
Parallel Algorithms for Top-k Query Processing
Neil Zhenqiang Gong1

EECS Department
UC Berkeley
Berkeley, CA

neilz.gong@berkeley.edu

Guang-Zhong Sun
School of Computer Science and

Technology
University of Science and

Technology of China
Hefei, P. R. China
gzsun@ustc.edu.cn

Dongqu Chen
School of Computer Science and

Technology
University of Science and

Technology of China
Hefei, P. R. China

cdq2012@mail.ustc.edu.cn

Abstract—The general problem of answering top-k queries can be
modeled using lists of objects sorted by their local scores. Fagin et
al. proposed the “middleware cost” for a top-k query algorithm,
and proposed the efficient sequential Threshold Algorithm (TA).
However, since the size of the dataset can be incredible huge, the
middleware cost of sequential TA may be intolerable. So, in this
paper, we propose parallel algorithms to process top-k queries
and analyze their middleware costs. Intuitively, a naive parallel
algorithm, called PTA (parallel-TA), evenly partitions the origin-
al dataset into P (the number of processors) subdatasets. Each
processor finds top-k results of one corresponding subdataset
using TA algorithm. Then these results are merged to get the
final top-k answers. Motivated by the idea of partitioning objects,
we take a further step to partition D into n subdatasets according
to their degree of domination. Based on this partition, we propose
EPTA (Enhanced-PTA) algorithm. Under PRAM-CRCW model,
the middleware cost of PTA is 2(/)O nm P while the average
middleware cost of EPTA is 2 -1((ln) / (-1)!)mO km n m under the
assumption that scores in different lists are independently
distributed, where n is the dataset size and m is the number of
lists. Extensive experiments show that the speedup ratios of
EPTA are significantly higher than those of PTA.

Keywords: Top-k query; TA; Parallel top-k algorithm;

I. INTRODUCTION
Assume there are n objects and every object

has m attributes, for each attribute the object has a local score.
These local scores can be aggregated to an overall score by an
aggregate function g , and we want to know which k objects
have the largest overall scores. This scenario is generalized as
“top-k queries”. For example, there are many kinds of cell
phones in the market. Each cell phone may have price and
standby time attributes. Each attribute has a numeric score
ranging in the interval [0, 1], where the score of price attribute
is reverse proportional to price while the score of standby time
attribute is proportional to standby time. Bob prefers a cheap
cell phone, and does not care much about the standby time. So
he may issue a top-k query with aggregate function as g =
0.8 0.2price standby time× + × . On the other hand, Alice prefers
a longer standby time cell phone rather than a cheaper one. So
she may issue a top-k query with aggregate function
as g = 0.2 0.8price standby time× + × .

Top-k queries have attracted considerable attention because
of its wide use in many areas such as P2P systems and sensor

networks [4][5], network and system monitoring [6][7],
information retrieval [8][9][13], spatial data analysis [14][15],
etc. The main reason for such attention is that top-k queries
avoid overwhelming the user with large numbers of
uninteresting answers which are resource-consuming.

A general and simple model proposed by Fagin et al.[16] is
that the dataset consists of m sorted lists with n data items.
Each data item can be accessed through sorted access or
random access. Sorted access iteratively reads data items
sequentially, whereas a random access is a request for a data
item in some list given the object’s ID. The middleware cost of
a top-k query algorithm is s s r ra c a c+ , where sa is the number of
sorted accesses performed, ra is the number of random
accesses performed, sc is the cost per sorted access, and rc is
the cost per random access. Under this model, Fagin et al.[16]
proposed the efficient sequential Threshold Algorithm (TA).

However, since the size of the dataset can be incredible
huge, the middleware cost of sequential TA may be intolerable.
So, in this paper, we propose parallel algorithms to process top-
k queries. A naïve parallel algorithm, called PTA (parallel-TA),
evenly partitions the original dataset into P (the number of
processors) subdatasets. Each processor finds top-k results of
one corresponding subdataset using TA algorithm. Then these
results are merged to get the final top-k answers. The
middleware cost of PTA is 2(/)O nm P under PRAM-CRCW
model, where n is the dataset size and m is the number of lists.
Motivated by the idea of partitioning the dataset, we take a
further step to partition the original dataset into n subdatasets
(some subdatasets may be empty) according to their degree of
domination (see definition 2). Based on this partition, we
propose EPTA (Enhanced-PTA) algorithm, which works in
three phases. In the first phase, EPTA distributes k subdatasets
onto the P processors using a heuristic distribution algorithm.
In the second phase, the ith processor ip uses a new algorithm
designed by us to compute top-(ik d−) results among the
subdatasets distributed onto it, where id is the minimum degree
of domination of the objects distributed onto ip . In the third
phase, EPTA combines the results returned in the second phase
to get the final top-k answers. We estimate the cardinality of
each subdataset as 1((ln) / (1)!)mO n m− − under the assumption
that the scores in different lists are independent, based on
which, we deduce the average middleware cost of EPTA to
be 2 1((ln) / (1)!)mO km n m− − under PRAM-CRCW model.

1This work was completed when Neil Gong was undergraduate student of
USTC
2Corresponding author

Furthermore, we do extensive experiments to evaluate our
algorithms. The experimental results show that the speedup
ratios of EPTA are significantly higher than those of PTA.

In this paper, our contributions are as follows:

• We propose two parallel algorithms for top-k queries
processing, i.e. parallel-TA (PTA) algorithm and
Enhanced-PTA (EPTA) algorithm. To the best of our
knowledge, this is the first paper proposing parallel
algorithms to process top-k queries.

• We analyze the middleware cost of both PTA and
EPTA under PRAM-CRCW model. Specifically, the
middleware cost of PTA is 2(/)O nm P . And the average
middleware cost of EPTA is 2 1((ln) / (1)!)mO km n m− − in
the cases where the local scores in different lists are
independently distributed.

• We do extensive experiments to evaluate our
algorithms. The experimental results show that the
speedup ratios of EPTA are significantly higher than
those of PTA.

The rest of this paper is organized as follows. In section II,
we formally define the problem and review TA algorithm. In
section III, we describe our algorithm PTA. Thereafter, we
show our algorithm EPTA and analyze its complexity in
section IV. In section V, we show the experimental results.
Finally, in section VI, we conclude this paper and introduce our
future work.

