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Abstract—The general problem of answering top-k queries can be 
modeled using lists of objects sorted by their local scores. Fagin et 
al. proposed the “middleware cost” for a top-k query algorithm, 
and proposed the efficient sequential Threshold Algorithm (TA). 
However, since the size of the dataset can be incredible huge, the 
middleware cost of sequential TA may be intolerable. So, in this 
paper, we propose parallel algorithms to process top-k queries 
and analyze their middleware costs. Intuitively, a naive parallel 
algorithm, called PTA (parallel-TA), evenly partitions the origin-
al dataset into P (the number of processors) subdatasets. Each 
processor finds top-k results of one corresponding subdataset 
using TA algorithm. Then these results are merged to get the 
final top-k answers. Motivated by the idea of partitioning objects, 
we take a further step to partition D into n subdatasets according 
to their degree of domination. Based on this partition, we propose 
EPTA (Enhanced-PTA) algorithm. Under PRAM-CRCW model, 
the middleware cost of PTA is 2( / )O nm P  while the average 
middleware cost of EPTA is 2 -1( (ln ) / ( -1)!)mO km n m  under the 
assumption that scores in different lists are independently 
distributed, where n is the dataset size and m is the number of 
lists. Extensive experiments show that the speedup ratios of 
EPTA are significantly higher than those of PTA. 
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I.  INTRODUCTION 
Assume there are n objects and every object 

has m attributes, for each attribute the object has a local score. 
These local scores can be aggregated to an overall score by an 
aggregate function g , and we want to know which k objects 
have the largest overall scores. This scenario is generalized as 
“top-k queries”. For example, there are many kinds of cell 
phones in the market. Each cell phone may have price and 
standby time attributes. Each attribute has a numeric score 
ranging in the interval [0, 1], where the score of price attribute 
is reverse proportional to price while the score of standby time 
attribute is proportional to standby time. Bob prefers a cheap 
cell phone, and does not care much about the standby time. So 
he may issue a top-k query with aggregate function as g = 
0.8 0.2price standby time× + × . On the other hand, Alice prefers 
a longer standby time cell phone rather than a cheaper one. So 
she may issue a top-k query with aggregate function 
as g = 0.2 0.8price standby time× + × . 

Top-k queries have attracted considerable attention because 
of its wide use in many areas such as P2P systems and sensor 

networks [4][5], network and system monitoring [6][7], 
information retrieval [8][9][13], spatial data analysis [14][15], 
etc. The main reason for such attention is that top-k queries 
avoid overwhelming the user with large numbers of 
uninteresting answers which are resource-consuming. 

A general and simple model proposed by Fagin et al.[16] is 
that the dataset consists of m sorted lists with n data items. 
Each data item can be accessed through sorted access or 
random access. Sorted access iteratively reads data items 
sequentially, whereas a random access is a request for a data 
item in some list given the object’s ID. The middleware cost of 
a top-k query algorithm is s s r ra c a c+ , where sa is the number of 
sorted accesses performed, ra is the number of random 
accesses performed, sc is the cost per sorted access, and rc is 
the cost per random access. Under this model, Fagin et al.[16] 
proposed the efficient sequential Threshold Algorithm (TA). 

However, since the size of the dataset can be incredible 
huge, the middleware cost of sequential TA may be intolerable. 
So, in this paper, we propose parallel algorithms to process top-
k queries. A naïve parallel algorithm, called PTA (parallel-TA), 
evenly partitions the original dataset into P (the number of 
processors) subdatasets. Each processor finds top-k results of 
one corresponding subdataset using TA algorithm. Then these 
results are merged to get the final top-k answers. The 
middleware cost of PTA is 2( / )O nm P under PRAM-CRCW 
model, where n is the dataset size and m is the number of lists. 
Motivated by the idea of partitioning the dataset, we take a 
further step to partition the original dataset into n subdatasets 
(some subdatasets may be empty) according to their degree of 
domination (see definition 2). Based on this partition, we 
propose EPTA (Enhanced-PTA) algorithm, which works in 
three phases. In the first phase, EPTA distributes k subdatasets 
onto the P processors using a heuristic distribution algorithm. 
In the second phase, the ith processor ip uses a new algorithm 
designed by us to compute top-( ik d− ) results among the 
subdatasets distributed onto it, where id is the minimum degree 
of domination of the objects distributed onto ip . In the third 
phase, EPTA combines the results returned in the second phase 
to get the final top-k answers. We estimate the cardinality of 
each subdataset as 1((ln ) / ( 1)!)mO n m− − under the assumption 
that the scores in different lists are independent, based on 
which, we deduce the average middleware cost of EPTA to 
be 2 1( (ln ) / ( 1)!)mO km n m− − under PRAM-CRCW model. 
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Furthermore, we do extensive experiments to evaluate our 
algorithms. The experimental results show that the speedup 
ratios of EPTA are significantly higher than those of PTA. 

In this paper, our contributions are as follows: 

• We propose two parallel algorithms for top-k queries 
processing, i.e. parallel-TA (PTA) algorithm and 
Enhanced-PTA (EPTA) algorithm. To the best of our 
knowledge, this is the first paper proposing parallel 
algorithms to process top-k queries. 

• We analyze the middleware cost of both PTA and 
EPTA under PRAM-CRCW model. Specifically, the 
middleware cost of PTA is 2( / )O nm P . And the average 
middleware cost of EPTA is 2 1( (ln ) / ( 1)!)mO km n m− − in 
the cases where the local scores in different lists are 
independently distributed. 

• We do extensive experiments to evaluate our 
algorithms. The experimental results show that the 
speedup ratios of EPTA are significantly higher than 
those of PTA. 

