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Abstract. Exact top-k query processing has attracted much attention recently 
because of its wide use in many research areas. Since missing the truly best 
answers is inherent and unavoidable due to the user’s subjective judgment, and 
the cost of processing exact top-k queries is highly expensive for datasets with 
huge volume, it is intriguing to answer approximate top-k query instead. In this 
paper, we first define a novel kind of approximate top-k query, called 𝜇𝜇-
approximate top-k query. Then we introduce an efficient index structure, i.e. 
cube index, based on which, we propose our novel Cube Index Algorithm 
(CIA). We analyze the complexity of both constructing cube index and CIA 
algorithm. Moreover, extensive experiments show that CIA performs much 
better than the well-known approximate TAθ algorithm [3].  
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1   Introduction 

Exact top-k query processing has gained more and more attention recently because 
of its wide use in many fields, such as information retrieval [16][17], multimedia 
databases [20][21], P2P and sensor networks [18][19], etc. The main reason for such 
attention is that top-k queries avoid overwhelming the user with a large number of 
uninteresting answers that are resource-consuming.  

However, two main reasons convince us to abandon exact top-k query processing. 
First, the top-k query concept is heuristic anyway. Hardly any user is interested in all 
the exact k answers of a top-k query. Instead, they may be only interested in one or 
several relevant objects in the top-k (e.g. 500 or 2000) answers. So, due to the 
subjective judgment of the user, missing the truly best answers is inherent and 
unavoidable. This argument enlightens us to relax exact top-k query to approximate 
top-k query. Second, the cost of processing exact top-k queries is highly expensive for 
datasets with huge volume, and the size of datasets in practice is always quite huge. 
So it’s intriguing to answer approximate top-k query instead of exact top-k query.  

To answer approximate top-k queries, Fagin et al. propose the TA𝛉𝛉 algorithm in 
[3], which is based on the TA algorithm. Based on TAθ, Theobald et al. [6] introduced 
a scheme to associate probabilistic guarantees with approximate top-k answers. In [8], 
Amato used a proximity measure to decide if a data region should be inspected or not. 
Only data regions whose proximity to the query region is greater than a specified 
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threshold are accessed. This method is used to rank the nearest neighbors to some 
target data object in an approximate manner. Approximate top-k query processing has 
been also studied in peer-to-peer environments. The KLEE system (Michel et al. [2]) 
addressed this problem, where distributed aggregation queries are processed based on 
index lists located at isolated sites. KLEE assumes no random accesses are made to 
index lists located at each peer. 

In this paper, we first define a novel approximate top-k query, called 𝜇𝜇-
approximate top-k query. Then we introduce an efficient index structure, i.e. cube 
index, based on which, we propose our new Cube Index Algorithm (CIA). We 
analyze the complexity of both constructing cube index and CIA algorithm. 
Moreover, extensive experiments show that CIA performs much better than the well-
known approximate TAθ algorithm  

The rest of this paper is organized as follows: First, we define the computation 
model formally and review the TAθ algorithm in Section 2. In Section 3, we describe 
our method on setting up the cube index and then analyze its time complexity. Based 
on these, we show our algorithm CIA and analyze its cost in Section 4. Thereafter, we 
show the experimental results in Section 5. Finally, in Section 6, we conclude this 
paper and introduce our future work. 

2   Computation Model and TAθ Algorithm 

In this section, we describe the model of top-k problem and review the TAθ 
algorithm [3]. 