II. PROBLEM DEFINITION AND TA ALGORITHM
In this section, we formally define top-k problem and

review the sequential TA algorithm.

L1 L2 L3
(T2,0.9) (T1,0.8) (T3,0.7)

(T1,0.5) (T4,0.7) (T4,0.6)

(T3,0.4) (T2,0.6) (T2,0.5)

(T5,0.3) (T3,0.3) (T5,0.2)

(T4,0.1) (T5,0.2) (T1,0.1)

Figure 1. Three sorted lists

Our model of the dataset (see Fig. 1) can be described as
follows [16]: assume the dataset D consists of m sorted lists,
which are denoted as 1 2, , , mL L L⋅ ⋅ ⋅ . Each sorted list consists of n
data items. Each data item is a pair (, ())it s t , where t is an
object, ()is t is t ’s ith local score which is a real number in the
interval [0, 1]. Sorted list means that objects in each list are
sorted in descending orders according to their local scores.
Each data item can be accessed through sorted access and
random access. Sorted access iteratively reads data items
sequentially, whereas a random access is a request for a data
item in some list given the object’s ID. Fagin et al. introduced
middleware cost for top-k query algorithms. The middleware
cost of an algorithm is s s r ra c a c+ , where sa is the number of
sorted accesses performed, ra is the number of random

accesses performed, sc is the cost of a single sorted access, and
rc is the cost of a single random access.

For a top-k query with a user-defined positive integer k and
a m-dimensional aggregate function g , the result set Y is a set
of objects such that Y D⊆ , | |Y k= and 1 2,t t∀ : 1t Y∈ , 2t D Y∈ − ,
it holds that 1 2() ()g t g t≥ . In this paper, we assume the
aggregate function g to be increasingly monotonic. An m-
dimensional function g is increasingly monotonic if

1 2(, , ,)mg x x x⋅ ⋅ ⋅ ≤ ' ' '
1 2(, , ,)mg x x x⋅ ⋅ ⋅ , whenever '

i ix x≤ for every i .
Many popular aggregate functions, e.g. Min, Max, Sum, are
increasingly monotonic.

Fagin et al. [16] proposed the efficient sequential Threshold
Algorithm (TA) to process top-k queries with any increasingly
monotonic function. Its middleware cost is (((sO nm c m+ −
1)))rc . Since min{ , } (1) max{ , }s r s r s rc c m c m c c c m× ≤ + − ≤ × , we
have 2(((1))) ()s rO nm c m c O nm+ − = . So the middleware cost of
TA is 2()O nm . TA is described in Fig. 3. In the description, we
replace the notations with ours.

Threshold Algorithm (TA)
1. Do sorted access in a round-robin policy to each of the

m lists. As an object is seen through sorted access in
some list, do random access to the other lists to find all
its remaining local scores, and compute its overall
score. Maintain a set Y containing the k objects whose
overall scores are the highest among all the objects seen
so far.

2. For each list iL , let is be the bottom score of iL , which
is the last local score seen under sorted access in iL .
Define the threshold value τ to be τ = 1 2(, , ,)mg s s s⋅ ⋅ ⋅ .

3. Halt when λ τ≥ , where min{ () | }g t t Yλ = ∈ .

Figure 2. Threshold Algorithm

Let us show how TA works with the following example.

Example 1 Assume n=5, m=3, k=1, g=sum. The dataset is
illustrated in Fig. 1. First, TA finds T2 under sorted access over
list 1L , then TA retrieves its second and third local scores
through random access over 2L and 3L , and then computes its
overall score as 2()g T = 2. Sinceτ =2.9 (is is initialized to be 1),
TA continues sorted accessing 2L . In the second sorted access,
TA finds T1, then TA retrieves its first and third local scores
through random access over 1L and 3L , and computes its overall
score as 1()g T = 1.4. The current result set Y still contains T2,
but τ is updated to be 2.7. Since 2()g Tτ > , TA goes on
performing sorted access on 3L . This process is repeated until
TA performs two sorted accesses on 1L and one sorted access on
both 2L and 3L , where 22.0 ()g Tτ λ= ≤ = . So, in this example,
TA finds top-1 result with 4 sorted accesses and 8 random
accesses.

III. A NAIVE PARALLEL THRESHOLD ALGORITHM
In this section, we introduce a naive parallel-TA (PTA)

algorithm for top-k queries processing, and analyze its speedup
ratio. Specifically, we show PTA algorithm in section III-A.
Thereafter, in section III-B, we analyze the speedup ratio of
PTA.

A. PTA Algorithm
PTA algorithm is described in Fig. 3. Assume we have P

processors, denoted as 0 1 1, , , Pp p p −⋅ ⋅ ⋅ . PTA evenly partitions the
original dataset D into P subdatasets, denoted as 0 1 1, , , PD D D −⋅ ⋅ ⋅ .
Processor ip finds top-k results among sub-dataset iD using TA
algorithm. Then we merge the results returned by all the
processors to obtain the final top-k answers. The partition is
completed offline.

The following theorem guarantees that PTA finds top-k
answers for top-k queries with any positive integer k and
increasingly monotonic aggregate function.

Theorem 1 If the aggregate function is increasingly
monotonic, then PTA finds exact top-k answers among the
original dataset D.

Proof: For 0 1i P≤ ≤ − , Let iY contain the top-k results of
subdataset iD and Y contain the final top-k results. Let ijs denote
the jth bottom value of subdataset iD , 0 1i P≤ ≤ − and1 j m≤ ≤ .
Let min{ () | }i ig t t Yλ = ∈ and iτ denote the threshold value of
subdataset iD when PTA halts, where 0 1i P≤ ≤ − . And let

min{ () | }g t t Yλ = ∈ . According to the stopping rule of TA, we
have i iτ λ≤ when processor ip halts. We have to prove that for
any object t D Y∈ − , it satisfies that ()g t λ≤ . There are two
cases depending on whether t is seen or not when PTA halts.

Case 1: t is seen when PTA halts. In this case, we can
easily get ()g t λ≤ since Y contains the k objects with the highest
scores having been seen when PTA halts.