The rest of this paper is organized as follows. In section II, 
we formally define the problem and review TA algorithm. In 
section III, we describe our algorithm PTA. Thereafter, we 
show our algorithm EPTA and analyze its complexity in 
section IV. In section V, we show the experimental results. 
Finally, in section VI, we conclude this paper and introduce our 
future work. 

II. PROBLEM DEFINITION AND TA ALGORITHM 
In this section, we formally define top-k problem and 

review the sequential TA algorithm.  

L1 L2 L3    
(T2,0.9) (T1,0.8) (T3,0.7) 

( T1,0.5) (T4,0.7) (T4,0.6) 

( T3,0.4) (T2,0.6) (T2,0.5) 

( T5,0.3) (T3,0.3) (T5,0.2) 

( T4,0.1) (T5,0.2) (T1,0.1) 

Figure 1.  Three sorted lists 

Our model of the dataset (see Fig. 1) can be described as 
follows [16]: assume the dataset D consists of m sorted lists, 
which are denoted as 1 2, , , mL L L⋅ ⋅ ⋅ . Each sorted list consists of n  
data items. Each data item is a pair ( , ( ))it s t , where t is an 
object, ( )is t is t ’s ith local score which is a real number in the 
interval [0, 1]. Sorted list means that objects in each list are 
sorted in descending orders according to their local scores. 
Each data item can be accessed through sorted access and 
random access. Sorted access iteratively reads data items 
sequentially, whereas a random access is a request for a data 
item in some list given the object’s ID. Fagin et al. introduced 
middleware cost for top-k query algorithms. The middleware 
cost of an algorithm is s s r ra c a c+ , where sa is the number of 
sorted accesses performed, ra is the number of random 

accesses performed, sc  is the cost of a single sorted access, and 
rc is the cost of a single random access.  

For a top-k query with a user-defined positive integer k and 
a m-dimensional aggregate function g , the result set Y is a set 
of objects such that Y D⊆ , | |Y k= and 1 2,t t∀ : 1t Y∈ , 2t D Y∈ − , 
it holds that 1 2( ) ( )g t g t≥ . In this paper, we assume the 
aggregate function g to be increasingly monotonic. An m-
dimensional function g is increasingly monotonic if 

1 2( , , , )mg x x x⋅ ⋅ ⋅ ≤ ' ' '
1 2( , , , )mg x x x⋅ ⋅ ⋅ , whenever '

i ix x≤ for every i . 
Many popular aggregate functions, e.g. Min, Max, Sum, are 
increasingly monotonic. 

Fagin et al. [16] proposed the efficient sequential Threshold 
Algorithm (TA) to process top-k queries with any increasingly 
monotonic function. Its middleware cost is ( ( (sO nm c m+ −  
1) ))rc . Since min{ , } ( 1) max{ , }s r s r s rc c m c m c c c m× ≤ + − ≤ × , we 
have 2( ( ( 1) )) ( )s rO nm c m c O nm+ − = . So the middleware cost of 
TA is 2( )O nm . TA is described in Fig. 3. In the description, we 
replace the notations with ours. 

Threshold Algorithm (TA) 
1. Do sorted access in a round-robin policy to each of the 

m lists. As an object is seen through sorted access in 
some list, do random access to the other lists to find all 
its remaining local scores, and compute its overall 
score. Maintain a set Y containing the k objects whose 
overall scores are the highest among all the objects seen 
so far. 

2. For each list iL , let is be the bottom score of iL , which 
is the last local score seen under sorted access in iL . 
Define the threshold value τ to be τ = 1 2( , , , )mg s s s⋅ ⋅ ⋅ . 

3. Halt when λ τ≥ , where min{ ( ) | }g t t Yλ = ∈ . 

Figure 2.  Threshold Algorithm 

Let us show how TA works with the following example. 

Example 1 Assume n=5, m=3, k=1, g=sum. The dataset is 
illustrated in Fig. 1. First, TA finds T2 under sorted access over 
list 1L , then TA retrieves its second and third local scores 
through random access over 2L and 3L , and then computes its 
overall score as 2( )g T = 2. Sinceτ =2.9 ( is is initialized to be 1), 
TA continues sorted accessing 2L . In the second sorted access, 
TA finds T1, then TA retrieves its first and third local scores 
through random access over 1L and 3L , and computes its overall 
score as 1( )g T = 1.4. The current result set Y still contains T2, 
but τ is updated to be 2.7. Since 2( )g Tτ > , TA goes on 
performing sorted access on 3L . This process is repeated until 
TA performs two sorted accesses on 1L and one sorted access on 
both 2L and 3L , where 22.0 ( )g Tτ λ= ≤ = . So, in this example, 
TA finds top-1 result with 4 sorted accesses and 8 random 
accesses.  



III. A NAIVE PARALLEL THRESHOLD ALGORITHM 
In this section, we introduce a naive parallel-TA (PTA) 

algorithm for top-k queries processing, and analyze its speedup 
ratio. Specifically, we show PTA algorithm in section III-A. 
Thereafter, in section III-B, we analyze the speedup ratio of 
PTA.  

A. PTA Algorithm 
PTA algorithm is described in Fig. 3. Assume we have P 

processors, denoted as 0 1 1, , , Pp p p −⋅ ⋅ ⋅ . PTA evenly partitions the 
original dataset D into P subdatasets, denoted as 0 1 1, , , PD D D −⋅ ⋅ ⋅ . 
Processor ip finds top-k results among sub-dataset iD using TA 
algorithm. Then we merge the results returned by all the 
processors to obtain the final top-k answers. The partition is 
completed offline.  

The following theorem guarantees that PTA finds top-k 
answers for top-k queries with any positive integer k and 
increasingly monotonic aggregate function.  