Our model of the dataset can be described as follows: assume the database D 
consists of n objects, which are denoted as x1, x2 … xn. Each object x is an m-
dimensional vector (s1(x), s2(x) … sm(x)), where si(x) is the ith local score of x as a real 
number in the interval [0, 1]. For a given object x, x has a total score of f(x)= f(s1(x), 
s2(x) … sm(x)), where the m-dimensional aggregate function f is supposed to be 
increasingly monotonic: 

Definition 2.1 Monotonic Function. An aggregate function f is increasingly 
monotonic if f (a1, a2 … am) ≤ f (a1’, a2’ … am’), whenever ai ≤ ai’ for every i. 
In this paper, we assume the aggregate function is weighted summation function, 
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weighted summation function is increasingly monotonic. Exact top-k query is to find 
k objects with the highest total scores. For approximate top-k query, Fagin et al. [3] 
defined a θ-approximation to the top-k answers:  

Definition 2.2 𝜃𝜃-Approximation [3]. Let Y be a collection of k objects such that for 
each y among Y and each z not among Y, there are θf(y) ≥ f(z), where θ >1. Then Y is 
one of the top-k answers with 𝜃𝜃-approximation and θ is the relative approximation 
coefficient. 

To solve the θ-approximation top-k query, Fagin et al. [3] proposed the TAθ 
algorithm, based on the threshold algorithm (i.e. TA). TAθ is described in Fig. 1. 

3   Cube Index 
Before proposing our algorithm, we first introduce an efficient indexing structure  



Threshold Algorithm with θ-Approximation (TA𝛉𝛉) 
Pre-computing Phase: 
For each attribute i ∈ {1, 2 … m}, get every si(xj) where j ∈ {1, 2 … n} and insert 
them into a sorted list Li. Sorted list means that objects in each list are sorted in 
descending order by the si(xj) value. 
Computing Phase: 
1: Do sorted access in parallel to each of the m lists. As an object is seen through 
sorted access in some list, do random access to the other lists to find all its 
remaining local scores, and compute its overall score. Maintain a set Y containing 
the k objects whose overall scores are the highest among all the objects seen so far. 
2: For each list Li, let si be the last local score seen under sorted access in Li. 
Define the threshold value τ to be τ = f (s1, s2… sm).. 
3: Halt when θ∙Mk ≥ τ, where Mk = min{ f (x) | x ∈ Y}. 

Fig. 1.  Threshold Algorithm with θ-Approximation 
called cube index to support such μ-approximation top-k query processing. 

3.1   Description of Cube Index 

We map the database to an m-dimensional hyperspace [0, 1]m; each object xj with 
scores (s1(xj), s2(xj) …sm(xj)) in the database is mapped to an m-dimensional point pj = 
(s1(xj), s2(xj) …sm(xj)) in [0, 1]m. We will not distinguish between object x and its 
corresponding point p discussed below. Similarly, si(p) is the value of p’s ith 
dimension and f(p) is p’s total score. 

Now we define a 𝜇𝜇-approximation to the top-k answers.  
Definition 3.1 𝜇𝜇-Approximation. Let Y be a collection of k objects such that for 

each y among Y and each z not among Y, there are f(y)+𝜇𝜇 ≥ f(z), where 0 < 𝜇𝜇 ≤ 1. 
Then Y is one of the top-k answers with 𝜇𝜇-approximation and 𝜇𝜇 is the proportional 
approximation coefficient.  

Definition 3.2 Dominate [7]. Point p1 dominates point p2 if and only if for each i ∈ 
{1, 2 … m}, si(p1) ≥ si(p2) and there exists at least one member j of {1, 2 … m} 
satisfying sj(p1) > sj(p2).  

Observation 3.1. If point p1 dominates point p2, then f(p1) > f(p2), where f is an 
aggregate monotone function.  

Proof. We can easily get the correctness of Observation 3.1 according to the 
definitions of aggregate monotone function and dominate.          □ 

Definition 3.3 Skyline [7]. The skyline of a dataset D is the set of points that are 
not dominated by any point in D.  

Definition 3.4 Bottom Point. The bottom point of a hypercube is the vertex whose 
values of every dimension are all lowest in the hypercube.  

For example, the bottom point of the 3-dimensional cube [0.2, 0.3] × [0.1, 0.2] × 
[0.5, 0.6] is (0.2, 0.1, 0.5).  