Case 2: t is not seen when PTA halts. Assume it D∈ ,
0 1i P≤ ≤ − . Since t is not seen, we have ()j ijs t s≤ for1 j m≤ ≤ .
In addition, the aggregate function g is increasingly monotonic,
so we have 1 2() (, , ,)i i im ig t g s s s τ≤ ⋅ ⋅ ⋅ = . When PTA halts, we have

i iτ λ≤ . And iλ λ≤ . Hence, we get () i ig t τ λ λ≤ ≤ ≤ , i.e. ()g t λ≤ ,
as desired. □

Parallel Threshold Algorithm (PTA)
1. Evenly partition the original dataset D into P sub-

datasets, denoted as 0 1 1, , , PD D D −⋅ ⋅ ⋅ . This step is
completed offline.

2. Processor ip uses TA to find top-k answers in iD , and
stores them in iY , for 0 1i P≤ ≤ − .

3. Find the final top-k results among iY , and output them.

Figure 3. Parallel Threshold Algorithm

B. Analysis of PTA
Let sia denote the number of sorted accesses performed by

processor ip , then the middleware cost of ip is ()icost p =
((1))si s ra c m c+ − . The cost of PTA is (PTA)cost =

0 1 1max{ (), (), , ()}Pcost p cost p cost p −⋅ ⋅ ⋅ = 0 1 (1)max{ , , , }s s s Pa a a −⋅ ⋅ ⋅ ×

((1))s rc m c+ − . Let sa be the number of sorted accesses needed
by TA to find top-k results among the original dataset D, then
the cost of TA is (TA) ((1))s s rcost a c m c= + − . Since the speedup
ratio of PTA is (TA) / (PTA)cost cost , we have

0 1 (1)

speedup ratio of PTA
max{ , , , }

s

s s s P

a
a a a −

=
⋅ ⋅ ⋅

 (1)

Equation (1) tells us that the speedup ratio of PTA is
determined by the largest number of sorted accesses performed
by the P processors and the number of sorted access performed
by TA. The speedup ratio of EPTA can also be calculated using
(1). In our experiments, we will use (1) to measure the speedup
ratios of PTA and EPTA.

Clearly, the middleware cost of PTA is 2(/)O nm P since the
middleware cost of each processor is 2(/)O nm P .

IV. ENHANCED PARALLEL THRESHOLD ALGORITHM
First, we introduce some definitions in section IV-A.

Thereafter, in section IV-B, we describe our enhanced parallel
threshold algorithm (EPTA). Finally, in section IV-C, we
analyze the cost of EPTA.

A. Definitions
In the following, we first introduce the definition of

dominate and propose an observation about it. Then, we define
the degree of domination and discuss its relation to top-k
queries.

Definition 1 Dominate [11] We say object 1t dominates 2t
or 2t is dominated by 1t if and only if they satisfy two conditions:
(1) for each {1,2, , }i m∈ ⋅⋅ ⋅ , 1 2() ()i is t s t≥ . (2) there exists at least
one number {1,2, , }j m∈ ⋅⋅ ⋅ satisfying 1 2() ()j js t s t>

Our definition of dominate is different from that in [11],
since we use ≥ (or >) instead of ≤ (or <). However, there does
not exist essential differences between them.

Observation 1: If object 1t dominates object 2t and the
aggregate function is increasingly monotonic, then we have

1 2t tS S≥ .

Proof: We can easily get the correctness of the observation
according to the definition of dominate. □

Definition 2 degree of domination [12]. If some object t is
dominated by i other objects, we say the degree of domination
of t is i , denoted as ()dd t i= .

This definition provides us a kind of method to classify
objects, i.e. we can classify objects into n categories by their

degree of domination. Based on the classification of the objects,
we can partition the original dataset D into n subdatasets,
denoted as 0 1 1, , , nD D D −⋅ ⋅ ⋅ (some subdatasets may be empty),
where it D∀ ∈ , satisfying ()dd t i= . The partition is pre-
computed. And we can use BFA [12] or Bitmap [17] to
complete the pre-computation. The following observation
reduces our accessing scope to 0 1 1, , , kD D D −⋅ ⋅ ⋅ when answering
top-k queries with increasing monotonic aggregate functions.

Observation 2: If the aggregate function is increasingly
monotonic, then the top-k objects of subdatasets 0 1, , ,D D ⋅ ⋅ ⋅

1kD − are the top-k objects of the original dataset D.

Proof: For any object t , 0 1 1kt D D D −∉ ∪ ∪ ⋅⋅ ⋅ ∪ , there exists
at least k other objects that belong to 0 1 1kD D D −∪ ∪ ⋅ ⋅ ⋅ ∪ and
dominate t . According to observation 1, we know that the
overall scores of these objects are no less than that of t . So the
top-k objects of subdatasets 0 1 1, , , kD D D −⋅ ⋅ ⋅ are the top-k objects
of the original dataset D for any increasingly monotonic
aggregate function.□

This observation enlightens us that we only need to
distribute 0 1 1, , , kD D D −⋅ ⋅ ⋅ onto P processors in order to find top-k
results for any increasingly monotonic aggregate function,
which is the main idea of the following EPTA algorithm.

B. EPTA Algorithm
Based on the observations in the above section, we propose

EPTA (Enhanced-PTA) algorithm in this section. Assume we
have P processors denoted as 0 1 1, , , Pp p p −⋅ ⋅ ⋅ . EPTA algorithm
works in three phases, i.e. distributing phase, computing phase
and merging phase. In distributing phase, EPTA distributes the
subdatasets 0 1 1, , , kD D D −⋅ ⋅ ⋅ onto the P processors using a heuristic
distribution algorithm. In computing phase, for 0 1i P≤ ≤ − ,
processor ip runs an algorithm designed by us to compute top-
(ik d−) results among the subdatasets distributed onto it,
where id is the minimum degree of domination of the objects
distributed onto ip . In merging phase, EPTA obtains the final
top-k answers by merging the results returned in the second
phase.