Theorem 1 If the aggregate function is increasingly 
monotonic, then PTA finds exact top-k answers among the 
original dataset D. 

Proof: For 0 1i P≤ ≤ − , Let iY contain the top-k results of 
subdataset iD and Y contain the final top-k results. Let ijs denote 
the jth bottom value of subdataset iD , 0 1i P≤ ≤ − and1 j m≤ ≤ . 
Let min{ ( ) | }i ig t t Yλ = ∈ and iτ denote the threshold value of 
subdataset iD when PTA halts, where 0 1i P≤ ≤ − . And let 

min{ ( ) | }g t t Yλ = ∈ . According to the stopping rule of TA, we 
have i iτ λ≤ when processor ip halts. We have to prove that for 
any object t D Y∈ − , it satisfies that ( )g t λ≤ . There are two 
cases depending on whether t is seen or not when PTA halts. 

Case 1: t is seen when PTA halts. In this case, we can 
easily get ( )g t λ≤ since Y contains the k objects with the highest 
scores having been seen when PTA halts. 

Case 2: t is not seen when PTA halts. Assume it D∈ , 
0 1i P≤ ≤ − . Since t is not seen, we have ( )j ijs t s≤ for1 j m≤ ≤ . 
In addition, the aggregate function g is increasingly monotonic, 
so we have 1 2( ) ( , , , )i i im ig t g s s s τ≤ ⋅ ⋅ ⋅ = . When PTA halts, we have 

i iτ λ≤ . And iλ λ≤ . Hence, we get ( ) i ig t τ λ λ≤ ≤ ≤ , i.e. ( )g t λ≤ , 
as desired. □ 

Parallel Threshold Algorithm (PTA) 
1. Evenly partition the original dataset D into P sub-

datasets, denoted as 0 1 1, , , PD D D −⋅ ⋅ ⋅ . This step is 
completed offline. 

2. Processor ip uses TA to find top-k answers in iD , and 
stores them in iY , for 0 1i P≤ ≤ − . 

3. Find the final top-k results among iY , and output them. 

Figure 3.  Parallel Threshold Algorithm 

B. Analysis of PTA 
Let sia denote the number of sorted accesses performed by 

processor ip , then the middleware cost of ip is ( )icost p =  
( ( 1) )si s ra c m c+ − . The cost of PTA is (PTA)cost =  

0 1 1max{ ( ), ( ), , ( )}Pcost p cost p cost p −⋅ ⋅ ⋅ = 0 1 ( 1)max{ , , , }s s s Pa a a −⋅ ⋅ ⋅ ×

( ( 1) )s rc m c+ − . Let sa be the number of sorted accesses needed 
by TA to find top-k results among the original dataset D, then 
the cost of TA is (TA) ( ( 1) )s s rcost a c m c= + − . Since the speedup 
ratio of PTA is (TA) / (PTA)cost cost , we have  

 
0 1 ( 1)

speedup ratio of PTA
max{ , , , }

s

s s s P

a
a a a −

=
⋅ ⋅ ⋅

 (1) 

Equation (1) tells us that the speedup ratio of PTA is 
determined by the largest number of sorted accesses performed 
by the P processors and the number of sorted access performed 
by TA. The speedup ratio of EPTA can also be calculated using 
(1). In our experiments, we will use (1) to measure the speedup 
ratios of PTA and EPTA.  

Clearly, the middleware cost of PTA is 2( / )O nm P since the 
middleware cost of each processor is 2( / )O nm P . 

IV. ENHANCED PARALLEL THRESHOLD ALGORITHM 
First, we introduce some definitions in section IV-A. 

Thereafter, in section IV-B, we describe our enhanced parallel 
threshold algorithm (EPTA). Finally, in section IV-C, we 
analyze the cost of EPTA. 

A. Definitions 
In the following, we first introduce the definition of 

dominate and propose an observation about it. Then, we define 
the degree of domination and discuss its relation to top-k 
queries. 

Definition 1 Dominate [11] We say object 1t dominates 2t  
or 2t is dominated by 1t if and only if they satisfy two conditions: 
(1) for each {1,2, , }i m∈ ⋅⋅ ⋅ , 1 2( ) ( )i is t s t≥ . (2) there exists at least 
one number {1,2, , }j m∈ ⋅⋅ ⋅  satisfying 1 2( ) ( )j js t s t>  

Our definition of dominate is different from that in [11], 
since we use ≥ (or >) instead of ≤  (or <). However, there does 
not exist essential differences between them. 

Observation 1: If object 1t dominates object 2t and the 
aggregate function is increasingly monotonic, then we have 

1 2t tS S≥ . 

Proof: We can easily get the correctness of the observation 
according to the definition of dominate. □ 

Definition 2 degree of domination [12]. If some object t is 
dominated by i other objects, we say the degree of domination 
of t is i , denoted as ( )dd t i= . 

This definition provides us a kind of method to classify 
objects, i.e. we can classify objects into n categories by their 



degree of domination. Based on the classification of the objects, 
we can partition the original dataset D into n subdatasets, 
denoted as 0 1 1, , , nD D D −⋅ ⋅ ⋅   (some subdatasets may be empty), 
where it D∀ ∈ , satisfying ( )dd t i= . The partition is pre-
computed. And we can use BFA [12] or Bitmap [17] to 
complete the pre-computation. The following observation 
reduces our accessing scope to 0 1 1, , , kD D D −⋅ ⋅ ⋅  when answering 
top-k queries with increasing monotonic aggregate functions. 

Observation 2: If the aggregate function is increasingly 
monotonic, then the top-k objects of subdatasets 0 1, , ,D D ⋅ ⋅ ⋅  

1kD − are the top-k objects of the original dataset D. 