Observation 3.2. All other points in a hypercube dominate the bottom point.  
Proof. We can easily get the correctness of Observation 3.2 according to the 

definitions of dominate and bottom point.           □ 
Now we show the cube partition method on the m-dimensional hyperspace [0, 1]m, 



which is described as follows:  
Firstly, we set the length of the edge of each hypercube as μ, where μ ∈ [0, 1]. 

Then we divide the interval [0, 1] into several μ-segments from 1 to 0 until the rest is 
shorter than μ. Each dimension is divided in this way so that the m-dimensional 
hyperspace [0, 1]m is partitioned into several hypercubes or sub-hyperspaces. 
Thereafter, we classify all the points in database into several sets: Point pi belongs to 
bpi’s associated point set Si if and only if pi is in the hypercube whose bottom point is 
bpi.  

We call this partition method the μ-cube partition.  
Definition 3.5 Sky Point. For a μ-cube partition, the sky point is the point whose 

values in every dimension are all 1 − μ, that is, the point (1 −  μ, 1 −  μ… 1 −  μ).  
Apparently, sky point is the very bottom point which dominates all the other 

bottom points and the set {sky point} is the skyline of the set of bottom points.  
Definition 3.6 Neighbor. Bottom point bp1 is a neighbor of bottom point bp2 if and 

only if they satisfy 1 2
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Definition 3.7 Superior. Bottom point bp1 is a superior of bottom point bp2 if and 
only if bp1 is a neighbor of bp2 and bp1 dominates bp2.  

Definition 3.8 Inferior. Bottom point bp1 is an inferior of bottom point bp2 if and 
only if bp1 is a neighbor of bp2 and bp1 is dominated by bp2.  

Discussions on special cases: 
1) For the points in the hypercube whose bottom point is the sky point belong to 

the 0th set S0.  
2) The points on the intersecting hyperplane of several neighboring hypercubes 

belong to the hypercube whose bottom point dominates the others’ bottom point.  
3) The points coinciding with bpi belong to set Si.  
4) If Si.size = 0 and i ≠ 0, then remove bpi from the set of bottom points. 

Meanwhile, for each inferior inf of bpi, regard all the superiors of bpi as inf’s 
superiors too; for each superior sup of bpi, regard all the inferiors of bpi as sup’s 
inferiors too. 

Definition 3.9 μ-Cube Index. For a μ-cube partition, the μ-cube index is an index 
list or array whose entries are ids of the bottom points. Each bottom point bpi has its 
associated point set Si as well as its superiors’ ids and inferiors’ ids. 

3.2   Complexity Analysis of μ-Cube Indexing Method 

Now we analyze the time complexity of the method on setting up the cube index, 
which is done in the pre-computing phase.  

According to the description, the most time-consuming calculations in a μ-cube 
partition are to find the superiors and inferiors of each bottom point and to classify all 
the points in database into their corresponding sets.  

Actually, the superiors and inferiors of each bottom point bp can be determined by 
the following two simple formulas: 
1. For each i ∈ {1, 2 … m} and si(bp) ≠ 0, bottom point bp’ is one inferior of bp, 

satisfying  



a. si(bp’) = (si(bp)−𝜇𝜇)⋅H(si(bp)−𝜇𝜇), where H(x) is the Heaviside step function; 
b. sj(bp’) = sj(bp) for each j ∈ {1, 2 … m} and j ≠ i. 

2. Bottom point bp’ is one inferior of bp if and only if bp is one superior of bp’.  

There are 1
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µ
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 bottom points in total, so the time complexity to find the superiors 

and inferiors of each bottom point is 1
m
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On the other hand, each point p in database belongs to set Si if and only if set Si’s 
corresponding bottom point bpi satisfies that for each i ∈ {1, 2 … m},  

a. si(bp) = 1 ( ) 1 ( )
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 if si(p) ≠ 1, where H(x) is the 

Heaviside step function; 
b. si(bp) = 1 −  μ when si(p) = 1.  