Algorithm 1: Used in Distributing Phase
1: Let sum be the sum of the cardinality of 0 1 1, , , kD D D −⋅ ⋅ ⋅ .
2: sum= sum/P
3: j=k-1
4: for i=P-1 down to 0 do
5: sum1=0
6: while sum1<sum and j>i-1 do
7: Distribute jD onto ip
8: sum1= sum1+ | |jD
9: j=j-1
10: end while
11: end for

Figure 4. Algorithm 1: used in distributing phase of EPTA

Distributing Phase In this phase, EPTA distributes
subdatasets 0 1 1, , , kD D D −⋅ ⋅ ⋅ onto P (we assume P<k) processors
using algorithm 1 shown in Fig. 4. Algorithm 1 tries to evenly
distribute subdatasets 0 1 1, , , kD D D −⋅ ⋅ ⋅ onto the P processors.

Computing Phase In this phase, each processor executes
algorithm 2 described in Fig. 5. Assume the input is subdatasets

0 1
, , ,i i iD D D

σ
⋅ ⋅ ⋅ , which are arrayed in increasing order respect to

the degree of domination of the objects in them. Then
algorithm 2 finds top-k answers among

0 1
, , ,i i iD D D

σ
⋅ ⋅ ⋅ for any

positive integer k and any increasingly monotonic aggregate
function.

Algorithm 2: Used in Computing Phase
1. Run TA on

0i
D to find top-k objects in

0i
D , and store the

results in Y , which is a set containing current top-k
answers. Let λ =min{ ()g t | t Y∈ }.

2. : 1j =
3. Do sorted access in a round-robin policy to each of the

m lists of
jiD . As an object is seen through sorted access

in some list, do random access to the other lists to find
all its remaining local scores, and compute its overall
score. Then update 1 2, ,...,j j mjs s s (bottom scores of

jiD),

jτ (the threshold value of
jiD), Y and λ . When jλ τ≥ , go

to step 4.
4. : 1j j= + . If j σ≤ , then go to step 3, or go to step 5
5. Output Y .

Figure 5. Algorithm 2: used by each processor in the computing phase

The following theorem shows us the correctness of
algorithm 2.

Theorem 2 If the aggregate function g is increasingly
monotonic, then algorithm 2 finds the exact top-k queries
results among subdatasets

0 1
, , ,i i iD D D

σ
⋅ ⋅ ⋅ for any positive integer k.

Proof: Let Y contain the top-k results. For any object t
outside Y , we need to prove that ()g t λ≤ , where λ = min
{ ()g t | t Y∈ }. There are two cases depending on whether t is
seen or not when algorithm 2 halts.

Case 1: t is seen when algorithm 2 halts. In this case, we
can easily get ()g t λ≤ since Y contains the k objects with the
highest scores having been seen when it halts.

Case 2: t is not seen when algorithm 2 halts. Assume
jit D∈ ,

1 j σ≤ ≤ . Since t is not seen, we have ()i ijs t s≤ . In addition, the
aggregate function g is increasingly monotonic, so ()g t ≤

1 2(, , ,)j j mj jg s s s τ⋅ ⋅ ⋅ = . And jλ τ≥ when algorithm 2 halts. Hence,
we have ()g t λ≤ , as desired. □

In the computing phase, processor ip executes algorithm 2
to find the top-(ik d−) results among the subdatasets
distributed on it, where id is the minimum degree of
domination of the objects distributed onto ip . This is because,

according to observation 2, top- id results are among the objects
whose degree of domination are less than id .

Merging Phase In this phase, EPTA merges the results
returned in the second phase to obtain the final top-k answers.

Now, we can describe EPTA algorithm. EPTA algorithm is
shown in Fig. 6. With observation 2 and theorem 2, we can
easily prove the correctness of EPTA. The speedup ratio of
EPTA can be calculated using (1).

Enhanced Parallel Threshold Algorithm (EPTA)
1. Run algorithm 1 to distribute subdatasets 0 1 1, , , kD D D −⋅ ⋅ ⋅

onto the P processors.
2. Processor ip runs algorithm 2 to compute top-(ik d−)

results among the subdatasets distributed onto it,
where id is the minimum degree of domination of the
objects distributed onto ip .

3. Obtain the final top-k results by merging the results
returned in step 2.

Figure 6. Enhanced parallel threshold algorithm

C. Cost Analysis
Our analysis is under PRAM-CRCE model. The following

theorem tells us the upper bound of the average middleware
cost of EPTA under any distribution of the scores in the lists.

Theorem 3 For any top-k queries, under any distribution of
the scores in the lists, the average middleware cost of EPTA
algorithm is:

 ((EPTA))E cost =
1

2

0
((| |))

k

i
i

O m E D
−

=
∑ (2)

Proof: For 0 1i P≤ ≤ − , let random variable in denote the
number of objects distributed onto processor ip . Let variable

icost denote the middleware cost of processor ip . And let
(EPTA)cost denote the cost of algorithm EPTA. Clearly, we

have ((1))i i s r icost n m c m c cn≤ + − = , where ((1))s rc m c m c= + −
2()O m= . And, under PRAM-CRCW model, we

have (EPTA)cost = 0 1 1 0 1max{ , , , } max{ , , ,Pcost cost cost cn cn−⋅ ⋅ ⋅ ≤ ⋅ ⋅ ⋅
1

1
0

}
P

P i
i

cn c n
−

−
=

≤ ∑ . So, we have ((EPTA))E cost
1

0
()

P

i
i

c E n
−

=

≤ ∑ . Since

in EPTA, we distribute subdatasets 0 1 1, , , kD D D −⋅ ⋅ ⋅ onto the P

processors, we have
1 1

0 0
() (| |)

P k

i i
i i

E n E D
− −

= =

=∑ ∑ . So, we obtain

1 1
2

0 0
((EPTA)) (| |) ((| |))

k k

i i
i i

E cost c E D O m E D
− −

= =

≤ =∑ ∑ , as desired. □

Equation (2) is a loose upper bound of the average
middleware cost of EPTA. It’s one of our future works to
establish a tighter upper bound.