Proof: For any object t , 0 1 1kt D D D −∉ ∪ ∪ ⋅⋅ ⋅ ∪ , there exists 
at least k other objects that belong to 0 1 1kD D D −∪ ∪ ⋅ ⋅ ⋅ ∪ and 
dominate t . According to observation 1, we know that the 
overall scores of these objects are no less than that of t . So the 
top-k objects of subdatasets 0 1 1, , , kD D D −⋅ ⋅ ⋅ are the top-k objects 
of the original dataset D for any increasingly monotonic 
aggregate function.□ 

This observation enlightens us that we only need to 
distribute 0 1 1, , , kD D D −⋅ ⋅ ⋅ onto P processors in order to find top-k 
results for any increasingly monotonic aggregate function, 
which is the main idea of the following EPTA algorithm. 

B. EPTA Algorithm 
Based on the observations in the above section, we propose 

EPTA (Enhanced-PTA) algorithm in this section. Assume we 
have P processors denoted as 0 1 1, , , Pp p p −⋅ ⋅ ⋅ . EPTA algorithm 
works in three phases, i.e. distributing phase, computing phase 
and merging phase. In distributing phase, EPTA distributes the 
subdatasets 0 1 1, , , kD D D −⋅ ⋅ ⋅ onto the P processors using a heuristic 
distribution algorithm. In computing phase, for 0 1i P≤ ≤ − , 
processor ip runs an algorithm designed by us to compute top-
( ik d− ) results among the subdatasets distributed onto it, 
where id is the minimum degree of domination of the objects 
distributed onto ip . In merging phase, EPTA obtains the final 
top-k answers by merging the results returned in the second 
phase. 

Algorithm 1: Used in Distributing Phase 
1: Let sum be the sum of the cardinality of 0 1 1, , , kD D D −⋅ ⋅ ⋅ . 
2: sum= sum/P 
3: j=k-1 
4: for i=P-1 down to 0 do 
5: sum1=0 
6: while sum1<sum and j>i-1 do 
7: Distribute jD onto ip  
8: sum1= sum1+ | |jD  
9: j=j-1 
10: end while 
11: end for 
 

Figure 4.  Algorithm 1: used in distributing phase of EPTA 

Distributing Phase In this phase, EPTA distributes 
subdatasets 0 1 1, , , kD D D −⋅ ⋅ ⋅ onto P (we assume P<k) processors 
using algorithm 1 shown in Fig. 4. Algorithm 1 tries to evenly 
distribute subdatasets 0 1 1, , , kD D D −⋅ ⋅ ⋅ onto the P processors. 

Computing Phase In this phase, each processor executes 
algorithm 2 described in Fig. 5. Assume the input is subdatasets 

0 1
, , ,i i iD D D

σ
⋅ ⋅ ⋅ , which are arrayed in increasing order respect to 

the degree of domination of the objects in them. Then 
algorithm 2 finds top-k answers among 

0 1
, , ,i i iD D D

σ
⋅ ⋅ ⋅ for any 

positive integer k and any increasingly monotonic aggregate 
function.  

Algorithm 2: Used in Computing Phase 
1. Run TA on

0i
D to find top-k objects in

0i
D , and store the 

results in Y , which is a set containing current top-k 
answers. Let λ =min{ ( )g t | t Y∈ }. 

2. : 1j =  
3. Do sorted access in a round-robin policy to each of the 

m lists of
jiD . As an object is seen through sorted access 

in some list, do random access to the other lists to find 
all its remaining local scores, and compute its overall 
score. Then update 1 2, ,...,j j mjs s s  (bottom scores of

jiD ), 

jτ (the threshold value of
jiD ), Y and λ . When jλ τ≥ , go 

to step 4. 
4. : 1j j= + . If j σ≤ , then go to step 3, or go to step 5 
5. Output Y . 

Figure 5.  Algorithm 2: used by each processor in the computing phase 

The following theorem shows us the correctness of 
algorithm 2. 

Theorem 2 If the aggregate function g is increasingly 
monotonic, then algorithm 2 finds the exact top-k queries 
results among subdatasets

0 1
, , ,i i iD D D

σ
⋅ ⋅ ⋅ for any positive integer k. 

Proof: Let Y contain the top-k results. For any object t  
outside Y , we need to prove that ( )g t λ≤ , where λ = min 
{ ( )g t | t Y∈ }. There are two cases depending on whether t is 
seen or not when algorithm 2 halts. 

Case 1: t is seen when algorithm 2 halts. In this case, we 
can easily get ( )g t λ≤ since Y contains the k objects with the 
highest scores having been seen when it halts. 

Case 2: t is not seen when algorithm 2 halts. Assume
jit D∈ , 

1 j σ≤ ≤ . Since t is not seen, we have ( )i ijs t s≤ . In addition, the 
aggregate function g is increasingly monotonic, so ( )g t ≤  

1 2( , , , )j j mj jg s s s τ⋅ ⋅ ⋅ = . And jλ τ≥ when algorithm 2 halts. Hence, 
we have ( )g t λ≤ , as desired. □ 

In the computing phase, processor ip  executes algorithm 2 
to find the top-( ik d− ) results among the subdatasets 
distributed on it, where id  is the minimum degree of 
domination of the objects distributed onto ip . This is because, 



according to observation 2, top- id results are among the objects 
whose degree of domination are less than id . 

Merging Phase In this phase, EPTA merges the results 
returned in the second phase to obtain the final top-k answers. 

Now, we can describe EPTA algorithm. EPTA algorithm is 
shown in Fig. 6. With observation 2 and theorem 2, we can 
easily prove the correctness of EPTA. The speedup ratio of 
EPTA can be calculated using (1). 