Similarly, there are n points in database, so the time complexity to classify all the 
points in database into their corresponding sets is O(mn).  

Therefore, the total time complexity in the pre-computing phase is 
1
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4   The Cube Index Algorithm 

4.1   Description of Cube Index Algorithm 

Based on the μ-cube index, we now propose a novel algorithm to answer the 𝜇𝜇-
approximation top-k query: the Cube Index Algorithm (i.e. CIA), which is described 
by the pseudo-code in Fig. 2. 

Here Selectively Add in the pseudo-code is a sub- method to improve the precision 
of the algorithm qualitatively. It can be to add the points at random, or to add them 
from the points in skyline of Si or others ways.  

4.2   μ-Approximation of Cube Index Algorithm 

To proof the 𝜇𝜇-approximation of CIA, we first introduce three lemmas and a 
corollary as follows. 

Lemma 4.1. Set T is always the top-(T.size) answers to the set of bottom points. 
Proof. (By mathematical induction) Basis: Set T = {sky point} is the top-1 

answers to the set of bottom points. Actually, sky point dominates all the other bottom 
points for the formula of μ-cube index and the definition of sky point. According to 
Observation 3.1, the sky point is the top-1 in the set of bottom points. 

Inductive step: Assume that set T is the top-j answers to the set of bottom points  
now, then the bottom point bpi with the highest score in CL is the top-(j + 1) in the set 
of bottom points and is supposed to be moved to set T from CL. 



Cube Index Algorithm (CIA) 
Pre-computing Phase: 
Execute the normalization then set up the μ-cube index on the database. 
Computing Phase: 
1: Y = ∅, CL = ∅, T = {sky point}, where Y is the result set while CL is the sorted 

candidate list according to the total scores and T is a temp set.  
2: if S0.size ≤ k then 
3:    add all points in S0 into Y 
4: else 
5:    Selectively Add k points in S0 into Y. 
6: bpi = sky point. 
7: while (Y.size < k) do 
8:    for each inferior inf of bpi do 
9:       if inf has not been accessed before and all superiors of inf is among T then 
10:     Access inf and insert it into CL 
11:     else 
12:     Continue. 
13:   if CL.size > k −  Y.size then 
14:     Only keep the first k −  Y.size points in CL. 
15:   Let bpi be the bottom point with the highest score in CL and move it into T. 
16:   if Si.size ≤ k − Y.size then 
17:     add all points in Si into Y 
18:   else 
19:     Selectively Add k − Y.size points in Si into Y. 
20: Return Y. 

 Fig. 2.  Cube Index Algorithm 
Actually, only the points in the CL now have the chance to be the top-(j + 1). 

Otherwise, for a point bp which is not in CL or set T, either bp has been accessed 
before or bp has at least one superior that is not in set T. In the first case, according to 
the algorithm, CIA halts if and only if Y.size = k, so Y.size < k before the algorithm 
halts. If bp has been accessed before and be removed from CL, then there exist at least 
T.size+(k− Y.size)≥ T.size+1 = j + 1 points whose total scores are higher than bp so 
that bp even has no chance to be one of the top-(j + 1) answers. In the other case, 
according to the definition of superior and Observation 3.1, every superior sup of bp 
satisfies f(sup) > f(bp), so once sup is not in the top-j answers, or set T, bp has no 
chance to be one of the top-(j + 1) answers. Furthermore, for each point bp in CL, 
where bp ≠ bpi, bp is impossible to be one of the top-(j + 1) answers because even bpi 
is not in the top-j answers. Therefore, bpi is the top-(j + 1) in the set of bottom points. 

Conclusion: When CIA halts, set T is the top-(T.size) answers to the set of bottom 
points.              □ 

Corollary 4.1. Bottom points are moved into set T in descending order of total 
score. 