From (2), we know that we have to calculate (| |)iE D in
order to estimate the average middleware cost of EPTA. Some

previous papers have tried to estimate the average cardinality
of the skyline (it’s the same as subdataset 0D) of the dataset.
Under the assumption that scores in different lists are
independently distributed, Bentley et al. [2] proves that

1
0() ((ln))mE D O n −= . However, it’s a loose upper bound. Buchta

[18] establishes that 1
0() ((ln) / (1)!)mE D n m−= Θ − . But their

proofs are restricted to the cases where no two objects share the
same local score in any list. Chaudhuri et al. [1] proves that this
restriction does not influence the expected cardinality of
subdataset 0D . However, the previous works only estimate the
average cardinality of 0D . We need to estimate the average
cardinality of every subdataset, which is more challenging. In
the following, we get 1((| |)) ((ln) / (1)!)m

iO E D O n m−= − by
deducing (| |)iE D ≤ 0(| |)E D (1 1i n≤ ≤ −) under the assumption
that the scores in different lists are independent, based on
which, we obtain ((EPTA))E cost = 2 1((ln) / (1)!)mO km n m− − .

Let (,) ()i iA n m E D= . We assume that the n objects are
randomly and independently chosen from the same distribution.
Let the set of m random variables 1 2, , , mX X X⋅ ⋅ ⋅ continuously
ranging in the interval [0, 1] represent the local scores in
the m lists. Let 1 2(, , ,)mF x x x⋅ ⋅ ⋅ denote the joint distribution
function, and 1 2(, , ,)mf x x x⋅ ⋅ ⋅ denote the joint density function of
the m variables. In vector notation, we rewrite them as

()F X and ()f X , where 1 2(, , ,)mX x x x= ⋅ ⋅ ⋅ . Then we have the
following theorem, which formulates (,)iA n m .

Theorem 4 Let (,)iA n m denote the average cardinality of
iD , then we have

 (,)iA n m =
[]

1

0,1

1
() ()(1 ())m

i n in
n f X P X P X d X

i
− −− 

− 
 

∫ (3)

Where ()P X = ()
Y X

f Y dY
≥∫ .

Proof: For any object t whose local scores are vector
1 2(, , ,)mX x x x= ⋅ ⋅ ⋅ , the probability that another object 't

dominates it is ()P X and the probability that 't does not
dominate it is (1 ())P X− . In order to make the degree of
domination of t be i , i out of the other (1)n − objects should
dominate t and the rest shouldn’t dominate t . So, the probab-

ility 11
Pr{ () } ()(1 ())i n in

dd t i P X P X
i

− −− 
= = − 

 
. Since object t

itself comes from a distribution with density function ()f X ,
the probability that a randomly chosen object belongs to iD is

[]
1

0,1

1
() ()(1 ())m

i n in
f X P X P X d X

i
− −− 

− 
 

∫ . So the average card-

inality of iD , i.e. (,)iA n m , is formulated as (3), as desired.□

Equation (3) is established under any distribution of the
scores in the lists. The following theorem formulates (,)iA n m

under the assumption that scores in different lists, i.e.
1 2, , , mX X X⋅ ⋅ ⋅ , are independent.

Theorems 5 If the scores in different lists are independent,
then we have

[] 2

1
1 2 1 10,1

1
(,) (1)m m

n i i i i
i m m

n
A n m n x x x x x x dx dx

i
− −− 

= − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 

∫ (4)

Proof: Since 1 2, , , mX X X⋅ ⋅ ⋅ are independent, ()f X can be
written as 1 1 2 2() () ()m mf x f x f x⋅ ⋅ ⋅ and ()F X can be written as

1 1 2 2() () ()m mF x F x F x⋅ ⋅ ⋅ , where ()j jf x is the density function and
()j jF x is the distribution function of jX , where1 j m≤ ≤ . ()P X

1

() (1 ())
m

j jY X
j

f Y dY F x
≥

=

= = −∏∫ . Moreover, ()j jf x = (1 ())j jF x ′− −

since jX is continues. Substituting these to (3), and using a
change of variable, we have the correctness of theorem 5. □

When 0i = ,
[]

1
0 1 2 1 20,1
(,) (1)m

n
m mA n m n x x x dx dx dx−= − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅∫ ,

which is the same as that in [1].

After expanding 1
1 2(1)n i

mx x x − −− ⋅ ⋅ ⋅ , we can calculate (4) as
follows:

[] 2

1
1 2 1 10,1

1
(,) (1)m m

n i i i i
i m m

n
A n m n x x x x x x dx dx

i
− −− 

= − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 

∫

=
[]

1

1 2 1 20,1
0

1 1
(1) ()m

n i
j j i

m m
j

n n i
n x x x dx dx dx

i j

− −
+

=

− − −   
− ⋅ ⋅ ⋅ ⋅ ⋅ ⋅   

   
∑∫

=
[]

1

0,1
0

1 1
(1) ()

n i
j i j m

j

n n i
n x dx

i j

− −
+

=

− − −   
−   

   
∑ ∫

=
1

0

1 1 1(1)
(1)

n i
j

m
j

n n i
n

i j i j

− −

=

− − −   
−    + +   

∑

= 1
1

1

1 1(1)
()

n i
j

m
j

i j n
i i j i j

−
+

−
=

+ −  
−  + +  

∑

So, we have

 1
1

1

1 1(,) (1)
()

n i
j

i m
j

i j n
A n m

i i j i j

−
+

−
=

+ −  
= −  + +  

∑ (5)

For 1, 1, 0 1n m i n≥ ≥ ≤ ≤ −

With (5), we can easily get 1

1(1,)
(1)i mA i m
i −+ =

+
and

(,1) 1jA n = , where 0i ≥ and 0 1j n≤ ≤ − . In order to analyze (5),
we define a set of generating functions (,)iG n z as

0

(,) (, 1) m
i i

m
G n z A n m z

∞

=

= +∑ , for 0 1i n≤ ≤ −

By (5), we have

0
(1 /) (,) (, 1) m

i i
m

z n G n z A n m z
∞

=

− = +∑

= 1

0 1

1 1(1 /) (1)
()

n i
j m

m
m j

i j n
z n z

i i j i j

∞ −
+

= =

+ −  
− −  + +  

∑∑

= 1

0 1

1 1(1)
()

n i
j m

m
m j

i j n
z

i i j i j

∞ −
+

= =

+ −  
−  + +  

∑∑

1 1
1

0 1

1 1 1(1)
1 ()

n i
j m

m
m j

i j n
z

i i j i j

∞ −
+ +

+
= =

+ − −  
− −  + − +  
∑∑

=1+ 1

1 1

1 1 1()(1)
1 ()

n i
j m

m
m j

i j n n
z

i i j i j i j

∞ −
+

= =

+ − −     
− −     + + − +     

∑∑

= (1,)iG n z−

So we get (,) (1,) / (1 /)i iG n z G n z z n= − − . Since (1,)iA i m+

1

1
(1)mi −=

+
and (,) 0iA j m = for 0i ≥ and j i≤ , we have

(1,)iG i z+ = 1 / (1 / (1))z i− + and (,) 0iG j z = for 0i ≥ and j i≤ . So
we obtain

