)

) .

This completes the proof of Lemma 38. 2
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