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 Abstract - Top-k query has been widely studied recently 
in many applied fields. Fagin et al. [3] proposed an 
efficient algorithm, the Threshold Algorithm (i.e. TA), to 
process top-k queries. However, in many cases, TA does 
not terminate even if the final top-k results have been 
found for some time. Based on these, we propose a novel 
algorithm: Density Threshold Algorithm (i.e. DTA), which 
is designed to minimize the useless accesses of a top-k 
query, and introduce a novel indexing structure, Density 
Index, to support our algorithms. However, we proved the 
DTA is not instance optimal in Fagin’s notion and we also 
propose an instance optimal algorithm named Selective-
Density Threshold Algorithm (i.e. S-DTA). Finally, 
extensive experiments show that our algorithms have 
significant improvement on the efficiency, compared with 
the TA algorithm. 
 
 Index Terms - Database query processing, Algorithms, 
Indexes. 
 

I.  INTRODUCTION 

 Ranking aware queries, or top-k queries, have been 
widely studied recently in many applied fields such as 
information retrieval, multimedia databases and data mining. 
The main reason for such attention is that top-k queries avoid 
overwhelming the user with large numbers of uninteresting 
answers which are resource-consuming.   

A general and simple model proposed by Fagin et al. [3] is 
that the dataset consists of m sorted lists with n data items. 
Under this model, Fagin et al. [3] proposed the efficient 
Threshold Algorithm (i.e. TA). To measure the optimality of 
an algorithm, they defined a notion of optimality, instance 
optimality and proved the instance optimality of TA.  

However, in many cases, TA does not terminate even if the 
final top-k results have been found for some time, which will 
bring more cost and delay to the queries. The main reason for 
such useless accesses is the threshold value is not low enough 
to satisfy the terminate condition of TA. To speed up the 
reduction of the threshold value, U. Güntzer et al. [4] used the 
reducing speed of the accessed items to predict the speed of 
the unknown items in the same list. They considered that it 
could speed up the reduction of the threshold value if the list 
with the largest predicted value was chosen to be accessed in 
every step. Our target is similar with U. Güntzer but we 
reduce the threshold value through choosing the section with 
the largest lean value and accessing the lists section by 

section, based on the Density Index set up in the pre-
computing phase. 

In this paper, we study the efficient top-k queries using 
pre-computed analysis and indexing method. We propose a 
novel algorithm: Density Threshold Algorithm (i.e. DTA), and 
we also turn DTA into an instance optimal algorithm named 
Selective-Density Threshold Algorithm (i.e. S-DTA). Finally, 
extensive experiments show that our algorithms have 
significant improvement on the efficiency, compared with the 
TA algorithm. 
 

II.  COMPUTATION MODEL AND TA ALGORITHM 

Our model of the dataset can be described as follows [3]: 
assume the database D consists of m sorted lists, which are 
denoted as L1, L2 … Lm. Each sorted list consists of n data 
items. We may refer to Li as list i. Each entry of Li is of the 
form (x, si(x)) where x is an object and si(x) is the ith local 
score of x as a positive real number in the interval [0, 1]. 
Sorted list means that objects in each list are sorted in 
descending order by the si(x) value. For a given object x, x has 
a total score of f(x)=f(s1(x), s2(x) … sm(x)), where the m-
dimensional aggregate function f is supposed to be 
increasingly monotonic: 

Definition 2.1 Aggregate Monotone Function [3]. An 
aggregate function f is monotone if f (a1, a2 … am) ≤ f (a1’, 
a2’ … am’), whenever ai ≤ ai’ for every i. 

In this paper, we assume the aggregate function is 
weighted summation function, yielding
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function in applications.  
Each data item can be accessed through sorted access or 

random access. Sorted access iteratively reads data items 
sequentially, whereas a random access is a request for a data 
item in some list given the object’s ID. The middleware cost 
of a top-k query algorithm is aScS + aRcR, where aS is the 
number of sorted accesses performed, aR is the number of 
random accesses performed, cS is the cost per sorted access, 
and cR is the cost per random access. 