Proof. From the proof of Lemma 4.1, we easily conclude that bottom points are 
moved into set T in descending order of total score.         □ 

Lemma 4.2. When CIA halts, there is at most one bottom point bpj in set T 
satisfying Sj ⊈ Y, where bpj is the one with the lowest score in set T and for each bpi ∈  



T and bpi ≠ bpj, Si ⊆ Y. 
Proof. According to the algorithm, the sub-method Selectively Add is executed if 

and only if Sj.size > k − Y.size. In this case, we Selectively Add k − Y.size points in Sj 
into Y so that Sj ⊈ Y. Thus there would be Y.size = k once the Selectively Add has been 
executed, where CIA halts. So the sub-method Selectively Add can be executed at 
most once. For Corollary 4.1, bpj is the one with the lowest score in set T. However, 
in the case that Si.size ≤ k − Y.size, we add the whole Si into set Y so that Si ⊆ Y.  

Therefore, when CIA halts, there is at most one bottom point bpj in set T satisfying 
Sj ⊈ Y, where bpj is the one with the lowest score in set T and for each bpi ∈ T and bpi 
≠ bpj, Si ⊆ Y.                □ 

Lemma 4.3. For point pi∈Si and point pj∈Sj, if f(bpi) ≥ f(bpj), then f(pi)+𝜇𝜇 ≥ f(pj). 
Proof. According to the formula of μ-cube index and the definition of bottom 

point, for each l ∈ {1, 2 … m}, there is sl(bpj) ≤ sl(pj) ≤ sl(bpj) +𝜇𝜇. Considering 

1
( ) ( )

m

l l
l

f x w s x
=

=∑ , where sl(x) ∈ [0, 1] and 
1

1
m

l
l

w
=

=∑ , we have  

1 1 1
( ) ( ) ( ) ( ) ( )

m m m

j j l l j l l j l j
l l l

f bp f p w s p w s p w f bpµ µ µ
= = =

 ≤ ≤ + = + = + ∑ ∑ ∑
 for Observation 3.1 and Observation 3.2. We can also get f(bpi)≤f(pi) in the same way.  

Therefore, f(pi)+𝜇𝜇 ≥ f(bpi) +𝜇𝜇 ≥ f(bpj) +𝜇𝜇 ≥ f(pj).       □ 
Theorem 4.1. CIA based on μ-cube index finds the top-k answers with 𝜇𝜇-

approximation. 
Proof. According to the algorithm, if bpi ∉ T, any member of Si has no chance to 

be added into set Y. That is, for each y ∈ Y and y ∈ Sy, there must be bpy ∈ T. And 
from Lemma 4.1, we know that set T is the top-(T.size) answers to the set of bottom 
points. For each point z ∉ Y and z ∈ Sz and for each y ∈ Y and y ∈ Sy, if bpz ∉ T, then 
f(bpy) ≥ f(bpz), so f(y)+𝜇𝜇 ≥ f(z) for Lemma 4.3. In the other case, if bpz ∈ T, since z ∉ 
Y, meaning Sz ⊈ Y, bpz is the one with the lowest score in set T according to Lemma 
4.2. So we also have f(bpy) ≥ f(bpz) and f(y)+𝜇𝜇 ≥ f(z).  

Therefore, for each y among Y and each z not among Y, there is f(y)+𝜇𝜇 ≥ f(z). That 
is, CIA based on μ-cube index finds the top-k answers with 𝜇𝜇-approximation.     □ 

4.3   Cost Analysis of Cube Index Algorithm 

According to Fagin et al. [3], the cost of the top-k query is proportional to the 
times of accessing or aggregating the objects. For the CIA, the cost is the number of 
bottom points accessed in the query.  

First, let bp be the last bottom point added into set T. Denote B1 = {sky point} + 
{bp | bp is a bottom point which is accessed in the query} and B2 = T – {bp}. 
According to Lemma 4.1 and Corollary 4.1, B2 is the top-(T.size − 1) answers to the 
set of bottom points.  