1

1(,)
1 /

n

i
j i

G n z
z j= +

=
−∏ (6)

Equation (6) is (36) of Knuth [3, Sec. 1.2.9] with 0jx = for
1 j i≤ ≤ and 1 /jx j= for 1i j n+ ≤ ≤ . Define

 ()

1
() 1 /

n
r r

i
j i

H n j
= +

= ∑ , for 0 1i n≤ ≤ −

By Knuth’s analysis, the coefficient of mz in (,)iG n z is

1 2

1 2
1 2
1 2

(1) (2) ()

, , , 0 1 2
2

() () ()
1 ! 2 ! !

m

m
m

m

kk k m
i i i

kk k
k k k m
k k mk m

H n H n H n
k k m k⋅⋅⋅ ≥

+ +⋅⋅⋅+ =

⋅ ⋅ ⋅∑ (7)

According to definition, (7) is (, 1)iA n m + . Since
() ()

1() ()r r
i iH n H n−≤ for 1 1, 1i n r≤ ≤ − ≥ , we have

 1(,) (,)i iA n m A n m−≤ , for 1 1i n≤ ≤ − (8)

Equation (8) shows (,)iA n m is monotonic respect to i .
Buchta [18] established that 1

0 (,) ((ln) / (1)!)mA n m n m−= Θ − . So,
we have

 1(,) ((ln) / (1)!)m
iA n m O n m−= − , for 0 1i n≤ ≤ − (9)

So, we have the following theorem, which is an upper
bound of the average middleware cost of EPTA algorithm.

Theorem 6 If the scores in different lists are independently
distributed, then the average middleware cost of EPTA is

 ((EPTA))E cost = 2 1((ln) / (1)!)mO km n m− − (10)

Proof: We can easily get the correctness by combining (2)
and (9).□

This upper bound is a loose one. From the above analysis,
we can know that the cardinality of subdataset iD is a binomial
distribution under the assumption that the scores in different
lists are independently distributed. It’s possible to get a tighter
upper bound of the average middleware cost of algorithm
EPTA. Actually, it’s one of our future works.

V. EXPERIMENTS
In this section, we do extensive experiments to evaluate the

performance of our algorithms, i.e. PTA and EPTA. Our
algorithms are implemented in C++ and OpenMP. We perform
our experiments on a 2-CPU server with shared memory 8GB;
each CPU is 4-core Intel Xeon E5430 2.66GHz. We use both
synthetic datasets and real dataset in our experiments. The
metrics we measure is the speedup ratio. According to (1), we
only need to count the number of sorted access performed by
TA, PTA and EPTA in order to calculate the speedup ratio.
First, in section V-A, we show the experimental results on
synthetic datasets. Then in section V-B, we show the
experimental results over real datasets. Finally, we summarize
our experiments in section V-C.

A. Experiments with Synthetic Datasets
Datasets Generation We do experiments on three

synthetic datasets. All generated local scores belong to the
interval [0, 1]. The three synthetic datasets are produced to
model different input scenarios; they are UI, NI and CO,
respectively. UI contains datasets in which objects’ local scores
are uniformly and independently generated for the different
lists. NI contains datasets in which objects’ local scores are
normally and independently generated for the different lists.
CO, generated using the same methodology in [11], contains
datasets in which objects’ local scores are correlated. In other
words, the ith local score ()is t of an object t is very close
to ()js t with high probability, where i j≠ . To generate an object
t , first, a number tu from 0 to 1 is selected using a Gaussian
distribution centered at 0.5 with variance 1. t ’s local scores are
then generated by a Gaussian distribution centered at tu with
variance 0.01.

For synthetic datasets, our default settings for different
parameters are shown in Table 1. In our tests, the default
number of data items in each list is 1,000,000, i.e. n=1,000,000.
Typically, users are interested in a small number of top
answers, thus we set k = 50 as k’s default value. Like many
previous works on top-k query processing, such as [12][19], we
choose the aggregate function as the sum of the local scores. In

one third of our tests, the number of lists, i.e. m, is a varying
parameter. When m is a constant, we set it to 3 since most
previous works evaluate their algorithms on datasets with 3
lists.

TABLE I. DEFAULT VALUES OF EXPERIMENTAL PARAMETERS

Parameters Default Values

The number of objects, i.e. n 1,000,000

The number of lists, i.e. m 3

The number of results returned, i.e. k 50

The number of processors, i.e. P 8

Aggregate function summation

Experimental Results Fig. 7 shows the experimental
results when k, the number of results returned, varies from 10
to 100 with step 10 and other parameters set as those in Table
1. From the results, we know that the speedup ratios of EPTA
are orders of magnitude higher than those of PTA over all the
datasets we consider. Over the three datasets considered, the
speedup ratios of PTA almost keep unchanged as k increases.
However, the speedup ratios of EPTA decrease as k increases.
The reason is that the number of objects distributed onto each
processor in PTA has nothing to do with k while EPTA has to
distribute more subdatasets onto the processors as k increases.

Fig. 8 illustrates the experimental results in which the
parameters are set as those in Table 1 except that m, the
number of lists, varies from 2 to 8 with step 1. The results show
us that the speedup ratios of EPTA are significantly higher than
those of PTA over the considered datasets. The speedup ratios
of PTA increase slightly as m increases while the speedup
ratios of EPTA increase, and then decrease as m increases.
Interestingly enough, the speedup ratios of EPTA are maximal
when m=3 over all datasets we consider. It’s one of our future
works to explore the theoretical reason why this happens. The
reason why the speedup ratios of EPTA decrease as m
increases is that the k subdatasets distributed onto the P
processors contain more and more objects as m increases.

