
Efficient Top-K Query Algorithms Using Density Index

Dongqu Chen1, Guang-Zhong Sun1* and Neil Zhenqiang Gong1**

1Key Laboratory on High Performance Computing, Anhui Province
School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui, P.R. China

cdq2012@mail.ustc.edu.cn; gzsun@ustc.edu.cn; neilz.gong@berkeley.edu

 Abstract - Top-k query has been widely studied recently
in many applied fields. Fagin et al. [3] proposed an
efficient algorithm, the Threshold Algorithm (i.e. TA), to
process top-k queries. However, in many cases, TA does
not terminate even if the final top-k results have been
found for some time. Based on these, we propose a novel
algorithm: Density Threshold Algorithm (i.e. DTA), which
is designed to minimize the useless accesses of a top-k
query, and introduce a novel indexing structure, Density
Index, to support our algorithms. However, we proved the
DTA is not instance optimal in Fagin’s notion and we also
propose an instance optimal algorithm named Selective-
Density Threshold Algorithm (i.e. S-DTA). Finally,
extensive experiments show that our algorithms have
significant improvement on the efficiency, compared with
the TA algorithm.

 Index Terms - Database query processing, Algorithms,
Indexes.

I. INTRODUCTION

 Ranking aware queries, or top-k queries, have been
widely studied recently in many applied fields such as
information retrieval, multimedia databases and data mining.
The main reason for such attention is that top-k queries avoid
overwhelming the user with large numbers of uninteresting
answers which are resource-consuming.

A general and simple model proposed by Fagin et al. [3] is
that the dataset consists of m sorted lists with n data items.
Under this model, Fagin et al. [3] proposed the efficient
Threshold Algorithm (i.e. TA). To measure the optimality of
an algorithm, they defined a notion of optimality, instance
optimality and proved the instance optimality of TA.

However, in many cases, TA does not terminate even if the
final top-k results have been found for some time, which will
bring more cost and delay to the queries. The main reason for
such useless accesses is the threshold value is not low enough
to satisfy the terminate condition of TA. To speed up the
reduction of the threshold value, U. Güntzer et al. [4] used the
reducing speed of the accessed items to predict the speed of
the unknown items in the same list. They considered that it
could speed up the reduction of the threshold value if the list
with the largest predicted value was chosen to be accessed in
every step. Our target is similar with U. Güntzer but we
reduce the threshold value through choosing the section with
the largest lean value and accessing the lists section by

section, based on the Density Index set up in the pre-
computing phase.

In this paper, we study the efficient top-k queries using
pre-computed analysis and indexing method. We propose a
novel algorithm: Density Threshold Algorithm (i.e. DTA), and
we also turn DTA into an instance optimal algorithm named
Selective-Density Threshold Algorithm (i.e. S-DTA). Finally,
extensive experiments show that our algorithms have
significant improvement on the efficiency, compared with the
TA algorithm.

II. COMPUTATION MODEL AND TA ALGORITHM

Our model of the dataset can be described as follows [3]:
assume the database D consists of m sorted lists, which are
denoted as L1, L2 … Lm. Each sorted list consists of n data
items. We may refer to Li as list i. Each entry of Li is of the
form (x, si(x)) where x is an object and si(x) is the ith local
score of x as a positive real number in the interval [0, 1].
Sorted list means that objects in each list are sorted in
descending order by the si(x) value. For a given object x, x has
a total score of f(x)=f(s1(x), s2(x) … sm(x)), where the m-
dimensional aggregate function f is supposed to be
increasingly monotonic:

Definition 2.1 Aggregate Monotone Function [3]. An
aggregate function f is monotone if f (a1, a2 … am) ≤ f (a1’,
a2’ … am’), whenever ai ≤ ai’ for every i.

In this paper, we assume the aggregate function is
weighted summation function, yielding

1
() ()

m

i i
i

f x w s x
=

=∑ and

1
1

m

i
i

w
=

=∑ (wi ≠ 0), the most common form of aggregate

function in applications.
Each data item can be accessed through sorted access or

random access. Sorted access iteratively reads data items
sequentially, whereas a random access is a request for a data
item in some list given the object’s ID. The middleware cost
of a top-k query algorithm is aScS + aRcR, where aS is the
number of sorted accesses performed, aR is the number of
random accesses performed, cS is the cost per sorted access,
and cR is the cost per random access.

Our task is to determine the top-k objects, that is, k objects
with the highest total scores. To solve the top-k query
described above, Fagin et al. [3] proposed the threshold
algorithm (i.e. TA) as described in Fig. 1.