Theorem 4.2. The cost of the CIA is T.size – 2 + skyline( 2B ).size, where 2B  is 
the complementary set of B2. 

Proof. We only need to show that B1 = B2 + skyline( 2B ). Actually, it can be 
proved by apagoge. 

Case 1: If there exists bp ∈ B2 + skyline( 2B ) but bp ∉ B1, then we know bp is not  



the sky point. 
sub-case 1: If bp ∈ B2, since B2 = T – {bp} ⇒ B2 ⊂ T, according to the algorithm, 

bp has no chance to be added into set T if bp has not been accessed. So it will conflict 
with the algorithm.  

sub-case 2: If bp ∈ skyline( 2B ), then all the superiors of bp is in B2 because there 
is no any point in 2B  dominating bp according to the definition of skyline. However, 
in CIA, all points whose all superiors are in T must be accessed before the CIA halts. 
As B2 ⊂ T, bp must be accessed, which contradicts the assumption that bp ∉ B1.  

Case 2: If there exists bp ∈ B1 but bp ∉ B2 + skyline( 2B ), then bp belongs to 
neither B2 nor skyline( 2B ). The fact that bp ∉ B2 indicates bp is not in the top-(T.size 
− 1) answers to the set of bottom points so bp is not the sky point because {sky point} 
is the top-1 answers. Therefore, bp has chance to be accessed if and only if all the 
superiors of bp are in B2 for the algorithm. However, bp ∉ skyline( 2B ), meaning that 
bp has at least one superior that is not in T so bp cannot be accessed. Thus the 
assumption has no chance to be true.  

Therefore, B1 = B2 + skyline( 2B ). Besides, since skyline( 2B ) ⊆ 2B , B2 ⋂ 
skyline( 2B ) = ∅. So B1.size = B2.size + skyline( 2B ).size. Moreover, B2.size = T.size – 1 
and the cost of the CIA is B1.size – 1, considering that the sky point is not accessed in 
the algorithm. 

Therefore, the cost of the CIA is B1.size – 1 = T.size – 1 + skyline( 2B ).size – 1 = 
T.size – 2 + skyline( 2B ).size.           □ 

5   Experiments 

In this section, we conduct extensive experiments to evaluate the performance of 
our algorithm. Our algorithm is implemented in C/C++ language. We perform our 
experiments on an 8-CPU server with 8GB shared memory and each CPU is 4-core 
Intel Xeon E5430 2.66GHz.  

5.1 Turning μ-Approximation into 𝜃𝜃 - Approximation 

According to the definitions of 𝜇𝜇- approximation and 𝜃𝜃-approximation, if set Y is 
the top-k answers with 𝜇𝜇-approximation, for each y among Y and each z not among Y, 
there are f(y)+𝜇𝜇 ≥ f(z). So we have (1 ) ( ) ( )
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In our experiments, we run the CIA over the databases to find the value of f(y) and 
then the TA𝜃𝜃 runs on 𝜃𝜃-approximation of
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as the criterion of approximation to run our tests. 



5.2 Evaluation Metrics 

In our tests, the following measures are collected for efficiency comparison [6]: 
accesses: the number of items accessed in the query without duplication; 
precision: the fraction of top-k results in an approximate result that belongs to the 

exact top-k result; 
recall: the fraction of top-k results in the exact result that were returned by the 

approximate top-k query; 
rank distance: the footrule distance [14] between the ranks of the approximate 

top-k results and their true ranks in the exact top-k result, i.e., 
1
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where truerank(i) is the ith returned object’s true rank in the exact top-k result.  
score error: the absolute error between approximate and exact top-k scores, i.e.,  
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where scorei
(approx) is the total score of the ith object in the approximate top-k 

result while scorei
(exact) is the total score of the ith object in the exact top-k result.  

Because the precision and the recall have the same denominator k, they have 
identical values in our setup. We regard the recall as a formal measure in our tests, 
instead of precision.  