Enhanced Parallel Threshold Algorithm (EPTA) 
1. Run algorithm 1 to distribute subdatasets 0 1 1, , , kD D D −⋅ ⋅ ⋅  

onto the P processors. 
2. Processor ip runs algorithm 2 to compute top-( ik d− ) 

results among the subdatasets distributed onto it, 
where id is the minimum degree of domination of the 
objects distributed onto ip . 

3. Obtain the final top-k results by merging the results 
returned in step 2. 

Figure 6.  Enhanced parallel threshold algorithm 

C. Cost Analysis 
Our analysis is under PRAM-CRCE model. The following 

theorem tells us the upper bound of the average middleware 
cost of EPTA under any distribution of the scores in the lists. 

Theorem 3 For any top-k queries, under any distribution of 
the scores in the lists, the average middleware cost of EPTA 
algorithm is: 

 ( (EPTA))E cost =
1

2

0
( (| |))

k

i
i

O m E D
−

=
∑  (2) 

Proof: For 0 1i P≤ ≤ − , let random variable in denote the 
number of objects distributed onto processor ip . Let variable 

icost denote the middleware cost of processor ip . And let 
(EPTA)cost denote the cost of algorithm EPTA. Clearly, we 

have ( ( 1) )i i s r icost n m c m c cn≤ + − = , where ( ( 1) )s rc m c m c= + −  
2( )O m= . And, under PRAM-CRCW model, we 

have (EPTA)cost = 0 1 1 0 1max{ , , , } max{ , , ,Pcost cost cost cn cn−⋅ ⋅ ⋅ ≤ ⋅ ⋅ ⋅   
1

1
0

}
P

P i
i

cn c n
−

−
=

≤ ∑  . So, we have ( (EPTA))E cost
1

0
( )

P

i
i

c E n
−

=

≤ ∑ . Since 

in EPTA, we distribute subdatasets 0 1 1, , , kD D D −⋅ ⋅ ⋅ onto the P 

processors, we have 
1 1

0 0
( ) (| |)

P k

i i
i i

E n E D
− −

= =

=∑ ∑ . So, we obtain 

1 1
2

0 0
( (EPTA)) (| |) ( (| |))

k k

i i
i i

E cost c E D O m E D
− −

= =

≤ =∑ ∑ , as desired. □ 

Equation (2) is a loose upper bound of the average 
middleware cost of EPTA. It’s one of our future works to 
establish a tighter upper bound.  

From (2), we know that we have to calculate (| |)iE D in 
order to estimate the average middleware cost of EPTA. Some 

previous papers have tried to estimate the average cardinality 
of the skyline (it’s the same as subdataset 0D ) of the dataset. 
Under the assumption that scores in different lists are 
independently distributed, Bentley et al. [2] proves that 

1
0( ) ((ln ) )mE D O n −= . However, it’s a loose upper bound. Buchta 

[18] establishes that 1
0( ) ((ln ) / ( 1)!)mE D n m−= Θ − . But their 

proofs are restricted to the cases where no two objects share the 
same local score in any list. Chaudhuri et al. [1] proves that this 
restriction does not influence the expected cardinality of 
subdataset 0D . However, the previous works only estimate the 
average cardinality of 0D . We need to estimate the average 
cardinality of every subdataset, which is more challenging. In 
the following, we get 1( (| |)) ((ln ) / ( 1)!)m

iO E D O n m−= −  by 
deducing (| |)iE D ≤ 0(| |)E D  (1 1i n≤ ≤ − ) under the assumption 
that the scores in different lists are independent, based on 
which, we obtain ( (EPTA))E cost = 2 1( (ln ) / ( 1)!)mO km n m− − . 

Let ( , ) ( )i iA n m E D= . We assume that the n objects are 
randomly and independently chosen from the same distribution. 
Let the set of m  random variables 1 2, , , mX X X⋅ ⋅ ⋅ continuously 
ranging in the interval [0, 1] represent the local scores in 
the m lists. Let 1 2( , , , )mF x x x⋅ ⋅ ⋅  denote the joint distribution 
function, and 1 2( , , , )mf x x x⋅ ⋅ ⋅ denote the joint density function of 
the m variables. In vector notation, we rewrite them as 

( )F X and ( )f X , where 1 2( , , , )mX x x x= ⋅ ⋅ ⋅ . Then we have the 
following theorem, which formulates ( , )iA n m . 

Theorem 4 Let ( , )iA n m denote the average cardinality of 
iD , then we have 

 ( , )iA n m =
[ ]

1

0,1

1
( ) ( )(1 ( ))m

i n in
n f X P X P X d X

i
− −− 

− 
 

∫  (3) 

Where ( )P X = ( )
Y X

f Y dY
≥∫ . 

Proof: For any object t whose local scores are vector 
1 2( , , , )mX x x x= ⋅ ⋅ ⋅ , the probability that another object 't  

dominates it is ( )P X and the probability that 't does not 
dominate it is (1 ( ))P X− . In order to make the degree of 
domination of t be i , i out of the other ( 1)n − objects should 
dominate t and the rest shouldn’t dominate t . So, the probab-

ility 11
Pr{ ( ) } ( )(1 ( ))i n in

dd t i P X P X
i

− −− 
= = − 

 
. Since object t  

itself comes from a distribution with density function ( )f X , 
the probability that a randomly chosen object belongs to iD is 

[ ]
1

0,1

1
( ) ( )(1 ( ))m

i n in
f X P X P X d X

i
− −− 

− 
 

∫ . So the average card-

inality of iD , i.e. ( , )iA n m , is formulated as (3), as desired.□ 

Equation (3) is established under any distribution of the 
scores in the lists. The following theorem formulates ( , )iA n m  



under the assumption that scores in different lists, i.e. 
1 2, , , mX X X⋅ ⋅ ⋅ , are independent. 