*Corresponding author
**Neil Z. Gong is now a postgraduate in EECS, UC Berkeley. This work was
completed when Neil Z. Gong was undergraduate student of USTC.

Threshold Algorithm (TA)
1. Do sorted access in parallel to each of the m lists. As an

object is seen through sorted access in some list, do
random access to the other lists to find all its missing
local scores, and compute its total score. Maintain a set Y
containing the k objects whose total scores are the
highest among all the objects seen so far.

2. For each list Li, let be si the bottom score of Li, which is
the last local score seen under sorted access in Li. Define
the threshold value to be τ = f (s1, s2… sm).

3. Halt whenτ ≤ Mk, where Mk = min{ f(x) | x ∈ Y}.
Figure 1. Threshold Algorithm

III. DENSITY THRESHOLD ALGORITHM

Before proposing our algorithm, we first introduce an
efficient indexing structure, Density Index to support the
DTA.

Firstly, we divide each attribute list into b sections and the
jth section Snj consists of the items whose local scores is in the
associated score interval (1 – j × (1/b), 1 – (j – 1) × (1/b)],
where b is a positive integer and j = 1, 2 … b. Items with
score 0 belong to the bth section Snb.

Obviously, a section is a sorted sub-list of one attribute
list.

Definition 3.1 Density. For section Snj, let size be the
number of items in Snj. If size is positive, the density of Snj is
1/size, denoted as dj. Sections of zero size do not have density.

Definition 3.2 Head Item and Tail Item. For section Snj,
head item is the first item in Snj while tail item is the last one.

Obviously, the head item has the highest local score in the
section whereas the tail item is of the lowest score.

Density Index is an indexing structure to remember the
density information of every section in every list. It can be m
indexing lists corresponding to m attribute lists. Sections of
zero size are removed from the index.

Now we show the Density Threshold Algorithm in this
section.

Definition 3.3 Availability. An item in Li is available if
and only if all the items above it in Li have been sorted or
random accessed before while the item itself has not been
sorted accessed before. Similarly we say a section is available
if and only if one of its items is available.

Definition 3.4 Lean Value. For section Snj in the ith list
and aggregation function

1
() ()

m

i i
i

f x w s x
=

=∑ , the lean value of

Snj is widj.
Obviously, in order to speed up the reduction of the

threshold value, we need to access the available section with
the largest lean value. Based on this, we now propose the
Density Threshold Algorithm (i.e., DTA), which is described
by the pseudo-code in Fig. 2.

Theorem 3.1. If the aggregation function f is monotone,
then DTA correctly finds the top-k answers.

Proof: Let set Y be the result set DTA returned. According
to the algorithm, DTA halts if and only if Y.size = k and τ ≤
Mk. Hence, for every object y ∈ Y and every z ∉ Y:

Density Threshold Algorithm (DTA)
Pre-computing Phase:
 Build the Density Index of the given database.
Computing Phase:
1: Y = ∅, τ = 0, Mk = 0, si = 1 where i = 1, 2 ...m.
2: while (Y.size < k or τ >Mk) do
3: Let Snj be the section with the largest lean value in the

available sections according to the Density Index (if
the largest lean value is reached for more than one
sections, any of them can be chosen randomly).

4: for item (x, si(x)) = from the head item down to the tail
item of Snj do

5: si = si(x).
6: τ = f (s1, s2… sm).
7: if object x has not been accessed before then
8: get the missing local scores of the object x and

calculate the total score f(x);
9: if (Y.size < k) then
10: insert x into Y;
11: Let t be the object with the lowest total score in Y

and Mk be its total score;
12: else
13: if (f(x) >Mk) then
14: remove t from Y and insert x into Y;
15: Let t be the object with the lowest total score

in Y and Mk be its total score;
16: if (τ ≤ Mk) then
17: go to 20.
18: end for.
19: end while.
20: Return Y.

Figure 2. Density Threshold Algorithm
Case 1: If z has been seen before DTA halts and finally

not in Y, the fact is that there exist at least Y.size = k objects
with higher total scores than z.

Case 2: If z has not been seen by DTA and assume that the
local scores of z are si(z) where i = 1, 2 ...m, then we have si(z)
≤si. Therefore, f(z) ≤f (s1, s2… sm) =τ ≤ Mk. Since Mk is the
lowest total score in Y, every y has f(y) ≥Mk ≥f(z).