5.3 Description of Datasets 

We do experiments on two synthetic datasets. All generated local scores belong 
to the interval [0, 1]. The two synthetic datasets are produced to model different 
input scenarios. They are UI and NI respectively. UI contains datasets in which 
objects’ local scores are uniformly and independently generated for the different 
lists. NI contains datasets in which objects’ local scores are normally and 
independently generated for the different lists. For synthetic datasets, our default 
settings for different parameters are shown in Table 1. As mentioned above, 
approximate top-k queries are usually applied in the cases that the values of n is 
fairly large, which could cause considerable cost and delays to return the exact query 
answers. Therefore, in our tests, the default number of data items in each list is 
1,000,000, i.e. n=1,000,000. Typically, users are interested in a small number of top 
answers, thus we set k = 500 as the default value of k, which is a tiny value compared 
with n. We set m as 3 since most previous works evaluate their algorithms on 
datasets with 3 lists like [4]. Finally, we set 0.05 as the default value of 𝜇𝜇. 

We run our tests with default precision (𝜇𝜇 = 0.05) and high precision (𝜇𝜇 = 0.005) 
over each dataset respectively. Furthermore, we run the algorithms on the datasets  

Table 1. Default values of experimental parameters. 
Parameters Default Values 
The number of objects, i.e. n 1,000,000 
The number of lists, i.e. m 3 
The number of results returned, i.e. k 500 
The precision of results returned, i.e. 𝜇𝜇 0.05 
Aggregate function 0.2s1+0.3s2+0.5s3 



with large value of k (2000) to observe the effect of k on the performance. 
For real datasets, we choose El Nino dataset1 and Forest Cover (FC) dataset2. El 

Nino dataset contains 93935 objects and FC dataset contains 581012 objects. El Nino 
contains oceanographic and surface meteorological readings taken from a series of 
buoys positioned throughout the equatorial Pacific. The data is expected to aid in the 
understanding and prediction of El Nino/Southern Oscillation (ENSO) cycles. FC 
contains 581012 forest land cells (i.e. objects), having four attributes (i.e. lists): 
horizontal distance to nearest surface water features, vertical distance to nearest 
surface water features, horizontal distance to nearest roadways, and horizontal 
distance to nearest wildfire ignition points. For both real datasets, we choose 3 lists 
and normalize the dataset with the formula: ( )is t Min

Max Min
−
−

, where si(t) is t’s ith local 

score. 

5.4 Experimental Results 

Fig. 3 illustrates the experimental results where all the parameters are set as 
default values. Apparently, CIA has significant reduction on the number of accesses 
over every dataset. Compared with the TA𝜃𝜃, CIA reduces more than 99% accesses 
during the query process. Apart from this, CIA is also dominant on other evaluation 
metrics, namely recall, rank distance and score error over every dataset but FC, 
where CIA is a little inferior to TA𝜃𝜃 on these aspects. 

The experimental results shown in Fig. 4 when k = 2000 on each dataset are 
similar to the results when all the parameters are set as default values. From the 
results, we can see that CIA also has great reduction on the number of accesses 
compared with the TA𝜃𝜃. In terms of the other aspects, CIA performs much better than 
TA𝜃𝜃 over every dataset except FC.  

Fig. 5 shows us the experimental results where the parameters are set as default 
values except that 𝜇𝜇, the precision of results returned is 0.005. Obviously, CIA is 
more efficient than TA𝜃𝜃 considerably but is transcended in other measures. Therefore, 
CIA has lower accuracy compared with TA𝜃𝜃 but still keeps its efficiency in the 
queries with high precision. 