Theorems 5 If the scores in different lists are independent, 
then we have 

 
[ ] 2

1
1 2 1 10,1

1
( , ) (1 )m m

n i i i i
i m m

n
A n m n x x x x x x dx dx

i
− −− 

= − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 

∫  (4) 

Proof: Since 1 2, , , mX X X⋅ ⋅ ⋅ are independent, ( )f X can be 
written as 1 1 2 2( ) ( ) ( )m mf x f x f x⋅ ⋅ ⋅  and ( )F X can be written as 

1 1 2 2( ) ( ) ( )m mF x F x F x⋅ ⋅ ⋅ , where ( )j jf x is the density function and 
( )j jF x is the distribution function of jX , where1 j m≤ ≤ . ( )P X  

1

( ) (1 ( ))
m

j jY X
j

f Y dY F x
≥

=

= = −∏∫ . Moreover, ( )j jf x = (1 ( ))j jF x ′− −  

since jX is continues. Substituting these to (3), and using a 
change of variable, we have the correctness of theorem 5. □ 

When 0i = ,
[ ]

1
0 1 2 1 20,1
( , ) (1 )m

n
m mA n m n x x x dx dx dx−= − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅∫ , 

which is the same as that in [1]. 

After expanding 1
1 2(1 )n i

mx x x − −− ⋅ ⋅ ⋅ , we can calculate (4) as 
follows: 

[ ] 2

1
1 2 1 10,1

1
( , ) (1 )m m

n i i i i
i m m

n
A n m n x x x x x x dx dx

i
− −− 

= − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 

∫  

=
[ ]

1

1 2 1 20,1
0

1 1
( 1) ( )m

n i
j j i

m m
j

n n i
n x x x dx dx dx

i j

− −
+

=

− − −   
− ⋅ ⋅ ⋅ ⋅ ⋅ ⋅   

   
∑∫  

=
[ ]

1

0,1
0

1 1
( 1) ( )

n i
j i j m

j

n n i
n x dx

i j

− −
+

=

− − −   
−   

   
∑ ∫  

=
1

0

1 1 1( 1)
( 1)

n i
j

m
j

n n i
n

i j i j

− −

=

− − −   
−    + +   

∑  

= 1
1

1

1 1( 1)
( )

n i
j

m
j

i j n
i i j i j

−
+

−
=

+ −  
−  + +  

∑  

So, we have 

 1
1

1

1 1( , ) ( 1)
( )

n i
j

i m
j

i j n
A n m

i i j i j

−
+

−
=

+ −  
= −  + +  

∑  (5) 

For 1, 1, 0 1n m i n≥ ≥ ≤ ≤ −  

With (5), we can easily get 1

1( 1, )
( 1)i mA i m
i −+ =

+
and 

( ,1) 1jA n = , where 0i ≥ and 0 1j n≤ ≤ − . In order to analyze (5), 
we define a set of generating functions ( , )iG n z  as 

 
0

( , ) ( , 1) m
i i

m
G n z A n m z

∞

=

= +∑ , for 0 1i n≤ ≤ −   

By (5), we have 

0
(1 / ) ( , ) ( , 1) m

i i
m

z n G n z A n m z
∞

=

− = +∑  

= 1

0 1

1 1(1 / ) ( 1)
( )

n i
j m

m
m j

i j n
z n z

i i j i j

∞ −
+

= =

+ −  
− −  + +  

∑∑  

= 1

0 1

1 1( 1)
( )

n i
j m

m
m j

i j n
z

i i j i j

∞ −
+

= =

+ −  
−  + +  

∑∑  

1 1
1

0 1

1 1 1( 1)
1 ( )

n i
j m

m
m j

i j n
z

i i j i j

∞ −
+ +

+
= =

+ − −  
− −  + − +  
∑∑  

=1+ 1

1 1

1 1 1( )( 1)
1 ( )

n i
j m

m
m j

i j n n
z

i i j i j i j

∞ −
+

= =

+ − −     
− −     + + − +     

∑∑  

= ( 1, )iG n z−  

So we get ( , ) ( 1, ) / (1 / )i iG n z G n z z n= − − . Since ( 1, )iA i m+  

1

1
( 1)mi −=

+
and ( , ) 0iA j m = for 0i ≥ and j i≤ , we have 

( 1, )iG i z+ = 1 / (1 / ( 1))z i− +  and ( , ) 0iG j z =  for 0i ≥ and j i≤ . So 
we obtain 

 
1

1( , )
1 /

n

i
j i

G n z
z j= +

=
−∏  (6) 

Equation (6) is (36) of Knuth [3, Sec. 1.2.9] with 0jx =  for 
1 j i≤ ≤ and 1 /jx j= for 1i j n+ ≤ ≤ . Define 

 ( )

1
( ) 1 /

n
r r

i
j i

H n j
= +

= ∑ , for 0 1i n≤ ≤ −   

By Knuth’s analysis, the coefficient of mz in ( , )iG n z is 

 
1 2

1 2
1 2
1 2

(1) (2) ( )

, , , 0 1 2
2

( ) ( ) ( )
1 ! 2 ! !

m

m
m

m

kk k m
i i i

kk k
k k k m
k k mk m

H n H n H n
k k m k⋅⋅⋅ ≥

+ +⋅⋅⋅+ =

⋅ ⋅ ⋅∑  (7) 

According to definition, (7) is ( , 1)iA n m + . Since 
( ) ( )

1( ) ( )r r
i iH n H n−≤  for 1 1, 1i n r≤ ≤ − ≥ , we have 

 1( , ) ( , )i iA n m A n m−≤ , for 1 1i n≤ ≤ −  (8) 

Equation (8) shows ( , )iA n m is monotonic respect to i . 
Buchta [18] established that 1

0 ( , ) ((ln ) / ( 1)!)mA n m n m−= Θ − . So, 
we have 

 1( , ) ((ln ) / ( 1)!)m
iA n m O n m−= − , for 0 1i n≤ ≤ −  (9) 



So, we have the following theorem, which is an upper 
bound of the average middleware cost of EPTA algorithm. 