Therefore, z has no chance to be one top-k answer in both
cases, as desired. □

IV. SELECTIVE-DENSITY THRESHOLD ALGORITHM

To measure the optimality of an algorithm, Fagin et al. [3]
defined a notion of optimality, instance optimality as
following.

Definition 4.1 Instance Optimality [3]. We say that an
algorithm 𝔅𝔅 is instance optimal over A and D if 𝔅𝔅 ∈ A and if
for every 𝒜𝒜 ∈ A and every 𝔇𝔇 ∈ D we have cost(𝔅𝔅, 𝔇𝔇) =
O(cost(𝒜𝒜, 𝔇𝔇)), that is, there are constants c and c’ satisfying
cost(𝔅𝔅, 𝔇𝔇) ≤ c ∙ cost(𝒜𝒜, 𝔇𝔇) + c’.

We first show an example that demonstrates DTA is not
instance optimal.

TABLE I. DATASET OF EXAMPLE 1

L1 L2
(R1, 1.00) (Rn,1.00)
(R2, 0.95) (Rn-1,0.85)

......
(Ri , 0.9 + (n – 1 – i)× 0.05

3n −
)

......

......
(Ri , 0.75 + (i – 2)× 0.10

3n −
)

and (R1, 0.80)
...... (Rn-1,0.90)

(Rn, 0.30) (R2, 0.75)

Example 1 Assume m = 2, k = 1, f(x) = 0.5 × s1(x) + 0.5 ×
s2(x). The dataset is illustrated in Table 1, where i is from 3 to
n – 2. Here we set b = 10 in DTA.

Obviously the top-1 object is R1 and TA performs only 4
sorted accesses and 4 random accesses. However, since the
lean value of the available section in L1 is always smaller than
that in L2, L2 is chosen to be accessed all the time. Therefore,
DTA calls 4 3

2
n −  +  

sorted accesses and as many random

accesses. Since n could be arbitrary large, algorithm DTA is
not an instance optimal algorithm. □

The reason DTA is not instance optimal is that DTA
“selects” some lists to access instead of all lists in parallel like
TA. By doing this selection, DTA may do fewer accesses in
most databases but may “miss” some important information in
some particular databases like Example 1. Nevertheless, we
can force DTA to be instance optimal by a little modify of
DTA. We call the modified algorithm “Selective- Density
Threshold Algorithm (i.e. S-DTA)”, which is described by the
pseudo-code in Fig. 3.

We note the access cost of S-DTA is at most v times as TA
where v is a positive integer. So S-DTA is instance optimal.
Since the optimal ratio of TA is m + m(m− 1)cR / cS, the
optimal ratio of S-DTA is v(m + m(m− 1)cR / cS) under some
natural assumption [3].

V. EXPERIMENTS

In this section, we conduct extensive experiments to
evaluate the performance of our algorithms. Our algorithms
are implemented in C/C++ language. We perform our
experiments on a 2-CPU server with 8GB shared memory and
each CPU is 4-core Intel Xeon E5430 2.66GHz.

We do experiments on three synthetic datasets and all
generated local scores belong to the interval [0, 1]. The three
synthetic datasets are produced to model different input
scenarios; they are UI, NI and CO, respectively. All of them
are generated using the same methodology in [5] [7] [10].

For synthetic datasets, our default settings for different
parameters are shown in Table 2. We choose m to be the
varying parameter in one of our tests. As a result, the
aggregate function f(x) ought to vary with m. Since DTA and
S-DTA are designed to determine that which attribute list
should be accessed in the query, we should distinguish the
attributes with different aggregate weights. Typically, we set

Selective -Density Threshold Algorithm (S-DTA)
Pre-computing Phase:
 Build the Density Index of the given database.
Computing Phase:
1: Y = ∅, τ = 0, Mk = 0, select = 0, si = 1 where i = 1, 2 ...m.
2: while (Y.size < k or τ >Mk) do
3: … // the same as line 3 in DTA.
4: for item (x, si(x)) = from the head item down to the tail

item of Snj do
5: select = select + 1.
6: if select mod v == 0 then
7: for each l ∈ {1, 2 … m} do in parallel
8: (x, sl(x)) = Get_next_item (L1, … ,Lm).

// get next item from one of the lists L1, … ,Lm in parallel.
9: sl = sl(x).
10: … // the same as DTA from line 6 to line 17.
11: end for.
12: else
13: … // the same as DTA from line 5 to line 17.
14: end for.
15: end while.
16: Return Y.