Fig. 9 illustrates the experimental results when the
parameters are set as those in Table 1 except that the dataset
size, i.e. n, varies. The results tell us that the speedup ratios of
EPTA are orders of magnitude higher than those of PTA. The
speedup ratios of PTA almost keep unchanged while the
speedup ratios of EPTA increase fast as n increases.

From the analysis above, we know that the speedup ratios
of EPTA are orders of magnitude higher than those of PTA
over all the datasets considered. The reason is that EPTA only
distributes k subdatasets onto the P processors while PTA
distributes the whole original dataset onto the processors.

B. Experiments with Real Datasets
Description of Datasets For real datasets, we choose El

Nino dataset1 and Forest Cover (FC) dataset2. El Nino dataset
contains 93935 objects with 3 lists, and FC dataset contains
581012 objects with 4 lists. El Nino contains oceanographic
and surface meteorological readings taken from a series of

1From UCI KDD. http://kdd.ics.uci.edu/databases/el_nino/el_nino.html
2From UCI KDD. http://kdd.ics.uci.edu/databases/covertype/covertype.html

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

Number of results returned, k

S
pe

ed
up

 ra
tio

Speedup ratio v.s. k over UI

PTA
EPTA

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

Number of results returned, k

S
pe

ed
up

 ra
tio

Speedup ratio v.s. k over NI

PTA
EPTA

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

Number of results returned, k

S
pe

ed
up

 ra
tio

Speedup ratio v.s. k over CO

PTA
EPTA

 (a) over UI (b) over NI (c) over CO

Figure 7. Speedup ratios v.s. k over synthetic datasets, n=1,000,000, m=3, P=8

2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

Number of lists, m

S
pe

ed
up

 ra
tio

Speedup ratio v.s. m over UI

PTA
EPTA

2 3 4 5 6 7 8
0

20

40

60

80

100

120

Number of lists, m

S
pe

ed
up

 ra
tio

Speedup ratio v.s. m over NI

PTA
EPTA

2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

40

Number of lists, m

Sp
ee

du
p

ra
tio

Speedup ratio v.s. m over CO

PTA
EPTA

 (a) over UI (b) over NI (c) over CO

Figure 8. Speedup ratios v.s. m over synthetic datasets, n=1,000,000, k=50, P=8

0.1 0.2 0.5 1 2
0

20

40

60

80

100

120

140

Number of objects, n (million)

S
pe

ed
up

 ra
tio

Speedup ratio v.s. n over UI

PTA
EPTA

0.1 0.2 0.5 1 2
0

20

40

60

80

100

120

140

Number of objects, n

S
pe

ed
up

 ra
tio

Speedup ratio v.s. n over NI

PTA
EPTA

0.1 0.2 0.5 1 2
0

5

10

15

20

25

30

35

40

45

50

Number of objects, n (million)

S
pe

ed
up

 ra
tio

Speedup ratio v.s. n over CO

PTA
EPTA

 (a) over UI (b) over NI (c) over CO
Figure 9. Speedup ratios v.s. n over synthetic datasets, m=3, k=50, P=8

2 4 6 8 10 12 14 16
0

20

40

60

80

100

120

140

160

Number of processors, P

Sp
ee

du
p

ra
tio

Speedup ratio v.s. P over UI

PTA
EPTA

2 4 6 8 10 12 14 16
0

20

40

60

80

100

120

140

160

180

Number of processors, P

S
pe

ed
up

 ra
tio

Speedup ratio v.s. P over NI

PTA
EPTA

2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

Number of processors, P

Sp
ee

du
p

ra
tio

Speedup ratio v.s. P over CO

PTA
EPTA

 (a) over UI (b) over NI (c) over CO

Figure 10. Speedup ratios v.s. n over synthetic datasets, m=3, k=50, P=8

buoys positioned throughout the equatorial Pacific. The data is
expected to aid in the understanding and prediction of El
Nino/Southern Oscillation (ENSO) cycles. We neglect the
objects missing some fields. The remaining dataset contains
93935 objects. We chose 3 lists to test our algorithms. FC
contains 581012 forest land cells (i.e. objects), having four
attributes (i.e. lists): horizontal distance to nearest surface water
features, vertical distance to nearest surface water features,
horizontal distance to nearest roadways, and horizontal distance
to nearest wildfire ignition points. For both real datasets, we

normalize the dataset with the formula: ()is t Min
Max Min

−
−

, where ()is t
is t ’s ith local score. In our experiments, the number of results
returned, i.e. k, varies from 10 to 100 with step 10.

Experimental Results Fig. 11 shows the experimental
results over El Nino dataset (Fig. 11 (a)) and FC dataset (Fig.
11 (b)). From the results, we know that the speedup ratio of
EPTA is significantly higher than that of PTA. The reason is
that EPTA only distributes objects whose degree of domination

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

Number of results returned, k

S
pe

ed
up

 ra
tio

Speedup ratio v.s. k over El Nino

PTA
EPTA

10 20 30 40 50 60 70 80 90 100
2

4

6

8

10

12

14

16

18

20

22

Number of results returned, k

S
pe

ed
up

 ra
tio

Speedup ratio v.s. k over FC

PTA
EPTA

 (a) over El Nino (b) over FC

Figure 11. Speedup ratios v.s. k over real datasets, P=8

2 4 6 8 10 12 14 16
0

5

10

15

20

25

Number of processors, P

S
pe

ed
up

 ra
tio

Speedup ratio v.s. P over El Nino

2 4 6 8 10 12 14 16
2

4

6

8

10

12

14

16

18

20

Number of processors, P

S
pe

ed
up

 ra
tio

Speedup ratio v.s. P over FC

PTA
EPTA

 (a) over El Nino (b) over FC

Figure 12. Speedup ratios v.s. P over real datasets, k=50

is less than k onto processors while PTA distributes the whole
dataset onto processors. For El Nino dataset, the speedup ratio
of EPTA decreases as the number of results returned (i.e. k)
increases while the speedup ratio of PTA increases slightly as k
increases. However, for FC dataset, the speedup ratio of EPTA
almost keeps unchanged as k increases while the speedup ratio
of PTA decreases slightly as k increases.