Theorem 6 If the scores in different lists are independently 
distributed, then the average middleware cost of EPTA is 

 ( (EPTA))E cost = 2 1( (ln ) / ( 1)!)mO km n m− −  (10) 

Proof: We can easily get the correctness by combining (2) 
and (9).□ 

This upper bound is a loose one. From the above analysis, 
we can know that the cardinality of subdataset iD is a binomial 
distribution under the assumption that the scores in different 
lists are independently distributed. It’s possible to get a tighter 
upper bound of the average middleware cost of algorithm 
EPTA. Actually, it’s one of our future works. 

V. EXPERIMENTS 
In this section, we do extensive experiments to evaluate the 

performance of our algorithms, i.e. PTA and EPTA. Our 
algorithms are implemented in C++ and OpenMP. We perform 
our experiments on a 2-CPU server with shared memory 8GB; 
each CPU is 4-core Intel Xeon E5430 2.66GHz. We use both 
synthetic datasets and real dataset in our experiments. The 
metrics we measure is the speedup ratio. According to (1), we 
only need to count the number of sorted access performed by 
TA, PTA and EPTA in order to calculate the speedup ratio. 
First, in section V-A, we show the experimental results on 
synthetic datasets. Then in section V-B, we show the 
experimental results over real datasets. Finally, we summarize 
our experiments in section V-C. 

A. Experiments with Synthetic Datasets 
Datasets Generation We do experiments on three 

synthetic datasets. All generated local scores belong to the 
interval [0, 1]. The three synthetic datasets are produced to 
model different input scenarios; they are UI, NI and CO, 
respectively. UI contains datasets in which objects’ local scores 
are uniformly and independently generated for the different 
lists. NI contains datasets in which objects’ local scores are 
normally and independently generated for the different lists. 
CO, generated using the same methodology in [11], contains 
datasets in which objects’ local scores are correlated. In other 
words, the ith local score ( )is t of an object t is very close 
to ( )js t with high probability, where i j≠ . To generate an object 
t , first, a number tu from 0 to 1 is selected using a Gaussian 
distribution centered at 0.5 with variance 1. t ’s local scores are 
then generated by a Gaussian distribution centered at tu with 
variance 0.01.  

For synthetic datasets, our default settings for different 
parameters are shown in Table 1. In our tests, the default 
number of data items in each list is 1,000,000, i.e. n=1,000,000. 
Typically, users are interested in a small number of top 
answers, thus we set k = 50 as k’s default value. Like many 
previous works on top-k query processing, such as [12][19], we 
choose the aggregate function as the sum of the local scores. In 

one third of our tests, the number of lists, i.e. m, is a varying 
parameter. When m is a constant, we set it to 3 since most 
previous works evaluate their algorithms on datasets with 3 
lists. 

TABLE I.  DEFAULT VALUES OF EXPERIMENTAL PARAMETERS 

Parameters Default Values 

The number of objects, i.e. n 1,000,000 

The number of lists, i.e. m 3 

The number of results returned, i.e. k 50 

The number of processors, i.e. P 8 

Aggregate function summation 
 

Experimental Results Fig. 7 shows the experimental 
results when k, the number of results returned, varies from 10 
to 100 with step 10 and other parameters set as those in Table 
1. From the results, we know that the speedup ratios of EPTA 
are orders of magnitude higher than those of PTA over all the 
datasets we consider. Over the three datasets considered, the 
speedup ratios of PTA almost keep unchanged as k increases. 
However, the speedup ratios of EPTA decrease as k increases. 
The reason is that the number of objects distributed onto each 
processor in PTA has nothing to do with k while EPTA has to 
distribute more subdatasets onto the processors as k increases. 

Fig. 8 illustrates the experimental results in which the 
parameters are set as those in Table 1 except that m, the 
number of lists, varies from 2 to 8 with step 1. The results show 
us that the speedup ratios of EPTA are significantly higher than 
those of PTA over the considered datasets. The speedup ratios 
of PTA increase slightly as m increases while the speedup 
ratios of EPTA increase, and then decrease as m increases. 
Interestingly enough, the speedup ratios of EPTA are maximal 
when m=3 over all datasets we consider. It’s one of our future 
works to explore the theoretical reason why this happens. The 
reason why the speedup ratios of EPTA decrease as m 
increases is that the k subdatasets distributed onto the P 
processors contain more and more objects as m increases. 

Fig. 9 illustrates the experimental results when the 
parameters are set as those in Table 1 except that the dataset 
size, i.e. n, varies. The results tell us that the speedup ratios of 
EPTA are orders of magnitude higher than those of PTA. The 
speedup ratios of PTA almost keep unchanged while the 
speedup ratios of EPTA increase fast as n increases. 

From the analysis above, we know that the speedup ratios 
of EPTA are orders of magnitude higher than those of PTA 
over all the datasets considered. The reason is that EPTA only 
distributes k subdatasets onto the P processors while PTA 
distributes the whole original dataset onto the processors.  