Figure 3. Selective-Density Threshold Algorithm
the aggregate function with Fibonacci numbers Fi = 1, 1, 2, 3,
5 … :

1
()

m
i

i

Ff x
SUM=

=∑  si(x), where
1

m

i
i

SUM F
=

=∑ .

As cR is usually much higher than cS , we assume cR =10
and cS =1 in our tests. Therefore, the access cost of the queries
is aS + 10aR.

Now we show the experimental results in the figures
below:

Fig. 4 illustrates the experimental results in which the
parameters are set as those in Table 2 except that m, which
varies from 6 to 12 with step 2. The results over the databases
we considered show us that our algorithms perform more
efficient compared with TA as the m becoming larger. This is
mainly because the selection on accessing the lists in DTA
and S-DTA makes great difference on the efficiency over
datasets with many attributes while parallel accessing become
weaker as a result of its neglect of the distinction between the
attributes. Moreover, we note that the access cost of S-DTA is
always higher than DTA and lower than TA. However, over
some databases such as Example 1, S-DTA performs much
lower than DTA while TA turns out to be the most efficient
algorithm in this case. Obviously, since S-DTA selectively
calls DTA (mainly) and TA in the query, it combines the
efficiency of DTA and the instance optimality of TA.
Therefore, the access cost of S-DTA must be between those of
TA and DTA.

The experimental results shown in Fig. 5 where the
parameter k varies while the others are set as those in Table 2
indicate the access costs of our algorithms are significantly
lower than that of TA over the considered datasets. Besides,
the access costs increase much more slightly than that when m
is the changed parameter. Furthermore, we can also observe

(a) over UI (b) over NI (c) over CO
Figure 4. Access Cost v.s. m over synthetic datasets, n=1,000,000, k=100, b=1000, v=10

(a) over UI (b) over NI (c) over CO

Figure 5. Access Cost v.s. k over synthetic datasets, n=1,000,000, m=8, b=1000, v=10

that the access cost of S-DTA keeps between those of TA and
DTA.

VI. CONCLUSIONS

Based on the observation on the TA algorithm, we
proposed the novel and efficient Density Threshold Algorithm
(DTA) to minimize the useless accesses of a top-k query and
introduced an efficient indexing structure called Density Index
to support our algorithms. Thereafter, we proved the DTA is
not instance optimal in Fagin’s notion and we also turned the
DTA into an instance optimal algorithm named Selective-
Density Threshold Algorithm (S-DTA). Finally, we did
extensive experiments to compare our algorithms and the TA
algorithm. The results showed that our algorithms had
significant improvement on the performance of TA algorithm.

ACKNOWLEDGMENT

 This work is supported by the National Science
Foundation of China under the grant [No. 60873210].

REFERENCES
[1] I. Ilyas, G. Beskales, M. A. Soliman. “A Survey of Top-k Query

Processing Techniques in Relational Database Systems,” ACM Computing
Surveys, 2008.

[2] J. Yuan, G. Z. Sun, Y. Tian, G. Chen and Z. Liu. “Selective-NRA
Algorithms for Top-k Queries,” APWeb/ WAIM 2009.

[3] R. Fagin, A. Lotem M. Naor. “Optimal aggregation algorithms for
middleware,” PODS, 2001.

[4] U. Güntzer, W. T. Balke, W. Kieβling. “Optimizing Multi-Feature Queries
for Image Databases,” 26TH VLDB, 2000.

[5] Z. Q. Gong, G. Z. Sun, J. Yuan,Y. Zhong. “Efficient Top-k Query
Algorithms Using K-skyband Partition,” INFOSCALE, 2009.

[6] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein. Introduction to
Algorithms. MIT Press, 2001.

[7] Z. Q. Gong, G. Z. Sun, D. Q. Chen. “Parallel Algorithms for Top-k Query
Processing,” Unpublished .

[8] I. Ilyas, R. Shah, W. Aref, J. Vitter, A. Elmagarmid. “Rank-Aware Query
Optimization,” ACM SIGMOD, 2004.

[9] R. Fagin. “Combining fuzzy information from multiple systems,” J.
Comput. System Sci, 58 (1), 1999.

[10] D. Q. Chen, G. Z. Sun, Z. Q. Gong, J. Yuan. “Efficient Approximate
Top-k Query Algorithm Using Cube Index,” Unpublished.

[11] R. Fagin, R. Kumar, D. Sivakumar. “Comparing Top K Lists,” ACM-
SIAM SODA, 2003.

[12] S. Chaudhuri, N. Dalvi and R. Kaushik. “Robust Cardinality and Cost
Estimation for Skyline Operator,” ICDE, 2006.