Our task is to determine the top-k objects, that is, k objects 
with the highest total scores. To solve the top-k query 
described above, Fagin et al. [3] proposed the threshold 
algorithm (i.e. TA) as described in Fig. 1.    

 
 

*Corresponding author    
**Neil Z. Gong is now a postgraduate in EECS, UC Berkeley. This work was 
completed when Neil Z. Gong was undergraduate student of USTC. 



Threshold Algorithm (TA) 
1. Do sorted access in parallel to each of the m lists. As an 

object is seen through sorted access in some list, do 
random access to the other lists to find all its missing 
local scores, and compute its total score. Maintain a set Y 
containing the k objects whose total scores are the 
highest among all the objects seen so far. 

2. For each list Li, let be si the bottom score of Li, which is 
the last local score seen under sorted access in Li. Define 
the threshold value  to be  τ = f (s1, s2… sm).  

3. Halt whenτ ≤ Mk, where Mk = min{ f(x) | x ∈ Y}. 
Figure 1. Threshold Algorithm 

III.  DENSITY THRESHOLD ALGORITHM 

Before proposing our algorithm, we first introduce an 
efficient indexing structure, Density Index to support the 
DTA. 

Firstly, we divide each attribute list into b sections and the 
jth section Snj consists of the items whose local scores is in the 
associated score interval (1 – j × (1/b), 1 – (j – 1) × (1/b) ], 
where b is a positive integer and j = 1, 2 … b. Items with 
score 0 belong to the bth section Snb.  

Obviously, a section is a sorted sub-list of one attribute 
list. 

Definition 3.1 Density. For section Snj, let size be the 
number of items in Snj. If size is positive, the density of Snj is 
1/size, denoted as dj. Sections of zero size do not have density.  

Definition 3.2 Head Item and Tail Item. For section Snj, 
head item is the first item in Snj while tail item is the last one. 

Obviously, the head item has the highest local score in the 
section whereas the tail item is of the lowest score.  

Density Index is an indexing structure to remember the 
density information of every section in every list. It can be m 
indexing lists corresponding to m attribute lists. Sections of 
zero size are removed from the index.  

Now we show the Density Threshold Algorithm in this 
section.  

Definition 3.3 Availability. An item in Li is available if 
and only if all the items above it in Li have been sorted or 
random accessed before while the item itself has not been 
sorted accessed before. Similarly we say a section is available 
if and only if one of its items is available.  

Definition 3.4 Lean Value. For section Snj in the ith list 
and aggregation function 
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Snj is widj.  
Obviously, in order to speed up the reduction of the 

threshold value, we need to access the available section with 
the largest lean value. Based on this, we now propose the 
Density Threshold Algorithm (i.e., DTA), which is described 
by the pseudo-code in Fig. 2. 

Theorem 3.1. If the aggregation function f is monotone, 
then DTA correctly finds the top-k answers.  

Proof: Let set Y be the result set DTA returned. According 
to the algorithm, DTA halts if and only if Y.size = k and τ ≤ 
Mk. Hence, for every object y ∈ Y and every z ∉ Y: 

Density Threshold Algorithm (DTA) 
Pre-computing Phase: 
 Build the Density Index of the given database.  
Computing Phase: 
1: Y = ∅, τ = 0, Mk = 0, si = 1 where i = 1, 2 ...m. 
2: while (Y.size < k or τ >Mk) do 
3:     Let Snj be the section with the largest lean value in the  

available sections according to the Density Index (if   
the largest lean value is reached for more than one 
sections, any of them can be chosen randomly).  

4:     for item (x, si(x)) = from the head item down to the tail 
item of Snj  do 

5:        si = si(x). 
6:        τ = f (s1, s2… sm). 
7:        if object x has not been accessed before then 
8:             get the missing local scores of the object x and 

calculate the total score f(x); 
9:             if (Y.size < k) then 
10:               insert x into Y; 
11:               Let t be the object with the lowest total score in Y  

and Mk be its total score; 
12:           else 
13:               if (f(x) >Mk) then 
14:                     remove t from Y and insert x into Y; 
15:                     Let t be the object with the lowest total score  

in Y and Mk be its total score; 
16:               if (τ ≤ Mk) then 
17:                     go to 20. 
18:     end for. 
19: end while. 
20: Return Y. 