B. Experiments with Real Datasets 
Description of Datasets For real datasets, we choose El 

Nino dataset1 and Forest Cover (FC) dataset2. El Nino dataset 
contains 93935 objects with 3 lists, and FC dataset contains 
581012 objects with 4 lists. El Nino contains oceanographic 
and surface meteorological readings taken from a series of  

1From UCI KDD. http://kdd.ics.uci.edu/databases/el_nino/el_nino.html 
2From UCI KDD. http://kdd.ics.uci.edu/databases/covertype/covertype.html 
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Figure 7.  Speedup ratios v.s. k over synthetic datasets, n=1,000,000,  m=3, P=8 
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Figure 8.  Speedup ratios v.s. m over synthetic datasets, n=1,000,000,  k=50, P=8 
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Figure 9.  Speedup ratios v.s. n over synthetic datasets, m=3,  k=50, P=8 
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Figure 10.  Speedup ratios v.s. n over synthetic datasets, m=3,  k=50, P=8 



buoys positioned throughout the equatorial Pacific. The data is 
expected to aid in the understanding and prediction of El 
Nino/Southern Oscillation (ENSO) cycles. We neglect the 
objects missing some fields. The remaining dataset contains 
93935 objects. We chose 3 lists to test our algorithms. FC 
contains 581012 forest land cells (i.e. objects), having four 
attributes (i.e. lists): horizontal distance to nearest surface water 
features, vertical distance to nearest surface water features, 
horizontal distance to nearest roadways, and horizontal distance 
to nearest wildfire ignition points. For both real datasets, we 

normalize the dataset with the formula: ( )is t Min
Max Min

−
−

, where ( )is t  
is t ’s ith local score. In our experiments, the number of results 
returned, i.e. k, varies from 10 to 100 with step 10. 

Experimental Results Fig. 11 shows the experimental 
results over El Nino dataset (Fig. 11 (a)) and FC dataset (Fig. 
11 (b)). From the results, we know that the speedup ratio of 
EPTA is significantly higher than that of PTA. The reason is 
that EPTA only distributes objects whose degree of domination  
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Figure 11.  Speedup ratios v.s. k over real datasets, P=8 
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Figure 12.  Speedup ratios v.s. P over real datasets, k=50 

is less than k onto processors while PTA distributes the whole 
dataset onto processors. For El Nino dataset, the speedup ratio 
of EPTA decreases as the number of results returned (i.e. k) 
increases while the speedup ratio of PTA increases slightly as k 
increases. However, for FC dataset, the speedup ratio of EPTA 
almost keeps unchanged as k increases while the speedup ratio 
of PTA decreases slightly as k increases. 

C. Summary 
Our experiments illustrate that the speedup ratios of EPTA 

are orders of magnitude higher than those of PTA over the 
synthetic and real datasets considered. This can be explained by 
the fact that PTA distributes the whole original dataset onto the 
P processors while EPTA first partitions the original dataset 
into n subdatasets according to the degree of domination of the 
objects, and only distributes k subdatasets onto the processors 
for any top-k query with monotonically increasing aggregate 
function. 

VI. RELATED WORKS 
Several papers are related to our analysis in section IV-C. 

In computational geometry community, Bentley et al.[2] 
analyzed the average number of maxima (i.e. subdataset 0D ) of 
a dataset. Under the assumption that the local scores in 
different lists are independently distributed, they got 

1
0(| |) ((ln ) )mE D O n −= . Buchta [18] got a tighter bound, that is, 

1
0( ) ((ln ) / ( 1)!)mE D n m−= Θ − . But their proofs are restricted to 

the cases where no two objects share the same local score in 
any list. When the term maxima was introduced into database 
area, it was renamed as skyline of the dataset by database 
community. Chaudhuri et al. [1] proves that Bently’s and 
Buchta’s estimations are also right in the cases some objects 
share the same local scores in some lists.  

The previous works only estimate the average cardinality of 



subdataset 0D (named as maxima in computational geometry 
community and skyline in database community). We need to 
estimate the average cardinality of every subdataset, which is 
much more challenging. We prove that 0(| |) (| |)iE D E D≤  
( 1 1i n≤ ≤ − ) under the assumption that the local scores in 
different lists are independently distributed. So, we have 

1( ) ((ln ) / ( 1)!)m
iE D O n m−= − , based on which, we obtain the 

average middleware cost of EPTA is 2 1( (ln ) / ( 1)!)mO km n m− − . 

VII. CONCLUSIONS AND FUTURE WORKS 
In this paper, we propose parallel algorithms, i.e. PTA and 

EPTA, to process top-k queries with any positive integer k and 
any monotonically increasing aggregate function. PTA evenly 
partitions the original dataset into P subdatasets. Each 
processor finds top-k results of one corresponding subdataset 
using TA algorithm. Then these results are merged to get the 
final top-k answers. The middleware cost of PTA is 2( / )O nm P  
under PRAM-CRCW model. EPTA is based on the partition of 
the dataset according to the objects’ degree of domination. And 
it works in three phase. In the first phase, it distributes k 
subdatasets on to P processors using a heuristic algorithm. In 
the second phase, processor ip  finds the top-( ik d− ) results 
among the subdatasets distributed onto it, where id is the 
minimum degree of domination of the objects distributed 
onto ip . In the third phase, EPTA obtains the final top-k results 
by merging the results returned in the second phase. The 
average middleware cost of EPTA is 2 1( (ln ) / ( 1)!)mO km n m− −  
under the assumption that scores in different lists are 
independent. 

In both PTA and EPTA, processors do not communicate 
until they find their own query answers among the 
corresponding subdatasets. Actually, processors can 
communicate with each other and merge the local results 
before they find the whole local result set so as to halt earlier. 
In this scenario, the number of accesses performed by each 
processor may decrease. However, the communication cost will 
correspondingly increase. So, in the future, we plan to manage 
the tradeoff between them. 
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