C. Summary
Our experiments illustrate that the speedup ratios of EPTA

are orders of magnitude higher than those of PTA over the
synthetic and real datasets considered. This can be explained by
the fact that PTA distributes the whole original dataset onto the
P processors while EPTA first partitions the original dataset
into n subdatasets according to the degree of domination of the
objects, and only distributes k subdatasets onto the processors
for any top-k query with monotonically increasing aggregate
function.

VI. RELATED WORKS
Several papers are related to our analysis in section IV-C.

In computational geometry community, Bentley et al.[2]
analyzed the average number of maxima (i.e. subdataset 0D) of
a dataset. Under the assumption that the local scores in
different lists are independently distributed, they got

1
0(| |) ((ln))mE D O n −= . Buchta [18] got a tighter bound, that is,

1
0() ((ln) / (1)!)mE D n m−= Θ − . But their proofs are restricted to

the cases where no two objects share the same local score in
any list. When the term maxima was introduced into database
area, it was renamed as skyline of the dataset by database
community. Chaudhuri et al. [1] proves that Bently’s and
Buchta’s estimations are also right in the cases some objects
share the same local scores in some lists.

The previous works only estimate the average cardinality of

subdataset 0D (named as maxima in computational geometry
community and skyline in database community). We need to
estimate the average cardinality of every subdataset, which is
much more challenging. We prove that 0(| |) (| |)iE D E D≤
(1 1i n≤ ≤ −) under the assumption that the local scores in
different lists are independently distributed. So, we have

1() ((ln) / (1)!)m
iE D O n m−= − , based on which, we obtain the

average middleware cost of EPTA is 2 1((ln) / (1)!)mO km n m− − .

VII. CONCLUSIONS AND FUTURE WORKS
In this paper, we propose parallel algorithms, i.e. PTA and

EPTA, to process top-k queries with any positive integer k and
any monotonically increasing aggregate function. PTA evenly
partitions the original dataset into P subdatasets. Each
processor finds top-k results of one corresponding subdataset
using TA algorithm. Then these results are merged to get the
final top-k answers. The middleware cost of PTA is 2(/)O nm P
under PRAM-CRCW model. EPTA is based on the partition of
the dataset according to the objects’ degree of domination. And
it works in three phase. In the first phase, it distributes k
subdatasets on to P processors using a heuristic algorithm. In
the second phase, processor ip finds the top-(ik d−) results
among the subdatasets distributed onto it, where id is the
minimum degree of domination of the objects distributed
onto ip . In the third phase, EPTA obtains the final top-k results
by merging the results returned in the second phase. The
average middleware cost of EPTA is 2 1((ln) / (1)!)mO km n m− −
under the assumption that scores in different lists are
independent.

In both PTA and EPTA, processors do not communicate
until they find their own query answers among the
corresponding subdatasets. Actually, processors can
communicate with each other and merge the local results
before they find the whole local result set so as to halt earlier.
In this scenario, the number of accesses performed by each
processor may decrease. However, the communication cost will
correspondingly increase. So, in the future, we plan to manage
the tradeoff between them.

REFERENCES
[1] S. Chaudhuri, N. Dalvi and R. Kaushik. Robust Cardinality and Cost

Estimation for Skyline Operator. ICDE, 2006.
[2] J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D. Thompson. On the

Average Number of Maxima in a Set of Vectors and Applications. J.
ACM, 25(4), pp.536–543, 1978.

[3] D. E. Knuth. The Art of Computer Programming Volume 1:
Fundamental Algorithms (Third Edition), Addison-Wesley, 1998.

[4] R.Akbarinia, E.Pacitti and P.Valduriez. Reducing network traffic in
unstructured P2P systems using Top-k queries. Distributed and Parallel
Databases 19(2), 2006.

[5] R. Akbarinia, E. Pacitti, and P. Valduriez. Processing top-k queries in
distributed hash tables. Euro-Par Conf., 2007.

[6] B.Babcock and C.Olston. Distributed top-k monitoring. SIGMOD, 2003.
[7] P.Cao and Z.Wang. Efficient top-k query calculation in distributed

networks. PODC, 2004.
[8] W.-T. Balke, W. Nejdl, W. Siberski and U. Thaden. Progressive

distributed top-k retrieval in peer-to-peer networks. ICDE, 2005.
[9] B.Kimelfeld and Y.Sagiv. Finding and approximating top-k answers in

keyword proximity search. PODS, 2006.
[10] R. Fagin. Combining fuzzy information from multiple systems. J.

Comput. System Sci., 58 (1), 1999..
[11] S.B¨orzs¨onyi, D.Kossmann and K.Stocker, “The skyline operator.”

ICDE, 2001.
[12] Z. Gong, G. Z. Sun, J. Yuan and Y. Zhong. Efficient Top-k Query

Algorithms Using K-skyband Partition. INFOSCALE, 2009.
[13] M. Persin, J. Zobel and R. Sacks-Davis. Filtered document retrieval with

frequency-sorted indexes. J. of the American Society for Information
Science 47(10), 1996.

[14] P. Ciaccia and M. Patella. Searching in metric spaces with user-defined
and approximate distances. ACM Transactions on Database Systems
(TODS) 27(4), 2002.

[15] G.R. Hjaltason and H. Samet. Index-driven similarity search in metric
spaces. ACM Transactions on Database Systems (TODS), 28(4), 2003.

[16] R. Fagin, A. Lotem and M. Naor. “Optimal aggregation algorithms for
middleware”. PODS, 2001.

[17] K. Tan, P. Eng and, B. Ooi. Efficient Progressive Skyline Computation.
VLDB, 2001.

[18] C. Buchta. On the average number of maxima in a set of vectors.
Information Processing Letters 33 pp.63–65, 1989.

[19] J. Yuan, G. Z. Sun, Y. Tian, G. Chen and Z. Liu. “Selective-NRA
Algorithms for Top-k Queries.” APWeb/ WAIM 2009.

	I. Introduction
	II. Problem Definition and TA Algorithm
	III. A Naive Parallel Threshold Algorithm
	A. PTA Algorithm
	B. Analysis of PTA

	IV. Enhanced Parallel Threshold Algorithm
	A. Definitions
	B. EPTA Algorithm
	C. Cost Analysis

	V. Experiments
	A. Experiments with Synthetic Datasets
	B. Experiments with Real Datasets
	C. Summary

	VI. Related Works
	VII. Conclusions and Future Works
	References