Figure 2. Density Threshold Algorithm 
Case 1: If z has been seen before DTA halts and finally 

not in Y, the fact is that there exist at least Y.size = k objects 
with higher total scores than z.  

Case 2: If z has not been seen by DTA and assume that the 
local scores of z are si(z) where i = 1, 2 ...m, then we have si(z) 
≤si. Therefore, f(z) ≤f (s1, s2… sm) =τ ≤ Mk. Since Mk is the 
lowest total score in Y, every y has f(y) ≥Mk ≥f(z). 

Therefore, z has no chance to be one top-k answer in both 
cases, as desired. □ 

 

IV.  SELECTIVE-DENSITY THRESHOLD ALGORITHM 

To measure the optimality of an algorithm, Fagin et al. [3] 
defined a notion of optimality, instance optimality as 
following.  

Definition 4.1 Instance Optimality [3]. We say that an 
algorithm 𝔅𝔅 is instance optimal over A and D if 𝔅𝔅 ∈ A and if 
for every 𝒜𝒜 ∈ A and every 𝔇𝔇 ∈ D we have cost(𝔅𝔅, 𝔇𝔇) = 
O(cost(𝒜𝒜, 𝔇𝔇)), that is, there are constants c and c’ satisfying 
cost(𝔅𝔅, 𝔇𝔇) ≤ c ∙ cost(𝒜𝒜, 𝔇𝔇) + c’.  

We first show an example that demonstrates DTA is not 
instance optimal. 

 
 



TABLE I.   DATASET OF EXAMPLE 1 

L1 L2   
(R1, 1.00) (Rn,1.00) 
(R2, 0.95) (Rn-1,0.85) 

...... 
(Ri , 0.9 + (n – 1 – i)× 0.05

3n −
) 

...... 

...... 
(Ri , 0.75 + (i – 2)× 0.10

3n −
) 

and (R1, 0.80) 
...... (Rn-1,0.90) 

(Rn, 0.30) (R2, 0.75) 
 

Example 1 Assume m = 2, k = 1, f(x) = 0.5 × s1(x) + 0.5 × 
s2(x). The dataset is illustrated in Table 1, where i is from 3 to 
n – 2. Here we set b = 10 in DTA. 

Obviously the top-1 object is R1 and TA performs only 4 
sorted accesses and 4 random accesses. However, since the 
lean value of the available section in L1 is always smaller than 
that in L2, L2 is chosen to be accessed all the time. Therefore, 
DTA calls 4 3

2
n −  +  

sorted accesses and as many random 

accesses. Since n could be arbitrary large, algorithm DTA is 
not  an instance optimal algorithm. □ 

The reason  DTA is not instance optimal is that DTA 
“selects” some lists to access instead of all lists in parallel like 
TA. By doing this selection, DTA may do fewer accesses in 
most databases but may “miss” some important information in 
some particular databases like Example 1. Nevertheless, we 
can force DTA to be instance optimal by a little modify of 
DTA. We call the modified algorithm “Selective- Density 
Threshold Algorithm (i.e. S-DTA)”, which is described by the 
pseudo-code in Fig. 3. 

We note the access cost of S-DTA is at most v times as TA 
where v is a positive integer. So S-DTA is instance optimal. 
Since the optimal ratio of TA is m + m(m− 1)cR / cS, the 
optimal ratio of S-DTA is v(m + m(m− 1)cR / cS) under some 
natural assumption [3].  

 

V. EXPERIMENTS 

In this section, we conduct extensive experiments to 
evaluate the performance of our algorithms. Our algorithms 
are implemented in C/C++ language. We perform our 
experiments on a 2-CPU server with 8GB shared memory and 
each CPU is 4-core Intel Xeon E5430 2.66GHz. 

We do experiments on three synthetic datasets and all 
generated local scores belong to the interval [0, 1]. The three 
synthetic datasets are produced to model different input 
scenarios; they are UI, NI and CO, respectively. All of them 
are generated using the same methodology in [5] [7] [10]. 

