Data Management in the Cloud: Limitations and Opportunities

Daniel Abadi
Yale University
January 30th, 2009
Want milk with your breakfast?

• Buy a cow
 – Big upfront cost
 – Produces more (or less) milk than you need
 – Uses up resources
 – Time spent “maintaining it”
 – Unpleasant waste product

• Buy bottled milk
 – Continued cost
 – Buy what you need
 – Less resource intensive
 – No maintenance
 – Waste somebody else’s problem
Your Computer is a Cow

– Your computer
 • Big upfront cost
 • Produces more (or less) “milk” than you need
 • Uses up resources (electricity)
 • Time spent maintaining it
 • Produces unpleasant waste (heat, noise)

– What if you could get computing power even more conveniently than bottled milk?
Cloud Computing is Bottled Milk

• Companies willing to rent computing resources from their data centers
• Resources include storage, processing cycles, software stacks
• Google, Microsoft, Amazon, Sun, Hewlett-Packard, Yahoo, EMC, and AT&T all taking part
• E.g., for $0.10/hour Amazon will give you:
 – 1.7 GB memory
 – Equivalent of 1.2 GHz processor
 – 350GB storage
Cloud Computing Concerns

• What if my data or service provider becomes unavailable?
• What if my supplier suddenly increases how much they charge me?
• What about security?
• What about lock in?
Cloud Computing Concerns

Remember: bottled milk is SOOO much cheaper and more convenient!
Key Cloud Characteristics for DBMS Deployment

- Compute power is elastic
 - But only if workload is parallelizable
 - Want shared-nothing DBMS

- Data is stored at an untrusted host

- Data is replicated, often across large geographic distances
 - Done under the covers
 - E.g., Amazon’s “regions” and “availability zones”
Xactional DBMS Applications

- Problems:
 - Xactional DBMSs are typically not shared-nothing
 - It is hard to maintain ACID guarantees in the face of replication across large distances
 - CAP theorem: consistency, availability, tolerance to partitions
 - ... choose two
 - SimpleDB, PNUTS relax consistency
 - BigTable, Microsoft SQL Server Data Services relax atomicity
 - Large risks when storing operational data on an untrusted host
Analytical DBMS Applications

- Great fit for cloud deployment:
 - Shared-nothing is becoming standard
 - E.g., Teradata, Vertica, DATAllegro, Dataupia, Greenplum, Aster Data, DB2 DPF, Exadata, Netezza
 - ACID guarantees are not needed
 - Sensitive data can be left out of the analysis
- $5 billion market (1/3rd of DBMS market)
Cloud DBMS Wish List

- **Efficiency**
 - Pricing model makes this paramount

- **Fault tolerance**
 - Failures are common
 - Want no data loss
 - Want no work loss
Cloud DBMS Wish List

• Ability to run in a heterogeneous environment
 – It is nearly impossible to keep machines all running at the same speed
• Ability to interface with BI products
 – I.e. SQL, ODBC, JDBC interfaces
• Scale, scale, scale!
Data Analysis in the Cloud

- Parallel databases are the obvious choice right?
 - Interface with BI products
 - Compete fiercely on efficiency/performance
 - Scale horizontally
Parallel Database Scalability

![Graph showing running time vs. nodes for parallel database scalability](image)
Parallel Database Scalability

• Try scaling them to 1000 nodes
 – Strange network bottlenecks
 – Restarting queries on a failure actually matter
 – Heterogeneous node effects
We want something ...

- That can handle enormous scale ...
- Does not restart queries upon a failure...
- Designed for heterogeneous environments...

- MapReduce?
But MapReduce ...

• Doesn’t interface with BI applications
• Is extremely inefficient
Efficiency

- CREATE TABLE UserVisits (sourceIP VARCHAR(16), destURL VARCHAR(100), visitDate DATE, adRevenue FLOAT, userAgent VARCHAR(64), countryCode VARCHAR(3), langCode VARCHAR(6), searchWord VARCHAR(32), duration INT);

- SELECT SUBSTR(sourceIP, 1, 7), SUM(adRevenue) FROM UserVisits GROUP BY SUBSTR(sourceIP, 1, 7);
Conclusion

• Data analysis well suited for the cloud
 – No current software meets all elements on wish-list
 – A hybrid between parallel databases and MapReduce is called for (Kamil Bajda-Pawlikowski and Azza Abouzeid to the rescue)
Come Join the Yale DB Group!