 
Results for UI accesses recall rank distance score error 
TA𝜃𝜃 10527 0.50200 281.78800 0.008390 
CIA 7 0.75600 88.404000 0.002428 
Results for NI accesses recall rank distance score error 
TA𝜃𝜃 10703 0.52600 242.084000 0.007883 
CIA 7 0.76800 88.180000 0.002601 
Results for EI accesses recall rank distance score error 
TA𝜃𝜃 1890 0.29200 702.208000 0.006722 
CIA 2 0.66600 124.584000 0.001354 
Results for FC accesses recall rank distance score error 
TA𝜃𝜃 5031 0.99200 0.506000 0.000017 
CIA 61 0.83800 35.214000 0.001281 

Fig. 3. Performance of CIA vs. TA𝜃𝜃 when k = 500 and 𝜇𝜇 = 0.05 

1From UCI KDD. http://kdd.ics.uci.edu/databases/el_nino/el_nino.html 
2From UCI KDD. http://kdd.ics.uci.edu/databases/covertype/covertype.html 



Results for UI accesses recall rank distance score error 
TA𝜃𝜃 28778 0.77900 232.320500 0.003214 
CIA 24 0.83700 158.745000 0.001843 
Results for NI accesses recall rank distance score error 
TA𝜃𝜃 29375 0.80200 194.234000 0.002834 
CIA 26 0.85100 136.511000 0.001665 
Results for EI accesses recall rank distance score error 
TA𝜃𝜃 4519 0.70300 463.897000 0.006876 
CIA 4 0.94750 17.667000 0.000258 
Results for FC accesses recall rank distance score error 
TA𝜃𝜃 10084 0.94150 23.150500 0.000418 
CIA 138 0.89650 75.043000 0.001175 

Fig. 4. Performance of CIA vs. TA𝜃𝜃 when k = 2000 and 𝜇𝜇 = 0.05 

Results for UI accesses recall rank distance score error 
TA𝜃𝜃 40683 0.99800 0.030000 0.000001 
CIA 532 0.97400 1.112000 0.000031 
Results for NI accesses recall rank distance score error 
TA𝜃𝜃 40371 0.99999 0.000001 0.000001 
CIA 539 0.97800 0.678000 0.000023 
Results for EI accesses recall rank distance score error 
TA𝜃𝜃 8941 0.99999 0.000001 0.000001 
CIA 22 0.96200 2.200000 0.000023 
Results forFC accesses recall rank distance score error 
TA𝜃𝜃 10482 0.99999 0.000001 0.000001 
CIA 552 0.97400 0.840000 0.000027 

Fig. 5. Performance of CIA vs. TA𝜃𝜃 when k = 500 and 𝜇𝜇 = 0.005 

Summary: From all the experimental results, we know that CIA improves 
significantly not only on the number of accesses, but also on other evaluation metrics 
in the queries with default precision. In addition, we can also learn the fact that CIA 
still keeps its efficiency and accuracy when the value of k is considerable large. 
However, CIA is not dominant on all the evaluation metrics over some datasets, like 
FC in our tests. Finally, in the queries with high precision, our algorithm is 
considerably superior to TA𝜃𝜃 on the number of accesses but have little advantage on 
other respects. 

6. Conclusions and Future Work 

In this paper, we analyzed the model of the top-k queries and gave some 
observations. To measure the approximation of the top-k answers, we defined a novel 
approximation, 𝜇𝜇-approximation to the top-k answers. Then we introduce an efficient 
indexing structure called 𝜇𝜇-cube index to support this kind of approximate query. 
Based on the 𝜇𝜇-cube index on the dataset, we proposed our algorithm, the Cube Index 
Algorithm to answer the 𝜇𝜇-approximation top-k queries. The main advantage of CIA 
is that we choose the bottom point of a hypercube to approximately represent the 
points in the hypercube and run the algorithm to find the top-T.size in the set of 



bottom points so that the number of accesses can be reduced significantly. Extensive 
experimental results on both generated and real-world datasets show that our 
algorithm owns higher accuracy with less cost, compared with TA𝛉𝛉.  

In the future work, we plan to turn our algorithm into exact algorithm based on 
the cube index ideas. 
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