For synthetic datasets, our default settings for different 
parameters are shown in Table 2. We choose m to be the 
varying parameter in one of our tests. As a result, the 
aggregate function f(x) ought to vary with m. Since DTA and 
S-DTA are designed to determine that which attribute list 
should be accessed in the query, we should distinguish the 
attributes with different aggregate weights. Typically, we set  

Selective -Density Threshold Algorithm (S-DTA) 
Pre-computing Phase: 
 Build the Density Index of the given database.  
Computing Phase: 
1: Y = ∅, τ = 0, Mk = 0, select = 0, si = 1 where i = 1, 2 ...m. 
2: while (Y.size < k or τ >Mk) do 
3:     … // the same as line 3 in DTA. 
4:     for item (x, si(x)) = from the head item down to the tail 

item of Snj  do 
5:        select = select + 1. 
6:        if select mod v == 0 then 
7:              for each l ∈ {1, 2 … m} do in parallel 
8:                   (x, sl(x)) = Get_next_item (L1, … ,Lm). 

// get next item from one of the lists L1, … ,Lm in parallel. 
9:                    sl = sl(x). 
10:                    … // the same as DTA from line 6 to line 17. 
11:             end for.  
12:      else 
13:             … // the same as DTA from line 5 to line 17. 
14:    end for. 
15: end while. 
16: Return Y. 

Figure 3. Selective-Density Threshold Algorithm 
the aggregate function with Fibonacci numbers Fi = 1, 1, 2, 3, 
5 …  : 
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As cR is usually much higher than cS , we assume cR =10 
and cS =1 in our tests. Therefore, the access cost of the queries 
is aS + 10aR. 

Now we show the experimental results in the figures 
below: 

Fig. 4 illustrates the experimental results in which the 
parameters are set as those in Table 2 except that m, which 
varies from 6 to 12 with step 2. The results over the databases 
we considered show us that our algorithms perform more 
efficient compared with TA as the m becoming larger. This is 
mainly because the selection on accessing the lists in DTA 
and S-DTA makes great difference on the efficiency over 
datasets with many attributes while parallel accessing become 
weaker as a result of its neglect of the distinction between the 
attributes. Moreover, we note that the access cost of S-DTA is 
always higher than DTA and lower than TA. However, over 
some databases such as Example 1, S-DTA performs much 
lower than DTA while TA turns out to be the most efficient 
algorithm in this case. Obviously, since S-DTA selectively 
calls DTA (mainly) and TA in the query, it combines the 
efficiency of DTA and the instance optimality of TA. 
Therefore, the access cost of S-DTA must be between those of 
TA and DTA.  

The experimental results shown in Fig. 5 where the 
parameter k varies while the others are set as those in Table 2 
indicate the access costs of our algorithms are significantly 
lower than that of TA over the considered datasets. Besides, 
the access costs increase much more slightly than that when m 
is the changed parameter. Furthermore, we can also observe  



                                     

(a) over UI                                                                  (b) over NI                                                              (c) over CO 
Figure 4. Access Cost v.s. m over synthetic datasets, n=1,000,000, k=100, b=1000, v=10 

                                     
(a) over UI                                                              (b) over NI                                                               (c) over CO 

Figure 5. Access Cost v.s. k over synthetic datasets, n=1,000,000, m=8, b=1000, v=10 
 
that the access cost of S-DTA keeps between those of TA and 
DTA. 

VI. CONCLUSIONS 

Based on the observation on the TA algorithm, we 
proposed the novel and efficient Density Threshold Algorithm 
(DTA) to minimize the useless accesses of a top-k query and 
introduced an efficient indexing structure called Density Index 
to support our algorithms. Thereafter, we proved the DTA is 
not instance optimal in Fagin’s notion and we also turned the 
DTA into an instance optimal algorithm named Selective-
Density Threshold Algorithm (S-DTA). Finally, we did 
extensive experiments to compare our algorithms and the TA 
algorithm. The results showed that our algorithms had 
significant improvement on the performance of TA algorithm. 
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